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Abstract 

 

In this paper, a new numerical method which is based on the coupling between multiscale method and 

meshless method with penalty is developed for 2D Burgers’ equation. The advantage of meshless method 
over the finite element method (FEM) is that remeshing process is not required. This is because the 

meshless method approximation is constructed entirely in terms of a set of nodes. Since the moving least 

squares (MLS) shape function does not satisfy the Kronecker delta property, so penalty method is adopted 
to enforce the essential boundary conditions in this paper. In order to obtain the fine scale approximation, 

the local enrichment basis is applied. The local enrichment basis may adopt the polynomial basis 

functions or any other analytical basis functions. Here, the polynomial basis functions are chosen as local 
enrichment basis. This multiscale meshless method with penalty will provide a more accurate result 

especially in the critical region which requires higher accuracy. It is believed that this proposed method is 

an attractive approach for solving more general problems which involve large deformation. 
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Abstrak 

 

Dalam kertas kerja ini, satu kaedah baru berangka yang berdasarkan gandingan antara kaedah multiscalar 
dan kaedah meshless dengan penalti telah dibangunkan bagi persamaan 2D Burgers'. Kelebihan kaedah 

meshless lebih kaedah unsur terhingga (FEM) adalah bahawa proses remeshing tidak diperlukan. Ini 

adalah kerana kaedah penghampiran meshless dibina sepenuhnya dari segi set nod. Sejak dataran 
kurangnya bergerak (MLS) rangkap bentuk tidak memenuhi delta Kronecker, jadi kaedah penalti dipakai 

untuk menguatkuasakan syarat sempadan penting dalam kertas ini. Dalam usaha untuk mendapatkan 

penghampiran skala halus, asas pengayaan tempatan digunakan. Asas pengayaan tempatan boleh 
menerima pakai fungsi asas polinomial atau mana-mana fungsi analisis asas yang lain. Di sini, fungsi asas 

polinomial yang dipilih sebagai asas pengayaan tempatan. Multiscalar kaedah meshless dengan penalti ini 

akan memberikan hasil yang lebih tepat terutamanya di rantau genting yang memerlukan ketepatan yang 
lebih tinggi. Adalah dipercayai bahawa kaedah yang dicadangkan adalah satu pendekatan yang menarik 

untuk menyelesaikan masalah yang lebih umum yang melibatkan ubah bentuk yang besar. 

 
Kata kunci: Persamaan Burgers'; kaedah multiscalar; kaedah meshless; kaedah penalti; kawasan kritikal 
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1.0  INTRODUCTION 

 

The Burgers’ equation was first introduced by Bateman [1] who 

studied for the weather problem in 1915. Later, Burgers treated 

this equation as a mathematical model for free turbulence and 

shock wave [2]. After the extensive works of Burgers, it is 

widely to be called as Burgers’ equation. This Burgers’ 

equation is a nonlinear partial differential equation of second 

order. It is occurs in various areas of applied mathematics such 

as modelling of gas dynamics, traffic and aerofoil flow theory, 

acoustic transmission, turbulence problems and boundary layer 

behaviour. Burgers’ equation is a nonlinear equation which 

contains a convection term, a viscosity term and a time-

dependent term. If the viscous term is included, Burgers' 

equation is parabolic, else it is hyperbolic. This clearly shown 

that Burgers equation behaves “mixed” property. Due to the 

complex geometry and complicated initial and boundary 

conditions of Burgers equation caused the exact solutions for 

the practical applications are very restricted. As a result, many 

researchers proposed various kinds of numerical methods to 

obtain the solution of Burgers’ equation. These solution 

methodologies are finite difference method (FDM) [3, 4], finite 

element method (FEM) [5, 6] and the boundary element method 

(BEM) [7, 8]. But, there are some problems arise such as time 

consuming of mesh generation in FDM and FEM and the 

complicated singular integrals of BEM. Researchers faced a 

challenging task in development of a robust numerical method 

for seeking accurate solutions of Burgers’ equation. 

  Recently, a kind of numerical method called meshless or 

meshfree methods have attract the researchers’ attentions. To 

approximate the solution, this method only use a set of nodes 

scattered within the problem domain and no element is 

involved. Therefore, the mesh generation time will be saved. 

