

62:3 (2013) 21–26 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | ISSN 0127–9696

Full paper
Jurnal

Teknologi

Probabilistic Semi-Simple Splicing System and Its Characteristics

Mathuri Selvarajoo

a*
, Fong Wan Heng

b
, Nor Haniza Sarmin

a
, Sherzod Turaev

c

aDepartment of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
bIbnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bharu, Johor, Malaysia
cDepartment of Computer Science, Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, 53100 Kuala
Lumpur, Malaysia

*Corresponding author: mathuri87@yahoo.com

Article history

Received :18 March 2013
Received in revised form :

26 April 2013

Accepted :17 May 2013

Graphical abstract

Abstract

The concept of splicing system was first introduced by Head in 1987. This model has been introduced to
investigate the recombinant behavior of DNA molecules. Splicing systems with finite sets of axioms only

generate regular languages. Hence, different restrictions have been considered to increase the

computational power up to the recursively enumerable languages. Recently, probabilistic splicing systems
have been introduced where probabilities are initially associated with the axioms, and the probability of a

generated string is computed by multiplying the probabilities of all occurrences of the initial strings in the

computation of the string. In this paper, some properties of probabilistic semi-simple splicing systems,
which are special types of probabilistic splicing systems, are investigated. We prove that probabilistic

semi-simple splicing systems can also increase the generative power of the generated languages.

Keywords: DNA computing; probabilistic splicing systems; splicing languages; regular languages

Abstrak

Konsep sistem hiris-cantum mula diperkenalkan oleh Head pada tahun 1987. Model ini telah
diperkenalkan untuk menyiasat penggabungan semula molekul-molekul DNA. Sistem hiris-cantum

dengan set aksiom terhingga hanya menjana bahasa biasa. Oleh itu, batasan yang berbeza telah digunakan

untuk meningkatkan kuasa pengkomputeran sehingga ke bahasa rekursif enumerable. Baru-baru ini,
sistem hiris-cantum berkebarangkalian telah diperkenalkan di mana kebarangkalian dikaitkan dengan

aksiom dan kebarangkalian jujukan yang dihasilkan dikira melalui pendaraban semua kebarangkalian

jujukan yang digunakan. Dalam kertas kerja ini, beberapa ciri-ciri sistem hiris-cantum separuh-mudah

berkebarangkalian yang merupakan salah satu jenis sistem hiris-cantum berkebarangkalian disiasat. Kami

membuktikan bahawa sistem hiris-cantum separuh-mudah berkebarangkalian juga boleh meningkatkan

kuasa pengkomputeran bahasa yang dihasilkan

Kata kunci: Pengkomputeran DNA; sistem hiris-cantum berkebarangkalian; bahasa hiris-cantum; bahasa

biasa

© 2013 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

Deoxyribonucleic acid (DNA) is the genetic material of

organisms in a chain of nucleotides. The nucleotides differ by

their chemical bases that are adenine (A), guanine (G), cytosine

(C), and thymine (T). DNA bases pair up with each other, A with

T and C with G, to form units called base pairs. So, nucleotides

can be arranged in two long strands that form a spiral called a

double helix. The structure of the double helix is somewhat like a

ladder. DNA can be represented as strings over four alphabets, i.e.

D = {[A / T], [C / G], [G / C], [T / A]} [1]. Restriction enzymes,

found naturally in bacteria, can cut DNA fragments at specific

sequences, known as restriction sites; while another enzyme,

ligase, can re-join DNA fragments that have complementary ends.

This recombination behaviour of restriction enzymes and ligases

was modelled in the form of splicing systems and splicing

languages.
 The concept of splicing system was first introduced by Head

in 1987 [2]. This model has been defined to investigate the

recombinant behavior of DNA molecules in the presence of

restriction enzymes and ligases. In splicing system, a DNA

molecule is coded into a string over the alphabets. With some

strings over the alphabet as the initial strings (axioms) and some

splicing rules, a language can be produced by the splicing system.
 Later, various types of splicing languages were defined and

studied by different mathematicians. Since splicing systems with

finite sets of axioms and rules generate only regular languages [3],

several restrictions in the use of rules have been considered,

which increase the computational power of the languages

generated up to the recursively enumerable languages. This is

22 Mathuri Selvarajoo et al. / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 21–26

important from the point of view in DNA computing: splicing

systems with restrictions can be considered as theoretical models

of universal programmable DNA based computers. Different

problems appearing in the area of computer science motivate

humans to consider suitable models for the solution of the

problems.

 In this research, we consider probabilistic splicing systems to

introduce a new variant of splicing system [4], called probabilistic

semi-simple splicing systems. In such system, probabilities (real

numbers in the range [0, 1]) are associated with the axioms, and

the probability p(z) of the string z generated from two strings x

and y is calculated from the probability p(x) and p(y) according to

the operation * defined on the probabilities, i.e. p(z) = p(x) * p(y).

