
 
62:3 (2013) 33–39 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | ISSN 0127–9696 

 

Full paper 
Jurnal 

Teknologi 

The Effects of Radiation on Free Convection Flow with Ramped Wall 
Temperature in Brinkman Type Fluid 
 
Muhamad Najib Zakaria

a
, Abid Hussanan

a
, Ilyas Khan

a
, Sharidan Shafie

a* 

 
aDepartment of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia 
 

*Corresponding author: sharidan@utm.my 

 
 
Article history 

 
Received :18 March 2013 

Received in revised form : 

26 April 2013 
Accepted :17 May 2013 

 

Graphical abstract 

 

 
 

Abstract 

 
The present paper is on study of the influence of radiation on unsteady free convection flow of Brinkman 

type fluid near a vertical plate containing a ramped temperature profile. Using the appropriate variables, 

the basic governing equations are reduced to nondimensional equations valid with the imposed initial and 
boundary conditions. The exact solutions are obtained by using Laplace transform technique. The 

influence of radiation near a ramped temperature plate is also compared with the flow near a plate with 

constant temperature. The numerical computations are carried out for various values of the physical 
parameters such as velocity, temperature, skin friction and Nusselt number and presented graphically.   
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Abstrak 

 

Kertas kerja ini adalah mengenai kajian kesan radiasi terhadap aliran tak mantap olakan semulajadi 

bendalir tak mampat jenis Brinkman berhampiran plat menegak dengan profil suhu tajakan. 
Menggunakan pemboleh ubah yang bersesuaian, persamaan menakluk yang asas diturunkan ke 

persamaan tak bermatra memenuhi syarat awal dan syarat sempadan yang dikenakan. Penyelesaian tepat 

diperoleh dengan menggunakan teknik penjelmaan Laplace. Pengaruh kesan radiasi berhampiran plat 
dengan suhu tajakan juga dibandingkan dengan aliran berhampiran plat suhu malar. Pengiraan berangka 

dijalankan bagi pelbagai nilai parameter fizikal seperti halaju, suhu, geseran kulit dan nombor Nusselt dan 

dipaparkan secara grafik. 
 

Kata kunci: Olakan semula jadi; bendalir jenis Brinkman; suhu tajakan; penyelesaian tepat 
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1.0  INTRODUCTION 

 

Natural convection flows past a vertical plate are vital in solving 

some industrial and engineering problems such as the filtration 

and design of processes, the drying of porous materials in textile 

industries, and solar energy collector. Numerous investigations 

have been reported in the literature to solve the problems using 

analytical and numerical methods. The unsteady natural 

convection flow of an incompressible viscous fluid near a vertical 

flat plate was analyzed by Chandran et al. in [1]. The problem has 

been solved using analytical Laplace transform method under 

usual Boussinesq’s approximation, and the wall temperature is 

assumed to have a temporally ramped continuous profile. The 

fluid convection resulting from a wall temperature is likely to be 

of relevance in several industrial applications. Free convection 

flow of an incompressible and viscous fluid past a moving vertical 

plate with the influence of radiation when it is heated has been 

studied in [2]. This problem was solved analytically using Laplace 

transform method. The radiative heat flux parameter in the energy 

equation was described using Rosseland approximation. The 

resulting flow from this problem was analyzed in three different 

situations of the moving plate which are plate with uniform 

velocity motion, plate with uniformly accelerated motion and 

plate with exponentially accelerated motion. Deka and Das [3] 

studied the effects of radiation on free convection flow near a 

vertical plate with ramped wall temperature. The problem was 

solved analytically by using Laplace transform method and the 

influence of the various parameters entering into the problem was 

also studied. In 2010, Rajesh [4] studied the effects of thermal 

radiation on magnetohydrodinamic (MHD) free convection flow 

near a vertical plate with ramped wall temperature. The exact 

solutions were obtained by using Laplace transform method. The 

obtained results were extensively discussed with the help of 

graphs. The results were discussed based on two values of Prandtl 

number, Pr which are Pr 0.71  for air and Pr 7  for water. 

