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Abstract 

 

The steady natural convection boundary layer flow of a viscoelastic fluid over a solid sphere with con-
stant heat flux is studied in this paper. The boundary layer equations of viscoelastic fluid are an order 

higher than those for the Newtonian (viscous) fluid. The adherence boundary conditions are insufficient 

to determine the solution of these equations completely. Thus, the augmentation an extra boundary condi-
tion is needed to perform the numerical computational. The governing boundary layer equations are first 

transformed into non-dimensional form by using special dimensionless variables and then solved by using 

an implicit finite difference scheme known as Keller box method. Numerical results for the velocity and 
temperature profiles, wall temperature, as well as skin friction are shown graphically for different values 

of viscoelastic parameters and Prandtl number. It is found that, when the viscoelastic parameter increased, 

the values of skin friction decreased while the values of wall temperature are increased. 
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Abstrak 

 

Aliran lapisan sempadan olakan semula jadi mantap bagi bendalir likat kenyal melepasi sfera dengan 
fluks haba dikaji dalam artikel ini. Persamaan-persamaan lapisan sempadan bagi bendalir likat kenyal 

terjana berperingkat lebih tinggi berbanding bendalir Newtonan (likat). Pematuhan syarat sempadan 

adalah tidak mencukupi untuk menentukan penyelesaian persamaan ini dengan selengkapnya. Oleh itu, 

penambahan syarat sempadan tambahan diperlukan untuk membolehkan pengiraan secara berangka 

dilakukan. Persamaan sempadan menakluk diubah ke dalam bentuk tak bermatra dengan menggunakan 

pemboleh ubah tak berdimensi yang khas dan diselesaikan menggunakan skim beza terhingga tersirat 
yang efektif dikenali sebagai kaedah kotak-Keller. Hasil kajian yang diperolehi bagi profil halaju dan 

suhu, suhu dinding, dan pekali geseran kulit dipersembahkan secara grafik untuk pelbagai nilai parameter 

likat kenyal dan nombor Prandtl. Didapati bahawa apabila parameter bendalir likat kenyal meningkat, 
nilai geseran kulit menurun tetapi nilai suhu dinding meningkat.  

 

Kata kunci: Olakan semula jadi; aliran lapisan sempadan; bendalir likat kenyal; sfera; fluk haba 
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1.0  INTRODUCTION 

 

The problem on natural convection flows under boundary layer 

analysis are fundamental theoretical and have many practical 

interest. Many researchers all over the world have investigated 

these type of flows in different geometries and different type of 

fluids (Newtonian or non Newtonian) due to wide practical appli-

cations in engineering. The flow and heat transfer phenomena 

over sphere have received a considerable attention during these 

recent years due to its practical needs in numerous engineering 

applications including solving the cooling problems in turbine 

blades, electronic systems and manufacturing processes.1 

Prhashanna and Chhabra,2 reported that the flow of fluids past a 

sphere and heat transfer from it represents a classical model con-

figuration to elucidate the nature of the underlying physical pro-

cesses that will improve on our fundamental understanding. Ex-

tensive studies on the topic of natural convection specifically on 

sphere have been conducted by several researchers for the last few 

decades. For example, Chiang et al.3 studied an exact analysis of 

the laminar free convection from a sphere by considering pre-

scribed surface temperature and surface heat flux. The work has 

been continued by Huang and Chen,4 by considering the effects of 

blowing and suction. Further, Nazar et al. 5-6 considered the prob-

lem of free convection boundary layer on an isothermal sphere in 

micropolar fluids by considered two cases which are constant wall 

temperature and constant heat flux. The theory boundary layer 
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problem of viscoelastic fluids has gained a lot of interest, and 

become important in recent years because of their applications in 

several industrial-manufacturing processes involving petroleum 

drilling, manufacturing of foods and paper. In engineering appli-

cations, it is possible to use viscoelastic fluids to reduce frictional 

drag on the hulls of ships and submarines. Literature survey indi-

cated there has been an extensive research available regarding the 

viscoelastic fluid. Thomas and walters,7  presented the unsteady 

motion of a sphere in a viscoelastic liquid where they considered 

the unsteady motion of a sphere moving under a constant force. 