Then the language generated by a probabilistic semi-simple

splicing system consists of all strings generated by the semi-

simple splicing systems whose probabilities are greater than (or

smaller than, or equal to) some previously chosen cut-points.

 This paper is organized as follows. Section 2 contains some

necessary definitions from formal language theory, DNA

computing and probabilistic splicing systems. The concept of

probabilistic semi-simple splicing systems are introduced in

Section 3. In Section 3, we also establish some basic results

concerning the generative power of probabilistic semi-simple

splicing systems. In Section 4, we indicate some possible topics

for future research in this direction.

2.0 PRELIMINARIES

In this section, the main concepts and notations that will be used

in this paper are introduced. The theoretical basis of splicing

system is under the framework of formal language theory that is

mainly the study of finite sets of strings called languages.

 Throughout the paper we use the following general notations.

The symbol denotes the membership of an element to a set

while the negation of set membership is denoted by . The

inclusion is denoted by and the strict (proper) inclusion is

denoted by . denotes the empty set. The sets of integers,

positive rational numbers and real numbers are denoted by ,

and , respectively. The cardinality of a set X is denoted by |X|.

Definiton 1. [5]

A finite, nonempty set A of symbols is called an alphabet. Any

finite sequence of symbols from an alphabet is called a string. We

use 1 to denote the empty string which is a string with no symbols

at all.

 If A is an alphabet, we use A* to denote the set of strings

obtained by concatenating zero or more symbols from A.

Definition 2. [5]

 A formal language L over an alphabet Σ is a subset of Σ*, that

is, a set of words over that alphabet.

The families of languages generated by phrase structure, context-

sensitive, context-free, linear and regular grammars are denoted

by RE, CS, CF, LIN, and REG respectively. Further we denote

the family of finite languages by FIN. The next strict inclusions,

named Chomsky hierarchy, holds:

FIN REG LIN CF CS RE.

Definition 3. [2] Splicing System

 Let V be an alphabet, and two special symbols. A

splicing rule over V is a string of the form

 where

For such a rule r and strings we write

 iff and

for some .

 We say that is obtained by splicing and as indicated by

the rule and are called the sites of the splicing. We

call the first term and the second term of the splicing

operation. When understood from the context, we omit the

specification of and we write instead of .

 An H scheme is a pair where is an alphabet and

 is a set of splicing rules.

 For a given H scheme and a language

we define

 for some

 An extended H system is a construct where

 is an alphabet, is the terminal alphabet, is the set

of axioms, and is the set of splicing rules.

When , the system is said to be non-extended. The language

generated by is defined by

 Here, EH() denotes the family of languages generated

by extended H systems with and

where FIN, REG, CF, LIN, CS, RE}.

Theorem 1 [2]

 The relations in the following table hold, where at the

intersection of the row marked with with the column marked

with there appear either the family EH or two families

 such that EH() .

Table 1 The family of languages generated by F1 and F2.

F2

F1

FIN REG CF LIN CS RE

FIN REG RE RE RE RE RE

REG REG RE RE RE RE RE

CF LIN,CF RE RE RE RE RE

LIN CF RE RE RE RE RE

CS RE RE RE RE RE RE

RE RE RE RE RE RE RE

Definition 4. [6]

A semi- simple H (splicing) system is a triple

where is an alphabet, and is a finite language over .

The elements of are called markers and those of are called

axioms.

http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Formal_language#Words_over_an_alphabet

23 Mathuri Selvarajoo et al. / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 21–26

Definition 5. [4]

A probabilistic H (splicing) system is a 5-tuple

where are defined as for a usual extended H system,

 is a probability function, and is a finite subset of

 such that

.

Definition 6. [7]

We consider as thresholds (cut-points) sub-segments and discrete

subsets of [0, 1] as well as real numbers in [0,1]. We define the

following two types of threshold languages with respect to

thresholds and

where and are called threshold

modes.

3.0 RESULTS AND DISCUSSION

In this section we introduce the notion of probabilistic semi-

simple splicing systems which is specified with a probability

space and operations over probabilities closed in the probability

space.

Definition 7.

A probabilistic semi-simple splicing system is a 4-tuple

 where V is defined as for a usual extended H

system, R is the rule in the form for , p is a

probabilistic function defined by , and A is a

subset of such that

Further we define a probabilistic semi-simple splicing operation

and the language generated by a probabilistic semi-simple

splicing system.

Definition 8.

For strings , and

, , if and only if

 and and .

Definition 9.

