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Abstract 

 

A numerical study on the influences of gravitational force on an unsteady two-dimensional nonlinear 
model of blood flow through a stenosed artery is presented. Blood flow through the constricted region 

with an irregular stenosis is considered as incompressible Newtonian fluid. The governing equations are 

derived from the Navier-Stokes equations, which also comprise a significant term for gravitational force in 
the axial momentum equation. The numerical method chosen in this study is the finite difference 

approximations based on Marker and Cell (MAC) method at which governing equations are develop in 

staggered grids for discretization. The Poisson equation of pressure is solved by successive-over-
relaxation (S.O.R.) method. Pressure-velocity corrector is imposed to increase accuracy. Streamlines, wall 

shear stress and axial velocity profiles are plotted. 

 
Keywords: Blood flow; gravity; irregular stenosis; Newtonian fluid; MAC method 

 

Abstrak 

 

Kajian matematik berangka yang  dijalankan ini adalah mengenai kesan tarikan gravity ke atas aliran 

darah melalui arteri berstenosis dengan geometri stenosis tidak teratur. Darah yang mengalir dalam 

sekmen arteri berstenosis ini dianggap sebagai bendalir Newtonan dan alirannya dianggap tidak mantap, 

laminar dan berpaksi simetri dalam dua matra. Persamaan Navier-Stokes diterbit dalam koordinat silinder 

dan ditambahkan dengan terma yang membayangkan tarikan gravit. Kaedah berangka yang dipilih ialah 
kaedah Marker and Cell (MAC). Corak aliran darah melalui segmen arteri berstenosis tersebut 

digambarkan dengan garisan-garisan aliran. 

 
Kata kunci: Aliran darah; graviti; stenosis tidakteratur; bendalir Newtonian; kaedah MAC 
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1.0  INTRODUCTION 

 

Healthcare problems are apparently concerned by people 

these days. For over centuries, cardiovascular diseases have 

been noticed as one of the major illnesses where numerous 

people suffer from them. The cardiovascular system consists 

of the heart and blood vessels which plays important roles in 

transportation, protection, and regulation of human body. A 

pressure gradient is produced as the heart pumps so that blood 

will flow through vessels throughout the body (Ku [1]). 

Among the cardiovascular diseases, the familiar ones such as 

stroke and atherosclerosis are closely related to abnormality, 

disorder and malfunction of blood flow characteristics in 

human body. Due to this, blood flow related problems have 

obtained significant interest by biomedical researchers. 

  Segmental narrowing of an artery due to substances 

deposition or intravascular plaques is call an arterial stenosis 

(Mandal et al. [2]). This may be caused by unhealthy living 

conditions such as exposure to tobacco smoke, lack of 

physical activity, and so on. It is always followed by serious 

changes in blood flow, pressure distribution, wall shear stress, 

and flow resistance. Once arterial stenosis 

occurs,atherosclerotic plaques would protrude into lumen of 

blood vessels. Consequently, resistance is increased; hence 

blood flow is unsufficient to reach every cells and this resists 

nutrient suppliment. These could lead to widespread of health 

disorders which may then worsen to various illnesses. To 

more serious extent, these abnormalities in blood flow could 

contribute substantial fatal health risks. Several theoritical and 

experimental studies by mean of blood flow characteristics 

with arterial stenosis were done, such as Ling and Atabek [3],  

Padmanabhan [4], Back et al. [5], Johnston and Kilpatrick [6], 

Chakravarty and Sannigrahi [7], Ku [1], Jung et al. [8], 

Mandal [9] and Mustapha et al. ([10], [11], [12]). 

  Gravitation is a natural fact such that physical bodies are 

draw to the earth due to masses. Studies suggested that 

gravity force is one of the bases of regulating blood flow. For 

space programmes to be carried out safely, studies on physical 

changes during absence of weight are performed. In space 

activities, astronauts encounter a condition of microgravity, 

causing body fluids to distribute more to upper parts of the 

body which is very different from the condition with 

gravitation on earth (Kim et al. [13]). However at launch and 

on return, hypergravity is frequently faced. These types of 

changes in blood flow velocity due to gravitational force may 

cause several health problems especially when there are 

5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10

11

Dimensionless Axial Position

D
im

en
si

o
n

le
ss

 W
al

l 
S

h
ea

r 
S

tr
es

s

 

 

Fr = 0.25

Fr = 0.5

Fr = 1



58                                    Tan Yan Bin & Norzieha Mustapha / Jurnal Teknologi (Sciences & Engineering) 62:3 (2013), 57–64 

 

 

 

unhealthy deposits in blood vessels (Payne [14]; Burrowes et 

al. [15], [16]). Payne [14] carried out the analysis of the 

effects of gravity and wall thickness on blood flow behavior. 