Thus, it is very convenient for adding particles in the desired 

region to refine the solution. In addition, meshfree methods are 

a modern approach to deal with challenging problems such as 

large deformation, nonlinearity or high gradient. Nowadays, 

there exist many meshfree methods such as element-free 

Galerkin method (EFGM) [9, 10, 11], reproducing kernel 

particle method (RKPM) [10] and meshless local Petrov–
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Galerkin (MLPG) method [11]. There are some papers which 

applying meshfree methods to solve Burgers’ equation such as 

Ouyang et al. [12] combined the characteristic Galerkin (CG) 

method with EFG to solve 1D and 2D Burgers’ equation, 

Young et al. [13] have used the Eulerian–Lagrangian method of 

fundamental solutions to solve the two-dimensional unsteady 

Burgers’ equations, Xie et al. [14] used reproducing kernel 

particle method (RKPM) to solve one-dimensional Burgers’ 

equation and Zhang et al. [15] employed multiscale element-

free Galerkin method for solving 2D Burgers’ equation. 

  In the mid-90s, Hughes revisited the origins of the 

stabilization schemes from a variational multiscale approach 

and presented the variational multiscale method [16, 17]. In this 

method, different stabilization techniques appear as special 

cases of the underlying sub-grid scale modelling concept. The 

new formulation, termed as the Hughes variational multiscale 

(HVM) method was proposed. The starting point of this method 

is the decomposition of the scalar field into the coarse and the 

fine scales. Masud and coworkers developed 

multiscale/stabilized formulations for the linearized 

incompressible Navier–Stokes equations [18], the Darcy flow 

equation [19] and the advection-diffusion equation [20]. 

Besides, there are some researches also combined the 

variational multiscale with the meshfree methods. For example, 

Zhang and coworkers employed variational multiscale element 

free Galerkin method for the water wave problems [21], 2D 

Burgers’ equation [15] and Stokes problem [22]. Jeoung and 

Sung [23] employed variational multiscale with meshfree 

approximation for efficient analysis of elastoplastic 

deformation. 

  An outline of the paper is as follows: Section 2 presents 

the fundamental principle of element free Galerkin method 

(EFGM). Emphasis in the paper is the description of the 

multiscale element free Galerkin method in Section 3. Section 4 

presents the results and discussions and conclusions are drawn 

in Section 5. 

 

 

2.0  FUNDAMENTAL PRINCIPAL OF THE EFGM 

 

According to the moving least square (MLS) interpolant [9, 10], 

a local approximation )(x
hu  to the function )(xu is given by  

 

where m is the number of basis functions, )(xip  are monomial 

basis functions, and )(xia  are their unknown coefficients. A 

commonly used linear basis is provided as 

 

),1( xT
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and the quadratic basis, 
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  The unknown coefficient )(xa is obtained at any point by 

minimizing the following weighted, discrete error norm 
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where )( Iw xx  is a weight function of compact support, N is 

the number of nodes in the neighbourhood of x for which the 

weight function 0)(  Iw xx . In the present work, the 

following cubic spline is chosen as the weight function 

 

 

 

 

 

 

 

 

 

 

 

where 
mI

I

d
r

xx 
 , mId  is the size of the domain of influence  

of Node I. The minimum of J in (2) with respect to )(xa yields 

the following linear equations 
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If A is invertible, the coefficient )(xa  can be expressed as 

 

 uxBxAxa )()( 1  

 

where  )(xA  and )(xB  are matrices defined by     

 

 

 

 

 

 

Substitute )(xa into (1); the 

approximation )(x
hu  can be expressed as 
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where the shape functions of EFGM is defined by 
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  The moving least squares (MLS) approximation does not 

pass through the data used to fit the curve. Therefore, the MLS 

shape functions lack of Kronecker delta property, ijji  )(x . 

This leads to the imposition of essential boundary conditions 

can be awkward. The inequality is 

 

 

 

  Due to unfulfillment of this property, researchers 

encounter problems in exerting Dirichlet boundary condition. 

Various strategies have been proposed to solve this problem. 

The general techniques are penalty methods [10], Lagrange 

multiplier approaches [10], modified variational principles [24], 

perturbed Lagrangian [25] and direct collocation method [26]. 