Rajesh [5] performed a finite difference analysis to study the 

effects of thermal radiation and chemical reaction on the transient 

MHD free convection and mass transform flow of a dissipative 

fluid past an infinite vertical plate with ramped wall temperature. 

The Crank-Nicolson method was used to obtain the results and the 

effects of various parameters were discussed graphically. Seth et. 

al [6] have investigated the effects of impulsively moving vertical 
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plate with ramped wall temperature on natural convection flow 

with radiative heat transfer. They obtained the exact solutions by 

using Laplace transform method and conclude that thermal 

diffusion and radiation tends to enhance the fluid temperature. 

Natural convection flow near a vertical plate in a porous medium 

conducting with ramped wall temperature has been solved by 

Deka and Das in [7]. The solutions of energy and momentum 

equations have been obtained in closed form by using Laplace 

transform technique. The resulting temperature profiles for air and 

water were analyzed and discussed. Deka and Deka [8] were 

attempted to improve the earlier results based on free convection 

near a vertical plate which relates the problem with ramped wall 

temperature and presence the heat source.  

  The mathematical theory of the flow of the viscous fluid 

through a porous medium has been established by Darcy [9].  

Darcy’s law describes the flow in the porous medium. Generally, 

this law is valid for the flows past a porous body with low 

permeability. Certain flows that pass through bodies with high 

porosity do not follow the Darcy’s law but Brinkman’s model is 

applicable for this type of flows. Brinkman equations represent a 

viscous fluid flow through a cloud of spherical particles whose 

size is smaller than the characteristic length scale of the flow, and 

it occupies a negligible volume. Therefore the viscous fluid flow 

in a porous medium is accurately described by the Brinkman 

equations for incompressible flow. Numerous studies have been 

done in the fluid flow problem in a porous medium using 

Brinkman model. A study on flow of viscous incompressible fluid 

through a porous channel using Brinkman model has been 

presented in [10]. This problem was solved in two cases which 

are, (1) when both walls are porous and (2) when the upper wall is 

rigid and the lower wall is porous. The flow through the channel 

is with high permeability and therefore Brinkman’s model has 

been considered. Brinkman model was used to solve the mixed 

convection boundary layer flow past a horizontal circular cylinder 

in a porous medium in [11]. Both cases of a heated (assisting 

flow) and a cooled (opposing flow) cylinder were considered in 

this problem and were solved numerically. Analytical solutions of 

two immiscible viscous fluid have been obtained using Brinkman 

model in [12]. In this research the convective Couette flow of two 

viscous, incompressible, immiscible fluids through two straight 

parallel horizontal walls has been discussed. Recently, the exact 

solutions corresponding to the Stoke’s problems for fluid of 

Brinkman type have been obtained by Fetecau et al. in [13]. The 

governing equation with appropriate initial and boundary 

condition was solved using Fourier sine transform method instead 

of Hankel transform. An analytical solution of free convection 

flow about a semi-infinite vertical flat plate in a porous medium 

using Brinkman model has been obtained in [14]. The governing 

equations based on Brinkman model were solved using the 

method of matched asymptotic expansions. 

  In this paper, we consider the radiation effects on unsteady 

natural convection flow near a vertical plate using Brinkman 

model. The wall temperature is assumed to has a temporally 

ramped continuous profile. The exact solutions for the governing 

equation have been obtained by using the Laplace transform 

technique. 