Verma,8 derived the boundary layer equations near a body of 

revolution in a uniform stream and a case of the boundary layer 

over the surface of sphere and found that the increase in the elas-

ticity of the liquid causes a shift in the point of separation towards 

the forward stagnation point. Carew et al.9 have considered the 

problem of a sphere move along the axis of vertical cylindrical 

tube containing a viscoelastic fluid. On the other hand, viscoelas-

tic flows also has the application in chemical engineering systems 

which arise in numerous processes. Such flows possess both 

viscous and elastic properties and can exhibit normal stresses and 

relaxation effects. Recently, Chang et al.10 conducted a numerical 

study of transient free convective mass transfer in a Walters-B 

viscoelastic flow with wall suction. Velocity was found to in-

crease with a rise in viscoelasticity parameter with both time and 

distances close to the plate surface. The differential governing 

equations of the viscoelastic fluid problems are an order higher 

than those for the Newtonian (viscous) fluid and the adherence 

boundary conditions are insufficient to determine the numerical 

solution completely. Therefore, a boundary condition is needed in 

addition to the usual adherence boundary conditions,11-12. Very 

recently, Kasim et al.13 investigated the problem of viscoelastic 

over a sphere by considering the different boundary condition 

called Newtonian heating. Motivated by the work above, this 

paper aims to investigate the problem of natural convection 

boundary layer flow of viscoelastic fluid on solid sphere with 

constant heat flux. The full governing boundary layer equations 

are first transformed into a system of non-dimensional equations 

via the non-dimensional variables, and then into non-similar 

equations before they are solved numerically by the Keller-box 

method  as described in the books by Na,14 and Cebeci and Brad-

shaw,15. Results are presented for the skin friction coefficient and 

the wall temperature as well as the velocity and temperature pro-

files. To the best of our knowledge, this problem has not been 

considered before, so that the reported results are new and origi-

nal. 

 

 

2.0  MATHEMATICAL FORMULATION 

 

The problem studied is this article is steady natural convection 

boundary layer flow past a sphere placed in a viscoelastic fluid. 

Figure 1 illustrates the geometry of the problem and the corre-

sponding coordinate system. The problem was considered as a 

heated sphere of radius a, which is immersed in a viscous and 

incompressible fluid of ambient temperature, T . It is assumed 

that the constant heat flux of the surface of the cylinder is wq . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  Physical model and coordinate system 

 
 

  Under the usual Boussinesq and boundary layer approxima-

tions, the equations for mass continuity, momentum and energy 

took the following form, 

    0,r u r v
x y

 
 

 
                              (1) 

2 2 3 2
0

2 2 3 2

( )sin( / ),

ku u u u u u v
u v u v

x y x yy y y y

g T T x a




 

         
      

          

 

        (2)  

2

2

T T T
u v ,

x y y


  
 

  
                       (3) 

which are subjected to the boundary conditions; 
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  where ρ, g, β, μ, k0,  , and T are the density, gravitational 

acceleration, coefficient of thermal expansion, dynamic viscosity, 

vortex viscosity and thermal diffusivity of the fluid and local 

temperature respectively.
 

In this problem, we assume 

   sin xr x a
a

  , u  and v  are the velocity components along 

x  and y direction respectively. 

                                                                                                                                       

 

  Then, the following non-dimensional variables are introduce,    
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where 
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 is the Grashof number. 

  Substitution of Equation (5) into Equations (1) to (3), led to 

the following non-dimensional equations: 
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0 ' 1 0,

0, 0, 0, ,

u v on y

u
u y

y





    


   



                                            (9)         

where 
5/2

0

2

Gr
K

k

a
  represent the viscoelastic parameter. 

 

 

3.0  SOLUTION PROCEDURES 

 

In order to solve Equations (6) to (8) according to the boundary 

conditions (9), the following variables were assumed: 
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which satisfies the continuity  equation (6), thus equation (7) and 

(8) becomes                 
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with respect to the following boundary conditions:  
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  At the lower stagnation point of the cylinder, 0x  , Equa-

tions (12) and (13) was reduced to the following ordinary differ-

ential equation: 
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where primes denote the differentiation with respect to y .  

In practical application the physical quantities of principal interest 

are heat transfer which can be written in non-dimensional form as:    
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4.0  RESULTS AND DISCUSSION 

 

The systems of Equations (12) and (13) together with Equations 

(15) and (16) with respected to boundary conditions (14) and (17) 

respectively were solved numerically for some values of the 

viscoelastic parameter, K and Prandtl number, Pr using the im-

plicit finite-difference method known as Keller-box method. In 

order to ensure the accuracy and convergence of the numerical 

solution to exact solution, the step sizes y  have been optimized 

and the results presented are independent of the step sizes at least 

up to the sixth decimal places. The convergence criterions were 

based on the relative difference between the current and previous 

iteration values of the velocity and temperature gradients at wall. 

When the difference reaches less than for the flow fields, the 

solutions assumed to converge, and the iterative process is termi-

nated. The present results for local wall temperature w (0) were 

compared with those of Nazar et al.6 and Salleh et al.16 in order to 

validate the numerical results obtained. The comparison shows 

that the numerical solutions (see Table 1) obtained by the present 

authors concurs very well with those of previous authors.  