Navier-Stokes equations were derived with additional of 

gravitational term,   , where   is the gravitational 

acceleration and   is the vessel slope. The equations are 

linked to a simple vessel wall model. The result showed that 

amplitude of the velocity pulse changes with slope.  

  On the other hand, it is noticed that the acceleration of 

gravity does not vary only during space activities; even on the 

earth itself, there are various causes affecting gravitation, such 

as latitude, altitude, tidal effects, and so forth. For example, at 

the equator, gravity acceleration gives a value of 9.78m/s2 but 

it becomes 9.832m/s2 when shifted to the poles (Boynton 

[17]). Besides, during postural changes, blood flow 

distribution and pressure in human body will also be 

influenced. When a head-up tilt (a test operated to diagnose 

patients suffered from certain level of dizziness and syncope) 

is performed, the patient’s blood assembles at lower limbs 

because of gravity during the tilt. This will lead to increment 

of blood pressure in the lower body and decrement in the head 

(Heusden et al. [18]; Olufsen et al. [19]). 

  Mathematical modelling on blood flow in stenosed 

arteries has been expected to be important in studies of 

arteriosclerotic plaques and the effects. Various studies 

formulated an unsteady nonlinear two-dimensional model. It 

was observed that blood behaves as Newtonian fluid when it 

flows through wider arteries. But when flowing through a 

narrower artery at which shear stress is lower, it behaves like 

a non-Newtonian fluid (Chakravarty and Mandal [20]). In this 

study, blood flow in arteries is modelled by axisymmetric 

Navier-Stokes equations; while the artery itself is assumed to 

be an elastic cylindrical tube composing of Newtonian fluid 

which is the blood. Analyses of blood flow characteristics 

under the effects of gravity are taken into consideration. The 

geometry of stenosis chosen is an irregular stenosis in 

cylindrical artery vessels following data given by Back et al. 

[5], which mimics the roughness of real constricted blood 

vessel surface. Blood flow is assumed to be unsteady, two-

dimensional, and incompressible. Walls of artery vessels are 

considered to be elastic and axisymmetric. The numerical 

method chosen in this study is the finite difference 

approximations based on Marker and Cell (MAC) method 

following a MATLAB coding accomplished by Mustapha et 

al. [11]. Successive-over-relaxation (SOR) method is 

involved to solve the pressure-Poisson equation. 

 

 

2.0  STENOSIS MODEL 

 
In this study, the profile of stenosis model is chosen to be an 

irregular stenosis following data developed by Back et al. [5] 

which imitates the real blood vessel surface roughness. 

 
Figure 1  Geometry of the irregular stenosis 

 

3.0  GOVERNING EQUATIONS 

 
In this study, streaming blood in the constricted artery 

segment is accounted to be incompressible, unsteady, laminar, 

fully-developed, and is modeled as Newtonian fluid. The 

fundamental governing equations of the studies comprise of 

the continuity equations and the momentumequations. 

Conservative forms of the governing equations are presented 

as follow: 
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  The equations are presented in the form of cylindrical 

polar coordinates system  , ,r z , where z -axis conveys the 

longitudinal axis of the studied arterial segment and r

conveys the radial. The velocity components are yielded by 

 , ,u v w . Equation (1) is the Continuity Equation while 

Equations (2) and (3) are the radial and axial momentum 

equations respectively.  represents the kinematic viscosity 

 

 of blood and p  represents pressure in segment under 

study. The axial momentum equations is imposed with a 

gravitational force term, where   is the blood density, g  is 

the gravitational acceleration and   is the vertical angle 

between the direction of vessel and gravity. 

  To ensure the terms to have same dimension, the 

equations need to be non-dimensionalised by introducing the 

following dimensionless quantities: 
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Thus, equations (1) to (3) are non-dimensionalised and 

become: 
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where Re  is the Reynolds number, Fr  is the Froude number 

and 0U  is the cross sectional average velocity. 