In this paper, penalty method has been selected to enforce 

essential boundary conditions. 

 

 

 

 

 

 

 

 

 

)1()()()()()(

1






m

i

ii
h apu xaxpxxx

T

 




N

I

II
T

I uwJ

1

2])()[( xaxpxx
























1,0

1
2

1
,

3

4
44

3

4

2

1
,44

3

2

)( 32

32

r

rrrr

rrr

rw

 )()(,),()(),()()( 2211 NN xpxxxpxxxpxxxB  www 

],...,,[ 21 N
T uuuu

I
h uu )( Ix






N

I

I
T

II xpxpxxxA

1

)()()()( w



51                                    Siaw Ching Liew & Su Hoe Yeak / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 49–56 

 

 

3.0  THE VARIATIONAL MULTISCALE ELEMENT 

FREE GALERKIN METHOD 

 

3.1  The 2D Burgers’ Equation 

 

Consider two-dimensional coupled nonlinear viscous Burgers’ 

equations is defined over the domain ]1,0[]1,0[   given by 

the following equations 

 

where u and v are the velocity along x-axis and y-axis, Re is the 

Reynolds number. The initial conditions are: 

 

 

 

the boundary conditions for u velocity are 

 

 

while the boundary conditions  for v velocity are 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2  The Standard Weak Form 

 

We derive the discretization by developing a weak  

formulation. Let )()( 01  CHV  denote the space of trial 

solutions and weighting functions for the unknown variables. 

Multiplying both sides of eq. (3) by an admissible weighting 

function and integrating it over the domain yields 

 

 

 

 

Using Green’s theorem, we get 
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So, the functional )(uI is obtained as 
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To enforce the essential boundary conditions, penalty method is 

used. Therefore, the functional )(uI  becomes 

 

 

where Eu  is the u velocity on essential boundary. Taking 

variation of Eq. (7), it reduces to 
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where w is the weighting function for u, ),,( vua  and 

 



d)(),( is the )(2 L  inner product space. 
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3.3 Multiscale Decomposition of the Classical Weak 

Formulation 

 

Assume that the scalar field can be decomposed into coarse 

scale and fine scale,  

 

uuu ˆ                                                             (10) 

 

where u is coarse scale and û  is fine scale. Meanwhile, it is 

also assumed that there is a linearity between u  and û . The 

trial function spaces of each scale are defined as 
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where function g represents displacement boundary condition 

prescribed on smooth boundary u  and equals to zero. 

Besides, the test function can also be decomposed into coarse 

and fine scale components indicated as w  and ŵ , given by 
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3.4   The Multiscale Variational Problem 

 

Employing backward Euler as time discretization for equation 

(8) and linearization, the trial solutions (10) and the weighting 

functions (11) are substituted into the standard variational form 

to obtain 
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where n and n+1 represent two adjacent time points with time-

step .ˆ),,(,1 nnnnnnnn uuuvuttt  
a Assuming that 

the coarse scale and fine scale are linearly independent, 

therefore equation (12) can be split into the coarse and the fine 

scale parts, the two sub-problems becomes: 
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fine scale Ŵ sub-problem: 
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After we rearranged equation (13) and (14) respectively, we get 
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3.5  The Solution of the Fine Scale Problem 

 

The theory about partition of unity (PU) is used [27-30] in order 

to obtain the fine scale approximation. The product of the PU 

functions and the local approximation functions is the space of 

functions that is used for the approximation. The approximation 

of the displacement field at point x is given by  

 






i vV

ji
j

ii
h

i
j

i

uVu .)()( ,xx   

 

Local enrichment basis 
j

iV  may employ the polynomial basis 

functions or any other analytical basis functions. Some 
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Second order polynomial basis functions are used in this work. 

