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Abstract 

 

The concept of splicing system was first introduced by Head in 1987. This model has been introduced to 
investigate the recombinant behavior of DNA molecules. Splicing systems with finite sets of axioms only 

generate regular languages. Hence, different restrictions have been considered to increase the 

computational power up to the recursively enumerable languages. Recently, probabilistic splicing systems 
have been introduced where probabilities are initially associated with the axioms, and the probability of a 

generated string is computed by multiplying the probabilities of all occurrences of the initial strings in the 

computation of the string. In this paper, some properties of probabilistic semi-simple splicing systems, 
which are special types of probabilistic splicing systems, are investigated. We prove that probabilistic 

semi-simple splicing systems can also increase the generative power of the generated languages. 
 
Keywords: DNA computing; probabilistic splicing systems; splicing languages; regular languages 

 

Abstrak 

 

Konsep sistem hiris-cantum mula diperkenalkan oleh Head pada tahun 1987. Model ini telah 
diperkenalkan untuk menyiasat penggabungan semula molekul-molekul DNA. Sistem hiris-cantum 

dengan set aksiom terhingga hanya menjana bahasa biasa. Oleh itu, batasan yang berbeza telah digunakan 

untuk meningkatkan kuasa pengkomputeran sehingga ke bahasa rekursif enumerable. Baru-baru ini, 
sistem hiris-cantum berkebarangkalian telah diperkenalkan di mana kebarangkalian dikaitkan dengan 

aksiom dan kebarangkalian jujukan yang dihasilkan dikira melalui pendaraban semua kebarangkalian 

jujukan yang digunakan. Dalam kertas kerja ini, beberapa ciri-ciri sistem hiris-cantum separuh-mudah 

berkebarangkalian yang merupakan salah satu jenis sistem hiris-cantum berkebarangkalian disiasat. Kami 

membuktikan bahawa sistem hiris-cantum separuh-mudah berkebarangkalian juga boleh meningkatkan 

kuasa pengkomputeran bahasa yang dihasilkan 
 

Kata kunci: Pengkomputeran DNA; sistem hiris-cantum berkebarangkalian; bahasa hiris-cantum; bahasa 

biasa 
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1.0  INTRODUCTION 

 

Deoxyribonucleic acid (DNA) is the genetic material of 

organisms in a chain of nucleotides. The nucleotides differ by 

their chemical bases that are adenine (A), guanine (G), cytosine 

(C), and thymine (T). DNA bases pair up with each other, A with 

T and C with G, to form units called base pairs. So, nucleotides 

can be arranged in two long strands that form a spiral called a 

double helix. The structure of the double helix is somewhat like a 

ladder. DNA can be represented as strings over four alphabets, i.e. 

D = {[A / T], [C / G], [G / C], [T / A]} [1]. Restriction enzymes, 

found naturally in bacteria, can cut DNA fragments at specific 

sequences, known as restriction sites; while another enzyme, 

ligase, can re-join DNA fragments that have complementary ends. 

This recombination behaviour of restriction enzymes and ligases 

was modelled in the form of splicing systems and splicing 

languages.  
  The concept of splicing system was first introduced by Head 

in 1987 [2]. This model has been defined to investigate the 

recombinant behavior of DNA molecules in the presence of 

restriction enzymes and ligases. In splicing system, a DNA 

molecule is coded into a string over the alphabets. With some 

strings over the alphabet as the initial strings (axioms) and some 

splicing rules, a language can be produced by the splicing system. 
  Later, various types of splicing languages were defined and 

studied by different mathematicians. Since splicing systems with 

finite sets of axioms and rules generate only regular languages [3], 

several restrictions in the use of rules have been considered, 

which increase the computational power of the languages 

generated up to the recursively enumerable languages. This is 
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important from the point of view in DNA computing: splicing 

systems with restrictions can be considered as theoretical models 

of universal programmable DNA based computers. Different 

problems appearing in the area of computer science motivate 

humans to consider suitable models for the solution of the 

problems.  