 

 

4.0  BOUNDARY CONDITIONS 

 
There is no radial flow along the symmetry axis of the artery, 

so the normal component of the velocity and the axial velocity 

gradient of the blood along the axis may be assumed to be 

zero; that means the shear stress does not exist. These may be 

stated mathematically as 

 

 , , 0u r z t  , 
 , ,

0
w r z t

r





 on 0r                   (7) 

 

  Blood particles are expected to be adhering to the inner 

surface of vessel. Hence the velocity boundary conditions on 

the arterial wall obey the no-slip condition and are taken as 
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  The inlet velocity conditions are assumed to have a 

parabolic profile which resembles the Hagen-Poiseuille flow 

through a long circular tube even in unsteady state. It is 

provided with evidence by studies of Rappitsch and Perktold 

[21] and Stangeby and Eithier [22] as: 
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At downstream, the velocity is treated to be zero. 
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where L is the length of constricted artery segment under 

study. It is also assumed that no flow takes place when the 

system is at rest except at the inlet (Tu et al. [23]), described 

as: 
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5.0  BOUNDARY CONDITIONS 

 

Before solving the governing equations, a radial coordinate 

transformation is introduced: 
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which has the effect of immobilizing the vessel wall in the 

transformed coordinate x . The dimensionless continuity 

equation (4), the radial and axial momentum equation (5) - (6) 

and also the boundary conditions (7) - (11) will be 

transformed using the radial coordinate transformation and 

therefore become: 
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For the boundary conditions, take            and limit   

from 0 to 1. Hence, the boundary conditions (7)-(11) become 
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6.0  METHOD OF SOLUTION 

 

The Marker and Cell (MAC) method (Harlow and Welch 

[24]) is chosen to solve the governing equations together with 

the boundary and initial conditions. This is a method based on 

finite difference scheme in a staggered grid calculating 

velocities at the edges while pressure at the center as shown in 

a typical MAC cell as illustrated in Figure 2. The time 

derivative terms are discretized using first order accurate two-

level forward time differencing formula, while the convective 

terms in momentum equations are discretized by a hybrid 

formula consisting of central differencing and second order 

upwinding. These types of discretizations are chosen for 

better accuracy (Midya et al. [25]). In this finite difference 

scheme, we define x j x  , z i z  , t k t  , and 
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time direction, t  is the time increment, x  and z are the 

width and length respectively of the  ,i j th cell. 
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Figure 2  A typical MAC Cell 

 

 

  Discretization of the continuity equation takes place at 

the location of pressure, p , which is also the centre of cell. 

Its discretized form at the  ,i j th cell is: 
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with ( , )
li lj

z x  and ( , )
i j

z x represent the coordinates of the cell 

center and the cell faces respectively, as shown in Figure 2. 

 

  Next, the axial momentum equation is rearranged and 

expressed in finite difference form as 
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 

, 1 , 1
,

2 2
,

2 2

Con
2

1
(1 )

(1 )

1

k kk
lj i j i jk

i j k
ii

t t b b t wt b wb
k
i

k
i j mr l r wr l wl

k
lj i

k
lj t b t wt b wb
k

ii

x w wR
w

t xR

w u w u w w

x xR

w uw w w w

z z x R

x w w w wR

z x xR

 
 

 
 

 
 

 
      
   
 

  
     

  
    

   

   
    

     

 

             (29) 

 

 

 

2

, 1 , , 1

2 2

2
2

, 1 , 1

2

1, 1 , 12

,

21
1

1
2

2

2( )

Diff

k k kk
i j i j i j

lj
k i
i

k k kk
i j i jk

lj lj i

lj i i

k k
i j i i j i i ik

i

k
i j

w w wR
x

z xR

w wR R
x x R

x z xz

w z w z z w
R

w
 

 

   

 


 

 
  

 

     


                

                   

 
1,

1 1

k
j i

i i i i

z

z z z z 



    





 

                  (30) 

 

  The convective term as in equation (29) is differenced 

with a combination of central differencing and second order 

upwind schemes. As seen equation (29), a combination factor, 

 , is introduced. It is determined from numerical stability. 