So, we obtain 
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In the coarse scale region, the approximation using classical 

EFG method as follows: 

While the two added terms are considered as fine scale 

approximation which is 
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N represents the number of coarse scale nodes, 

i =1, 2,…, N,  j=1, 2,…, N  

 

M represents the number of fine scale nodes,  

i =1, 2,…, M,  j=1, 2,…, M 

 

3.6  Numerical Iteration 

 

The iteration procedures are as following: 

 

(1)  Let ;0,1 nn uu 
  

(2)  Replace the coarse variable 1nu   in the right-hand side 

       with inu ,1   to determine 1,1ˆ  inu   

  

      )(ˆ:ˆ ,1
43

1,11,1
2

inninin uFFuKW    

 

(3)  Use 1,1ˆ  inu  from (2) to solve the coarse scale problem to       

       determine 1,1  inu , 

 

       .)ˆ(: 1,1
21

1,11,1
1

  inninin uFFuKW  

 

(4)  Employ 




41

1

0,)(

i

ii
h uu x  for coarse nodes and employ  

 

for fine nodes to get 
inu ,1

real


and ,1,1
real

 inu  

 

(5)  Next, calculate error = max |;| ,1
real

1,1
real

inin uu  
 

(6)  If error <10-5, then let nnuu nin  1,1,1

 
and 

      go to (1); else go to (2). 

 

 
Table 1  The representation of global index numbering. 

 

 

 

  Table 1 shows the representation of global index 

numbering. For the approximation of the classical EFG method, 

the index number from 1 to 36 represent coarse nodes while 

index number from 37 to 41 indicate fine nodes. For the 

approximation of polynomial basis function, the index number  

which start from 42 to 46 for )( jxx and index number from 

47 to 51 for )( jyy   are defined as fine nodes. 

 

 

 
 
Figure 1  Coarse nodes and fine nodes in 2D Burgers’ equation 

Figure 1 shows the geometry for coarse nodes and fine nodes in 2D 
Burgers’ problem. N indicates the number of coarse nodes while M 

represents the number of fine nodes 

 

 

4.0  RESULTS AND DISCUSSIONS 

 

4.1  The 2D Burgers’ Equation 

 

The computing results of multiscale EFGM with penalty for 2D 

Burgers’ equation are presented as below 

 

 
Figure 2  A numerical illustration of approximation solutions u 
velocity by multiscale method at t=0.2 on 15×15 nodes when 

Re=100 

 

 
Figure 3  A numerical illustration of approximation solutions v velocity 

by multiscale method at t=0.2 on 15×15 nodes when Re=100 
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Table 2  The comparison of maximum error of u velocity and v velocity 
by multiscale method for time t=0.4 and t=0.8 with different node size 

for Re=100 

 

 
 

 

  Table 2 shows the comparison of the maximum error of u 

velocity and v velocity for 10×10, 15×15 and 20×20 nodes. 

Two different times, t=0.4 and t=0.8 have been used in this 

table. From the table 2, we can observe that the maximum error 

reduce with the increment of nodes for multiscale methods with 

penalty for 2D Burgers’ equation. This shows that the accuracy 

increase with the increment of nodes. 

 

 
Table 3  The comparison errors of u velocity for multiscale area nodes 

by without multiscale method and with multiscale method at t=0.4 and 
t=0.8 on 15x15 nodes for Re=100 

 

 
 

 
  From the table 3 above, node 49, node 50, node 64 and 

node 65 represent the nodes that are close to the multiscale area. 

It can be observed that the errors of these u velocity nodes by 

multiscale method are smaller than without multiscale method 

at time t=0.4 and t=0.8. The errors in table 3 indicate that the 

multiscale method produce higher accuracy comparing to 

without multiscale method. 
 

 

5.0  CONCLUSION 

 

In this paper, a new numerical method called multiscale 

element-free Galerkin method with penalty is developed for 2D 

Burgers’ equation. In this proposed method, the velocity field is 

decomposed into coarse scales and fine scales, uuu ˆ . This 

will enable the fine scale information can be captured. 

According to the numerical results obtained, the accuracy of 

multiscale EFGM with penalty is improved with the increment 

of nodes. Besides, the results of this proposed multiscale 

method is better than without multiscale method based on the 

errors of u velocity nodes which are close to the multiscale area. 

Another advantageous of this method is less computational time 

to be used comparing with the conventional multiscale meshless 

method. This is because the multiscale method will only be 

applied in the critical area which requires higher accuracy. This 

brings convenience for adding or deleting nodes in the desired 

regions as the mesh generation is not needed in this method. So, 

this proposed method is suitable to deal with high gradient, 

nonlinear and large deformation problems.   
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