  In this research, we consider probabilistic splicing systems to 

introduce a new variant of splicing system [4], called probabilistic 

semi-simple splicing systems. In such system, probabilities (real 

numbers in the range [0, 1]) are associated with the axioms, and 

the probability p(z) of the string z generated from two strings x 

and y is calculated from the probability p(x) and p(y) according to 

the operation * defined on the probabilities, i.e. p(z) = p(x) * p(y). 

Then the language generated by a probabilistic semi-simple 

splicing system consists of all strings generated by the semi-

simple splicing systems whose probabilities are greater than (or 

smaller than, or equal to) some previously chosen cut-points.   

  This paper is organized as follows. Section 2 contains some 

necessary definitions from formal language theory, DNA 

computing and probabilistic splicing systems. The concept of 

probabilistic semi-simple splicing systems are introduced in 

Section 3. In Section 3, we also establish some basic results 

concerning the generative power of probabilistic semi-simple 

splicing systems. In Section 4, we indicate some possible topics 

for future research in this direction. 

 

 

2.0  PRELIMINARIES 

 

In this section, the main concepts and notations that will be used 

in this paper are introduced. The theoretical basis of splicing 

system is under the framework of formal language theory that is 

mainly the study of finite sets of strings called languages. 

  Throughout the paper we use the following general notations. 

The symbol  denotes the membership of an element to a set 

while the negation of set membership is denoted by . The 

inclusion is denoted by  and the strict (proper) inclusion is 

denoted by .  denotes the empty set. The sets of integers, 

positive rational numbers and real numbers are denoted by ,  

and , respectively. The cardinality of a set X is denoted by |X|. 

 

Definiton 1. [5]  

 

A finite, nonempty set A of symbols is called an alphabet. Any 

finite sequence of symbols from an alphabet is called a string. We 

use 1 to denote the empty string which is a string with no symbols 

at all. 

  If A is an alphabet, we use A* to denote the set of strings 

obtained by concatenating zero or more symbols from A. 

 

Definition 2. [5]  

 

  A formal language L over an alphabet Σ is a subset of Σ*, that 

is, a set of words over that alphabet.  

The families of languages generated by phrase structure, context-

sensitive, context-free, linear and regular grammars are denoted 

by RE, CS, CF, LIN,  and REG respectively. Further we denote 

the family of finite languages by FIN. The next strict inclusions, 

named Chomsky hierarchy, holds: 

FIN  REG  LIN  CF  CS  RE. 

 

Definition 3. [2] Splicing System  

 

  Let V be an alphabet, and  two special symbols. A 

splicing rule over V is a string of the form 

 where  

For such a rule r and strings  we write 

 iff  and 

 

for some . 

 

  We say that  is obtained by splicing  and  as indicated by 

the rule  and  are called the sites of the splicing. We 

call  the first term and  the second term of the splicing 

operation. When understood from the context, we omit the 

specification of  and we write  instead of  .  

  An H scheme is a pair  where  is an alphabet and 

 is a set of splicing rules. 

  For a given H scheme  and a language  

we define 

 

 for some  

          

            

                
 

  An extended H system is a construct  where 

 is an alphabet, is the terminal alphabet,  is the set 

of axioms, and  is the set of splicing rules. 

When , the system is said to be non-extended. The language 

generated by  is defined by 

 
  Here, EH( ) denotes the family of languages generated 

by extended H systems  with  and  

where FIN, REG, CF, LIN, CS, RE}. 

 

Theorem 1 [2] 

 

  The relations in the following table hold, where at the 

intersection of the row marked with  with the column marked 

with  there appear either the family EH   or two families 

 such that  EH( )  . 

 
Table 1  The family of languages generated by F1 and F2. 

 

F2 

F1 

FIN REG CF LIN CS RE 

FIN REG RE RE RE RE RE 

REG REG RE RE RE RE RE 

CF LIN,CF RE RE RE RE RE 

LIN CF RE RE RE RE RE 

CS RE RE RE RE RE RE 

RE RE RE RE RE RE RE 

 

 

Definition 4. [6]  

 

A semi- simple H (splicing) system is a triple 

 

 
 

where  is an alphabet,  and  is a finite language over . 