When 0  , the scheme becomes central differencing and 

when 1  , the scheme approches second upwind 

differencing. 

 

For the axial momentum equation, the differential symbols are 

defined by: 

 

, 1,
( ) / 2

k k

r i j i j
w w w


  ; 

, 1,
( ) / 2

k k

l i j i j
w w w


  ;  

, , 1
( ) / 2

k k

t i j i j
w w w


  ;

, , 1
( ) / 2

k k

b i j i j
w w w


  ;  

, 1,
( ) / 2

k k

t i j i j
u u u


  ; 

, 1 1, 1
( ) / 2

k k

b i j i j
u u u

  
  ;  

( ) / 2
m t b

u u u   

 

where the suffixes r , l , t  and b  represents right, left, top 

and bottom middle positions of the cell faces while suffix m

represents the middle of the cell faces. 

 

 

Then, the momentum fluxes,  , for axial momentum are 

expressed as: 

 

if 0
r

w  , 
,

k

wr i j
w  ; if 0

r
w  , 

1,

k

wr i j
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
 ; 
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if 0
l

w  , 
1,

k

wl i j
w


 ; if 0

l
w  , 

,

k

wl i j
w  ; 

if 0
t

w  , 
,

k

wt i j
w  ; if 0

t
w  , 

, 1

k

wr i j
w


 ; 

if 0
b

w  , 
, 1

k

wb i j
w


 ; if 0

b
w  , 

,

k

wb i j
w  . 

 

Similarly, 

 

if 0
t

u  , 
,

k

ut i j
w  ; if 0

t
u  , 

, 1

k

ut i j
w


 ; 

if 0
b

u  , 
, 1

k

ub i j
w


 ; if 0

b
u  , 

,

k

ub i j
w  . 

 

For radial momentum equation, the finite difference form is 

expressed as: 

 
1

, , , , 1

,

1
k k k k
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i jk
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t R x
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              (31) 

 

where 

 
, , ,

1
Con Diff

Re

k k k

i j i j i j
ume u u  .               (32) 

 

,
Con

k

i j
u and

,
Diff

k

i j
u  are convective and diffusive terms of the 

radial momentum equation at k -th time level at the  ,i j th 

cell. The terms are differenced in the same manner as in the 

axial momentum equation where 
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    (34) 

 

 

  Next, the Poisson equation for pressure is gained by 

coupling and combining the discretized form of the continuity 

and momentum equations. After rearranging, the final form of 

Poisson equation for pressure would be: 
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                  (35) 

 

Here, 
,

k

i j
Div  represents the discretized form of divergence of 

velocity field at the (i, j)th cell and are describes as: 
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              (37) 

 

Then, the expressions for A, B, C, D, E, F, G, H, S are given 

as follow: 
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
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  The next step is to solve the Poisson equation for 

pressure (35) by the successive over-relaxation (SOR) method 

with a certain number of iterations. This is to get the 

intermediate pressure field at the n th time step. Here, the 

value of the over-relaxation parameter is taken to be 1.2. 

 

6.1  Pressure and Velocity Corrections 

 

After solving the Poisson equation of pressure, the pressure 

obtained is an intermediate hence inaccurate. The velocities 

obtained do not satisfy the continuity equation. So, pressure 

and velocities should undergo a correction stage to get better 

accuracy. Here, a pressure-correction relation is introduced: 

 

, , 2 ,

n
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P P P



                    (38) 
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where
,i j

P


 is the intermediate pressure obtained from the 

Poisson equation of pressure, 
2

  (which is 0.5 ) is an under 

relaxation parameter and 
,i j

P  is the pressure error term 

described as 

 
*

,

,

,

i j

i j

i j

Div
P

tA
  


                 (39) 

 

where
*

,i j
Div  is the divergence value of velocity field at the 

 ,i j th cell. Next, the velocity correction formulas are 
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where 
,i j

w


, 
1,i j

w



, 

,i j
u



 and 
, 1i j

u



 are the updated velocity 

components obtained after solving the Poisson equation of 

pressure. 

 

6.2  Stability Restriction 

 

For the numerical computation to be stable, several 

considerations need to be made. Restrictions on the mesh 

sizes, z  and x , and time interval t  are imposed. 