 

 

2.0  GOVERNING EQUATIONS 

 

We consider the unsteady two dimensional flow of Brinkman type 

fluid near an infinite vertical flat plate. The fluid considered here 

is a gray, absorbing/emitting but a non-scattering medium. Figure 

1 shows the physical configuration of the problem. With respect 

to an arbitrarily chosen origin O  in this plate, the axis Ox  is 

taken along the wall in the upward direction while the axis Oy  is 

taken perpendicular to it into the fluid. Initially, for time 0t 

both the fluid and the plate are at rest and at the constant 

temperature .T  At time 0,t   the temperature of the plate is 

raised or lowered to  
0

w
t

T T T
t

 


     when 0,t t   and 

thereafter, for 0,t t   is maintained at the constant temperature 

.wT   The aim of this paper is to provide the exact solutions 

corresponding to the unsteady free convection flow resulting from 

the ramped temperature profile of the bounding plate. We assume 

that the flow is laminar such that the effects of the convective and 

pressure gradient terms in the momentum and energy equations 

can be neglected. Moreover, as a result of the boundary layer 

approximations, the physical variables in this case become 

functions of the variable t  and the space variable y  only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1  Physical configuration 

 

 

  Applying the Boussinesq approximation, the free convective 

flow is governed by the equations 
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  where u  is the velocity in the x  direction, T   is the 

temperature of the fluid, g  is the acceleration due to gravity,   
is the volumetric coefficient of thermal expansion,   is the 

kinematic viscosity,  is the density, k  is the thermal 

conductivity, pc  is the heat of the fluid at constant pressure and 

*  is defined as * ,    where   is referred as a drag 

coefficient that is usually positive constant. 
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          (3) 

 

  The local radiant for the case of an optically thin gray gas is 

expressed by 

 * 4 44rq
a T T

y
 


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
 .                           (4) 

  It is assumed that the temperature differences with the flow 

are sufficiently small so that 4T   may be expressed as a linear 

function of the temperature, which is accomplished by expanding 
4T   in a Taylor series about T

  and neglecting the higher order 

terms. Thus, 
 

4 3 44 3T T T T 
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The non-dimensional quantities are defined as 
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where 0t  is characteristic time defined as 

 
 

 

 

  Using the non-dimensional quantities in Eq. (6), Eqs. (1) and 

(2) can be expressed in the form of 
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  The initial and boundary condition in non-dimensional form 

are 
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3.0  SOLUTIONS 

 

By taking Laplace transform of Eqs. (7) and (8) with respect to ,t

in conjunction with Eq. (9) and solving the resulting differential 

equations for the transformed variables  ,  T y s and  ,  u y s in 

the  ,y s  plane, we obtained 
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  The exact solutions for the temperature and velocity of the 

fluid can be obtained from Eqs. (10) and (11), respectively, by 

taking their inverse transform. After detailed simplifications and 

shifting on the t  axis, the solutions can be expressed as 
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  In order to differentiate the effect of the ramped temperature 

distribution from the constant wall temperature on the flow, both 

solutions were compared. The solutions for temperature and 

velocity of the fluid near an isothermal stationary plate can be 

expressed as 
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  We now study the skin friction from velocity field. The non-

dimensional form of skin friction is given by 
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  Then from Eq. (13), we have expression for the skin friction 

as 
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  Whereas, the skin friction for the isothermal plate is given by 
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  From Eq. (12), we now study the heat transfer coefficient, i.e. 

Nusselt number, which is given in dimensional form by 
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while, for the isothermal plate 
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4.0  RESULTS AND DISCUSSION 

 

In order to understand the effects of different physical parameters, 

such as Prandtl number, Pr, radiation, R , and time, t  the 

computations are carried out for temperature and velocity of the 

fluid. The computed results are presented graphically. In the 

presented figures, the dotted graph is plotted for ramped 

temperature case while solid graph is plotted for constant 

temperature. 

  Figure 2 displays the effect of Prandtl number, Pr on the 

temperature profile correspond to ramped and constant temperature 

for 1.3t   and R 0.3 . It is observed that temperature decrease 

with an increase of Pr. It is also shown that the temperature of the 

fluid is greater in the case of isothermal than in the case of ramped 

temperature at the wall. This is due to the heating of the fluid more 

gradually than in the isothermal case. Figure 3 shows the effect of 

time, t  on the temperature profile for fixed values of R 0.5  and 

Pr 0.7 . From the figure, it is demonstrated that the temperature 

increase gradually in time, t . It is also to be noted that the 

temperature for both cases decreases with increasing in y  to its 

free stream value. Figure 4 represents the temperature profiles for 

different values of radiation, R  at time, 0.5t   and Pr 0.7 . It 

is found that the temperature decreases slightly with an increase in 

R . 