The elements of  are called markers and those of  are called 

axioms. 

 

 

 

http://en.wikipedia.org/wiki/Subset
http://en.wikipedia.org/wiki/Formal_language#Words_over_an_alphabet
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Definition 5. [4]  

 

A probabilistic H (splicing) system is a 5-tuple  

where  are defined as for a usual extended H system, 

 is a probability function, and is a finite subset of 

 such that  

 

. 

 

Definition 6. [7]  

 

We consider as thresholds (cut-points) sub-segments and discrete 

subsets of [0, 1] as well as real numbers in [0,1]. We define the 

following two types of threshold languages with respect to 

thresholds  and  

 

 
 

 
 

where and are called threshold 

modes. 

 

 

3.0  RESULTS AND DISCUSSION 

 

In this section we introduce the notion of probabilistic semi-

simple splicing systems which is specified with a probability 

space and operations over probabilities closed in the probability 

space. 

 

Definition 7.  

 

A  probabilistic semi-simple splicing system  is a 4-tuple 

 where V is defined as for a usual extended  H 

system, R is the rule in the form  for , p is a 

probabilistic function defined by , and A is a 

subset of   such that 

 
 

Further we define a probabilistic semi-simple splicing operation 

and the language generated by a probabilistic semi-simple 

splicing system. 

 

Definition 8.  
 

For strings , and 

, , if and only if 

 and  and .  

 

 

 

 

Definition 9.  

  

The language generated by the probabilistic semi-simple splicing 

system  is defined as  

 

 

Remark 1. We should mention that splicing operations may result 

in the same string with different probabilities. Since in this paper, 

we focus on strings whose probabilities satisfy some threshold 

requirements, i.e., the probabilities are merely used for the 

selection of some strings, this ‘ambiguity’ does not effect on the 

selection. When we investigate the properties connected with the 

probabilities of the strings, we can define another operation 

together with the multiplication of the strings, for instance, the 

addition over the probabilities of the same strings, which removes 

the ambiguity problem. 

  We denote the family of languages generated by 

multiplicative probabilistic semi-simple splicing system of type 

 by  where   

 
 

Remark 2. In this paper we focus on probabilistic semi-simple 

splicing systems with finite set of axioms, since we consider a 

finite initial distribution of probabilities over the set of axioms. 

Moreover, it is natural in practical point of view: only splicing 

systems with finite components can be chosen as a theoretical 

model for DNA based computation devices. Thus, we use the 

simplified notation  of the language family generated 

by probabilistic semi-simple splicing systems with finite set of 

axioms instead of  where 

 shows the family of languages 

for splicing rules. 

 

From the definition, the next lemma follows immediately. 

 

Lemma 1 

 for all families 

. 

 

Proof. 

Let  be a semi-simple splicing system generating the 

language  where 

. 

Let . We define a probabilistic semi-

simple splicing system  where the set of axioms 

is defined by  where 

 for all , then 

 
 

We define the threshold language generated by  as , 

then it is not difficult to see that 

. 

 

Next, two examples are given to illustrate the application of 

probability to the semi-simple splicing system.  

 

Example 1 : Consider the semi-simple splicing system 

 

 
We obtain  

, where 

. 

 

The way to obtain the string is by performing the splicing 

operation using the markers to the axioms. 
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Case 1 : Using strings  

 

i : for the string  and using marker c, 

 , 

 

ii : for the string   and using marker a, 

 , 

 

iii : for the both strings  and 

 and using the markers a and c, 

 , 

2 5 2 5
  ,   ,  ,    ,

17 17 17 17
c aac a ba ca acca

         
        

        
, 

 

iv : for the strings from (iii) and  i.e. 

 and  and 

using the same markers a and c,  
2

3

, 

2 5 5 2 5
| ,  , | ,       , 

17 17 17 17 17
c aacc a ba ca ac a

            
                          

, 

 

v :for each new string produced 

 and string (ii) 

 and using the same markers a and 

c,

2

1 2 5 5
| ,  ,   | ,   

17 17 17

n

nac a ba ca




        
                 

1

, 

2 5
   ,  .