Markhan and Proctor [26] suggested that, with relation to 

fluid convection, the fluid cannot pass through more than one 

cell in each time step. So the time step must obey the 

following inequality: 
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z x
t

w u
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.               (44) 

 

  As suggested by Welch et al. [27], momentum must not 

diffuse more than one cell in each time step. The second 

stability restriction, which is related to the viscous effects of 

fluid, is suggested by Hirt [28] such that 

 

 
2 2
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  
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  Combining and simplifying inequalities (44) and (45), 

the time step should be concluded to obey the following 

inequality: 

 

  
1 2

Min ,
ij

t c t t                   (46) 

 

where the constant c  (lying between 0.2 and 0.5) is added as 

a considerable computational saving.  

Other than that, the combination factor,  , should be picked 

according to the following inequality: 
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z x


 
 
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 
 

              (47) 

 

  However, this inequality yields only a very small and 

considered not so significant. It can be improved by 

multiplying a factor of 1.2 as a safety measure. 

 

 

7.0  RESULTS AND DISCUSSIONS 

 

The imposed numerical algorithm based on Marker and Cell 

(MAC) method is validated by Mustapha et al. ([10]-[12]) 

using Matlab Programming software. In order to perform 

numerical computations of the desired quantities of major 

physiological significance, the following parameter values 

have been made use of: 

 
3 3

1.06 10 kg m


  ; 2
p

f  ; 

1.2
p

f Hz ; 
0

0  ; 
0

0.5U  ; Re 50  

 

The numerical results presented in graphs are shown in this 

section. 

 

 

7.1  Streamlines For Different Values Of Froude Numbers 

 

 
Figure 3  Patterns of streamlines for Fr=0.25 

 

 
Figure 4  Patterns of streamlines for Fr=0.5 

 

 
Figure 5  Patterns of streamlines for Fr=1 

 

 

  Figures 3-5 show the patterns of streamlines regarding 

blood flow through the constricted arterial segment with 

single irregular stenosis. Variation of the dimensionless 

Froude number represents values of gravitational force where 

lower value of Froude number indicates higher value of 

gravity. From the streamlines plotted, it it noticed that the 

streamlines do not overlap. This means that at each point there 
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is only one velocity. No recirculation region is observed for 

these 3 values of Froude numbers with this mild stenosis. 

 

7.2  Wall Shear Stress 

 

 
Figure 6  Variations of wall shear stress at different values of Froude 
numbers 

 

 

  Variations of wall shear stress comparing different 

values of Froude numbers along the dimensionless axial 

position are demonstrated in Figure 4. Wall shear stress is 

influenced by different values of gravity. It is clearly noticed 

that at lower Froude number (meaning higher gravitational 

force), wall shear stress is relatively higher. 

 

 

7.3  Axial Velocity 

 

 
Figure 7  Axial velocity profiles for different values of Froude 

numbers at 20.16z   

 

 

  Figure 5 illustrates how gravity influences axial velocity 

profiles of the constricted arterial region. The velocity profiles 

are analyzed at position 20.16z   which is one of the critical 

heights of the stenosis. The velocities decrease from their 

individual maximum. Comparing the graphs, axial velocity 

for Fr=0.25 (highest relative gravitational force) is noticed to 

have the relatively highest individual maxima, and vice versa. 

Hence, it can be concluded that axial velocity rises upon 

increment of gravity. 

 

 

8.0  CONCLUSION 

 

An unsteady two dimensional nonlinear model of blood flow 

through an irregular stenosed arterial segment is developed to 

study the effects of gravitation on blood flow. Blood is 

considered as an incompressible Newtonian fluid. The 

governing equations are non-dimensionalised and transformed 

using radial transformation. Then, they are solved using the 

finite difference approximations based on Marker and Cell 

(MAC) method. Values of gravitation is described 

dimensionlessly via different values of Froude number. Lower 

value of Froude number represents a condition with higher 

gravitational force and vice versa.  

  Streamlines of blood flow through the constricted arterial 

segment are plotted (Figures 3-5) to analyse differences of the 

flow patterns. Variations of wall shear stress along the 

constricted region is also plotted (Figure 6). Then in Figure 7, 

axial velocity profiles for different values of Froude numbers 

are plotted. As a summary, wall shear stress and axial velocity 

at lower Froude number (higher gravitational force) give 

higher values than that of a condition at higher Froude 

number. 
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