 

 
Figure 2  Temperature profiles when R 0.3  and 1.3t   

 

 
Figure 3  Temperature profiles when R 0.3  and Pr 0.7  

 

 

 
Figure 4  Temperature profiles when Pr 0.7  and 0.8.t   

 

 

  In Figures 5 – 8, the velocity profiles are shown for different 

value of physical parameters involved for both ramped and 

isothermal cases. Figure 5 reveals velocity variations with Pr. It 

demonstrates that the velocity decreases with increasing Prandtl 

number. In the Figure 6, the graph illustrates the influence of 

Brinkman fluid parameter, 
1  on the velocity profile. It is 

observed that the fluid velocity decreases on increasing Brinkman 

fluid parameter in the boundary region. Figure 7 illustrates the 

velocity profile decrease with increasing radiation parameter, R . 

Lastly, Figure 8 shows that the velocity of the fluid increase with 

increase in time, t . It is also to be noted that for very small values 

of t , the velocity profiles are nearly flat, but assume parabolic 

shapes near the plate as t  increases. 

 

 
Figure 5  Velocity profiles when R 0.3 , 1.3t   and 

1 0.8   

 

 
Figure 6  Velocity profiles when Pr 0.7 , R 0.3 , and 1.3t   
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Figure 7  Velocity profiles when Pr 0.7 , 1 0.8  , and 1.3t   

 

 
Figure 8  Velocity profiles when Pr 0.7 , R 0.3  and 1 0.8  . 

 
 

  The behavior of the skin friction coefficient,   with change 

in Pr and R  are shown graphically in Figure 9 and 10. From 

Figure 9, the value of skin friction decrease with an increase in Pr. 

It is observed that for fluid with high Pr, the skin friction shows 

marginal variation with t , while for the fluid with small Pr (Pr < 

1), the skin friction profiles are quite sensitive to small values of 

t . Besides, it can be noted that the skin friction for the isothermal 

is greater than the case in ramped. The variation of the skin 

friction with changes in R  is presented in Figure 10. It is 

observed that the skin friction decrease with increase in R . 

Finally, Figure 11 and 12 shows the variation of Nusselt number, 

Nu  for some values of Pr and R , respectively in the case of 

ramped temperature at the bounding plate. It is observed from the 

graph that the Nu increases for 0 1t  , and decrease for 1t  , 

for all values of Pr and R . On the other hand, Nu is a decreasing 

function of t  in the case of constant wall temperature, as can be 

seen from Eq. (19). 

 

 
Figure 9  Skin friction when R 0.3  and 1 0.8   

 
Figure 10  Skin friction when Pr 0.7  and 1 0.8   

 

 
Figure 11  Nusselt number with R 0.3  

 

 

 
Figure 12  Nusselt number with Pr 0.7 . 

 

 

5.0  CONCLUSION 

 

In this paper, the behaviour of radiation effects on free convection 

flow of Brinkman type fluid in the presence of ramped wall 

temperature is studied. Some important conclusions that can be 

obtained from the graphical results are: 

 

 Velocity decreases with increasing values of Brinkman 

fluid parameter, 1 . 

 Velocity decreases with increasing values of radiation, 

R . 

 Temperature decreases with increasing radiation. 

 Skin friction is reduced with increasing radiation. 

 Nusselt number is greater with increasing radiation. 
 

  The physical parameters in the present case have also been 

compared with the case of constant temperature plate. For this 
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scenario our results indicate that all physical parameters are 

greater in the case of constant temperature than the ramped 

temperature plate. The present results have immediate relevance 

in industrial thermofluid dynamics, transient energy system and 

atmospheric vertical flows. 
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