The language generated by the probabilistic semi-simple splicing

system is defined as

Remark 1. We should mention that splicing operations may result

in the same string with different probabilities. Since in this paper,

we focus on strings whose probabilities satisfy some threshold

requirements, i.e., the probabilities are merely used for the

selection of some strings, this ‘ambiguity’ does not effect on the

selection. When we investigate the properties connected with the

probabilities of the strings, we can define another operation

together with the multiplication of the strings, for instance, the

addition over the probabilities of the same strings, which removes

the ambiguity problem.

 We denote the family of languages generated by

multiplicative probabilistic semi-simple splicing system of type

 by where

Remark 2. In this paper we focus on probabilistic semi-simple

splicing systems with finite set of axioms, since we consider a

finite initial distribution of probabilities over the set of axioms.

Moreover, it is natural in practical point of view: only splicing

systems with finite components can be chosen as a theoretical

model for DNA based computation devices. Thus, we use the

simplified notation of the language family generated

by probabilistic semi-simple splicing systems with finite set of

axioms instead of where

 shows the family of languages

for splicing rules.

From the definition, the next lemma follows immediately.

Lemma 1

 for all families

.

Proof.

Let be a semi-simple splicing system generating the

language where

.

Let . We define a probabilistic semi-

simple splicing system where the set of axioms

is defined by where

 for all , then

We define the threshold language generated by as ,

then it is not difficult to see that

.

Next, two examples are given to illustrate the application of

probability to the semi-simple splicing system.

Example 1 : Consider the semi-simple splicing system

We obtain

, where

.

The way to obtain the string is by performing the splicing

operation using the markers to the axioms.

24 Mathuri Selvarajoo et al. / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 21–26

Case 1 : Using strings

i : for the string and using marker c,

 ,

ii : for the string and using marker a,

 ,

iii : for the both strings and

 and using the markers a and c,

 ,

2 5 2 5
 , , , ,

17 17 17 17
c aac a ba ca acca

         
        

        
,

iv : for the strings from (iii) and i.e.

 and and

using the same markers a and c,
2

3

,

2 5 5 2 5
| , , | , ,

17 17 17 17 17
c aacc a ba ca ac a

            
                          

,

v :for each new string produced

 and string (ii)

 and using the same markers a and

c,

2

1 2 5 5
| , , | ,

17 17 17

n

nac a ba ca




        
                 

1

,

2 5
 , .

17 17

n

n

c a ac a

   
       

Case 2 : Using strings

i : for the string and using marker b,

 ,

ii : for the string and using marker a,

 ,

iii : for the both strings and

 and using the markers a and b,

 ,

3 7 3 7
 , , , ,

17 17 17 17
b aab a ca ba abba

         
        

        
,

iv : for the strings from (iii) and i.e.,

 and and

using the same markers a and c,
2

3

,

3 7 7 3 7
| , , | , ,

17 17 17 17 17
b aabb a ca ba ab a

            
                          

,

v : for each new string produced

 and string (ii)

 and using the same markers a and

b,

2

1 3 7 7
| , , | ,

17 17 17

n

nab a ca ba




        
                 

1

,

3 7
 , .

17 17

n

n

b a ab a

   
       

For the strings from Case 1

1
2 5

 ,
17 17

n

nac a

   
       

 and Case 2

1
3 7

 ,
17 17

n

nab a

   
       

using marker a,

1 1
2 5 3 7

| , , | ,
17 17 17 17

n n

n nac a a b a

       
 

  
  
   

            

1

6 35
 ,

289 289

n

n n

a ac b a

   
   

    

.

Therefore,

.

Using the threshold properties, we can conclude the following:

i :

ii : ,

iii :

iv :

Example 2: Consider the semi-simple splicing system

).

We obtain

, where

.

The way to obtain the string is by performing the splicing

operation using the markers to the axioms.

Case 1 : Using strings

i : for the string and using marker c,

 ,

ii : for the string and using marker a,

 ,

iii : for the both strings

and and using the markers a and c,

25 Mathuri Selvarajoo et al. / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 21–26

 ,

3 7 3 7
 , , , ,

41 41 41 41
c aac a ba ca acca

         
        

        
,

iv : for the strings from (iii) and , i.e.,

 and and

using the same markers a and

c,

2

3

,

3 7 7 3 7
| , , | , ,

41 41 41 41 41
c aacc a ba ca ac a

            
                          

,

v : for each new string produced ,

(and string (ii)

 and using the same markers a and c,

2

1 3 7 7
| , , | ,

41 41 41

n

nac a ba ca




        
                 

1

,

3 7
 ,

41 41

n

n

c a ac a

   
       

.