17 17

n

n

c a ac a

   
       

 

 

Case 2 : Using strings  

 

i : for the string  and using marker b, 

 , 

 

ii : for the string  and using marker a, 

 , 

 

iii : for the both strings  and 

 and using the markers a and b,  

 , 

3 7 3 7
  ,   ,  ,    ,

17 17 17 17
b aab a ca ba abba

         
        

        
, 

  

iv : for the strings from (iii) and  i.e., 

 and  and 

using the same markers a and c, 
2

3

, 

3 7 7 3 7
| ,  ,  | ,       , 

17 17 17 17 17
b aabb a ca ba ab a

            
                          

, 

 

v : for each new string produced 

 and string (ii) 

 and using the same markers a and 

b,

2

1 3 7 7
| ,  , | ,   

17 17 17

n

nab a ca ba




        
                 

1

, 

3 7
   ,  .

17 17

n

n

b a ab a

   
       

 

For the strings from Case 1 

1
2 5

   , 
17 17

n

nac a

   
       

  and Case 2 

1
3 7

   , 
17 17

n

nab a

   
       

using marker a, 

1 1
2 5 3 7

|  ,  ,  |  , 
17 17 17 17

n n

n nac a a b a

       
 

  
  
   

            

1

 

6 35
   , 

289 289

n

n n

a ac b a

   
   

    

. 

 

Therefore, 

 

. 

 

Using the threshold properties, we can conclude the following: 

 

i :  

ii : , 

iii :  

 

iv :  

 
 

 

Example 2: Consider the semi-simple splicing system 

 

 
). 

 

We obtain  

, where 

. 

 

The way to obtain the string is by performing the splicing 

operation using the markers to the axioms. 

Case 1 : Using strings  

 

i : for the string  and using marker c, 

 , 

 

ii : for the string  and using marker a, 

 , 

 

iii : for the both strings  

and  and using the markers a and c,  
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 , 

3 7 3 7
  ,   ,  ,    ,

41 41 41 41
c aac a ba ca acca

         
        

        
, 

 

iv : for the strings from (iii) and , i.e., 

 and  and 

using the same markers a and 

c,

2

3

, 

3 7 7 3 7
| ,  , | ,       , 

41 41 41 41 41
c aacc a ba ca ac a

            
                          

, 

 

v : for each new string produced , 

(  and string (ii) 

 and using the same markers a and c, 

2

1 3 7 7
| ,  , | , 

41 41 41

n

nac a ba ca




        
                 

1

, 

3 7
     , 

41 41

n

n

c a ac a

   
       

. 

 

Case 2 : Using strings  

 

i : for the string  and using marker b, 

 , 

 

ii : for the string  and using marker a, 

 , 

 

iii : for the both strings  and 

 and using the markers a and b, 

 , 

2 11 2 11
  ,  ,  ,    ,

41 41 41 41
b aab a ca ba abba

         
        

        
, 

 
iv : for the string from (iii) and , i.e. 

 and  and 

using the same markers a and b, 
2

3

, 

2 11 11 2 11
| ,  ,  | ,       , 

41 41 41 41 41
b aabb a ca ba ab a

            
                          

, 

  

v : for each new string produced 

 and string (ii) 

 and using the same markers a and b, 

2

1 2 11 11
| ,  , | ,   

41 41 41

n

nab a ca ba




        
                 

1

, 

2 11
   , 

41 41

n

n

b a ab a

   
       

. 

 

Case 3 : Using strings  

 

i : for the string  and using marker d, 

 , 

 

ii : for the string  and using marker a, 

 , 

 

iii : for the both strings  and 

 and using the markers a and d, 

 , 

5 13 5 13
  ,   ,  ,    ,

41 41 41 41
d aad a ba da adda

         
        

        
, 

 

iv : for the strings from (iii) and , i.e., 

 and  and 

using the same markers a and 

d,

2

3

, 

5 13 13 5 13
| ,  ,  | ,       , 

41 41 41 41 41
d aadd a ba da ad a

           
           

         

 
 
  

, 

 

v : for each new string produced 

  and string (ii) 

 and using the same markers a and d, 

2

1 5 13 13
| ,  , | , 

41 41 41

n

nad a ba da




        
                 

1

, 

5 13
     , 

41 41

n

n

d a ad a

   
   

    

. 