 

Table 1  Numerical values of local wall temperature ( ,0)w x for different 

position x of surface at Pr = 0.7 

 

x Nazar et al.[6] Salleh et al. [16] Present 

 

0.0 
 

1.8960 
 

1.8692 
 

1.868927 

9
   

1.8795 
 

1.8794 
 

1.878951 

6
   

1.8924 
 
1.8922 

 
1.891233 

3
   

1.9653 
 

1.9651 
 

1.964208 

2
   

2.1038 
 

2.0469 
 

2.100469 

2
3



 

 
2.3475 

 
2.3444 

 
2.345508 

 

 

  Figures 2 and 3 illustrate the behavior of skin friction and 

wall temperature for various values of viscoelastic parameter, K at 

Prandtl number 0.7. It shows that, when the viscoelastic parameter 

K increased, it reduced the values of skin friction and increased 

on the values of wall temperature. For industrial field, there is 

importance application since the power expenditure will decrease 

in increasing the value of viscoelastic parameter, K. This particu-

lar result also reported by a few researchers such as Rajagopal et 

al.17, Subhas and Veena,18  and also Veena et al.19 
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Figure 2  Variation of the skin friction coefficient with x for 
Pr = 0.7 with various values of K. 

Figure 3  Variation of wall temperature with x for Pr = 0.7 with various 

values of K. 

 

 

  In Table 2, we can see  the numerical values of skin friction 

and wall temperature for the various values of viscoelastic param-

eter K. It shows that, as the viscoelastic parameter K increases, 

the values of skin friction are decreased while the values of wall 

temperature are increased.  

 

Table 2  Values of f ''  (0) and w  (0) for variousvalues of K when Pr = 

0.7, 
 

 

K 

 

f ''  (0) 

 

w (0) 

0.1 1.137651 1.912281 
0.2 1.067937 1.948131 

0.3 1.011718 1.978923 

0.4 0.964914 2.006050 
0.5 0.925029 2.030382 

1.0 0.786504 2.125697 

2.0 0.639894 2.252308 
3.0 0.557493 2.341101 

4.0 0.502402 2.410692 

5.0 0.462058 2.468448 
   

 
Figure 4  Velocity profile for various values of K with Pr = 0.7 

 
Figure 5  Temperature profile for various values of K with Pr = 0.7 

 

 

  The effects of viscoelastic parameter on velocity and temper-

ature profile at the lower stagnation point at Pr = 0.7 are illustrat-

ed in Figures 4 and 5. Based on Figure 4, it is noticed that, the 

velocity distributions decreased when the value of viscoelastic 

parameter, K is increased until one point (y =1.92), then we can 

see the profile of velocity distribution increase with the increase 

of values viscoelastic parameter. The values of these profiles are 

lower for a viscoelastic fluid than for a Newtonian fluid (K=0) for 

the range values of boundary layer thickness 0<y<1.92. There-

fore, we can say that, the thickness of the velocity boundary layer 

for a viscoelastic fluid is higher than for a Newtonian fluid. From 

Figure 5, we can say that, an increase on the value of viscoelastic 

parameter leads to the increment in temperature distribution. This 

behavior reflects the coupling of the energy equation to the mo-

mentum equation through the temperature dependent body forces. 
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Figure 6  Variation of the skin friction coefficient with x For K= 1.0 with 

various values of Pr 

 
Figure 7  Variation of wall temperature with x for K = 1.0 with various 

values of Pr 

 

 

  The graphical illustration on the values skin friction and wall 

temperature against the position of x for the different values of 

Prandtl number are shown in Figures 6 and 7 respectively. From 

these figures, we can see that both skin friction and wall tempera-

ture decrease as the value of Prandtl number increase.  

 
Figure 8  Velocity profile for various values of Pr with K=1 

 
Figure 9  Temperature profile for various values of Pr with K=1.0 

 

 

  The effect of Prandtl number, Pr on the velocity and tem-

perature profile were illustrated by Figures 8 and 9 respectively 

where the computation is running on Pr = 0.7, 1.0 and 7.0 at the 

fixed value of viscoelastic parameter equal to 1. It is found that as 

Pr increases, both velocity and temperature profiles decrease. This 

is because for small values of the Prandtl number the fluid is 

highly conductive. Physically, if Pr increases, the thermal diffu-

sivity decreases and this phenomenon lead to the decreasing 

manner of the energy transfer ability that reduces the thermal 

boundary layer.  

 

 

5.0  CONCLUSION 

 

In this paper we studied detail on the problem of steady natural 

convection boundary layer flow of a viscoelastic fluid on solid 

sphere with constant heat flux. The governing boundary layer 

equations were transformed into a non-dimensional form and the 

resulting nonlinear system of partial differential equations was 

solved numerically using the Keller-box method. From the inves-

tigation it revealed how the parameter K, and the Prandtl number, 

Pr affect the flow and heat transfer characteristics. From the pre-

sent findings, we can conclude that, 

 

 when the viscoelastic parameter K increased, it reduced 

the values of skin friction and increased the value of 

wall temperature. 

 the velocity distributions decreased when the value of 

viscoelastic parameter K is increased until certain point 

at the fixed value of Prandtl number, Pr. 

 as the values of viscoelastic parameter K increase, it 

will leads to the increment in temperature distribution 

 Both values of velocity and temperature profiles de-

crease as increasing in the values of Prandtl number, Pr. 
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