Case 2 : Using strings

i : for the string and using marker b,

 ,

ii : for the string and using marker a,

 ,

iii : for the both strings and

 and using the markers a and b,

 ,

2 11 2 11
 , , , ,

41 41 41 41
b aab a ca ba abba

         
        

        
,

iv : for the string from (iii) and , i.e.

 and and

using the same markers a and b,
2

3

,

2 11 11 2 11
| , , | , ,

41 41 41 41 41
b aabb a ca ba ab a

            
                          

,

v : for each new string produced

 and string (ii)

 and using the same markers a and b,

2

1 2 11 11
| , , | ,

41 41 41

n

nab a ca ba




        
                 

1

,

2 11
 ,

41 41

n

n

b a ab a

   
       

.

Case 3 : Using strings

i : for the string and using marker d,

 ,

ii : for the string and using marker a,

 ,

iii : for the both strings and

 and using the markers a and d,

 ,

5 13 5 13
 , , , ,

41 41 41 41
d aad a ba da adda

         
        

        
,

iv : for the strings from (iii) and , i.e.,

 and and

using the same markers a and

d,

2

3

,

5 13 13 5 13
| , , | , ,

41 41 41 41 41
d aadd a ba da ad a

           
           

         

 
 
  

,

v : for each new string produced

 and string (ii)

 and using the same markers a and d,

2

1 5 13 13
| , , | ,

41 41 41

n

nad a ba da




        
                 

1

,

5 13
 ,

41 41

n

n

d a ad a

   
   

    

.

For the strings from Case 1

1
3 7

 ,
41 41

n

nac a

   
       

and Case 2

1
2 11

 ,
41 41

n

nab a

   
       

using marker a,

1 1
3 7 2 11

| , , | ,
41 41 41 41

n n

n nac a a b a

       
 

  
  
               

1

 2 2

2.3 7.11
 ,

41 41

n

n n

a ac b a

   
   

    

.

For the strings resulted from Case 1 and Case 2
1

2 2

2.3 7.11
 ,

41 41

n

n nac b a

   
   

    

 and Case 3

1
5 13

 ,
41 41

n

nad a

   
   

    

and using marker a,

1 1

 2 2

1

3 3

2.3 7.11 5 13
| , , | ,

41 41 41 41

2.3.5 7.11.13
 , .

41 41

n n

n n n

a

n

n n n

ac b a a d a

ac b d a

 



         
                      

   
   

    

Therefore,

.

Using the threshold properties, we can conclude the following:

26 Mathuri Selvarajoo et al. / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 21–26

i :

ii :

iii:

iv :

 The examples above illustrate that the use of thresholds with

probabilistic semi-simple splicing systems increase the generative

power of splicing systems with finite components.

 We should also mention two simple but interesting facts of

probabilistic semi-simple splicing systems. First as Proposition 1

and second as Proposition 2, as stated in the following:

Proposition 1

For any probabilistic semi-simple splicing system (G), the

threshold language is the empty set, i.e. .

Proposition 2

If for each splicing rule in a probabilistic semi-simple splicing

system (G), , then every threshold language

with is finite.

From Theorem 1, Lemma 1 and Examples 1, 2, we obtain the

following two theorems.

Theorem 2

 where

.

Theorem 3

4.0 CONCLUSION

In this paper we introduced probabilistic semi-simple splicing

systems by associating probabilities with strings and also

establishing some basic but important facts of probabilistic semi-

simple splicing systems. We showed that an extension of semi-

simple splicing systems with probabilities increases the generative

power of semi-simple splicing systems with finite components. In

particular cases, probabilistic semi-simple splicing systems can

generate non context-free languages. The problem of strictness of

the second inclusion in Theorem 2 and the incomparability of the

family of context-free languages with the family of languages

generated by probabilistic semi-simple splicing systems with

finite components (the inverse inequality of that in Theorem 3)

remain open.

Acknowledgement

The first author would like to thank the Malaysian Ministry of

Higher Education for the financial funding support through

MyBrain15 scholarship. The second and third authors would also

like to thank the Malaysian Ministry of Higher Education (MOHE)

and Research Management Center (RMC), UTM for their financial

funding through Research University Fund Vote No. 07J41.

References

[1] L. Adleman. 1994. Science. 266: 1021–1024.

[2] T. Head. 1987. Bull. Math.Biology. 49: 737–759

[3] D. Pixton. 1996. Discrete Applied Mathematics. 69: 101–124.
[4] Sherzod Turaev, Mathuri Selvarajoo, Fong Wan Heng, Nor Haniza

Sarmin. 2013. Advanced Methods for Computational Collective

Intelligence. New York: Springer. 457: 259–268.

[5] G. Paun, G. Rozenberg, A. Salomaa. 1998. Handbook of Formal

Languages: Vol.1. Word, language, grammar. Springer-Verlag.

[6] E. Goode, D. Pixton. 1996. Discrete Applied Math. 72: 96–107.

[7] T. Fowler. 2011. The Generative Power of Probabilistic and Weighted

Context-Free Grammars. Springer-Verlag. 68: 57–71.