For the strings from Case 1 

1
3 7

 , 
41 41

n

nac a

   
       

and Case 2 

1
2 11

 , 
41 41

n

nab a

   
       

using marker a, 

1 1
3 7 2 11

|  ,  ,  |  , 
41 41 41 41

n n

n nac a a b a

       
 

  
  
               

1

  2 2

2.3 7.11
   , 

41 41

n

n n

a ac b a

   
   

    

. 

 

For the strings resulted from Case 1 and Case 2 
1

2 2

2.3 7.11
   , 

41 41

n

n nac b a

   
   

    

 and Case 3  

1
5 13

   , 
41 41

n

nad a

   
   

    

and using marker a, 

1 1

 2 2

1

3 3

2.3 7.11 5 13
|  ,  ,  |  ,     

41 41 41 41

2.3.5 7.11.13
 ,  .

41 41

n n

n n n

a

n

n n n

ac b a a d a

ac b d a

 



         
                      

   
   

    

 

 

Therefore, 

 

. 

 

Using the threshold properties, we can conclude the following: 
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i :  

ii :  

iii:   

 

iv :  

 

 

 

 

 
 

 

 

  The examples above illustrate that the use of thresholds with 

probabilistic semi-simple splicing systems increase the generative 

power of splicing systems with finite components.  

  We should also mention two simple but interesting facts of 

probabilistic semi-simple splicing systems. First as Proposition 1 

and second as Proposition 2, as stated in the following: 

 

Proposition 1 

 

For any probabilistic semi-simple splicing system (G), the 

threshold language is the empty set, i.e. . 

 

Proposition 2 

 

If for each splicing rule  in a probabilistic semi-simple splicing 

system (G), , then every threshold language  

with is finite. 

 

From Theorem 1, Lemma 1 and Examples 1, 2, we obtain the 

following two theorems. 

 

Theorem 2 

 

 where 

. 

 

 

Theorem 3 

 
 

 

4.0  CONCLUSION 

 

In this paper we introduced probabilistic semi-simple splicing 

systems by associating probabilities with strings and also 

establishing some basic but important facts of probabilistic semi-

simple splicing systems. We showed that an extension of semi-

simple splicing systems with probabilities increases the generative 

power of semi-simple splicing systems with finite components. In 

particular cases, probabilistic semi-simple splicing systems can 

generate non context-free languages. The problem of strictness of 

the second inclusion in Theorem 2 and the incomparability of the 

family of context-free languages with the family of languages 

generated by probabilistic semi-simple splicing systems with 

finite components (the inverse inequality of that in Theorem 3) 

remain open. 
 

 

Acknowledgement 

 
The first author would like to thank the Malaysian Ministry of 

Higher Education for the financial funding support through 

MyBrain15 scholarship. The second and third authors would also 

like to thank the Malaysian Ministry of Higher Education (MOHE) 

and Research Management Center (RMC), UTM for their financial 

funding through Research University Fund Vote No. 07J41. 
 
 
References 
 
[1] L. Adleman. 1994. Science. 266: 1021–1024.  

[2] T. Head. 1987. Bull. Math.Biology. 49: 737–759 

[3] D. Pixton. 1996. Discrete Applied Mathematics. 69: 101–124. 
[4] Sherzod Turaev, Mathuri Selvarajoo, Fong Wan Heng, Nor Haniza 

Sarmin. 2013. Advanced Methods for Computational Collective 

Intelligence. New York: Springer. 457: 259–268. 

[5] G. Paun, G. Rozenberg, A. Salomaa. 1998. Handbook of Formal 

Languages: Vol.1. Word, language, grammar. Springer-Verlag. 

[6] E. Goode, D. Pixton. 1996. Discrete Applied Math. 72: 96–107.  

[7] T. Fowler. 2011. The Generative Power of Probabilistic and Weighted 

Context-Free Grammars. Springer-Verlag. 68: 57–71. 

 

 




