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Abstract 
 

Efficiency and scalability are obstacles that have not yet received a viable 

response from the human activity recognition research community. This paper 

proposes an activity recognition method. The knowledge model is in the form of 

ontology, the state-of-the-art in knowledge representation and reasoning. The 

ontology starts with probabilistic information about subjects’ low-level activities 

and location and then is populated with the assertion axioms learned from 

data or defined by the user. Unlike methods that choose only the most 

probable candidate from sensor readings, the proposed method keeps 

multiple candidates with the known degree of confidence for each one and 

involves them in decision making. Using this method, the system is more flexible 

to deal with unreliable data, readings from sensors, and the final recognition 

rate is improved. Besides, to resolve the scalability problem, a system is 

designed and implemented to do reasoning and storing in a relational 

database management system. Numerical evaluations and conceptual 

benchmarking prove the proposed system feasibility. 
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1.0 INTRODUCTION 
 

Human activity recognition (HAR) is one of the most 

applicable and yet challenging areas in context 

awareness. HAR is a multidisciplinary area of 

research, and it tackles several different issues. This 

paper proposes an ontological model for sensor-

based human activity recognition that facilitates 
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dealing with uncertainty. In some applications, HAR 

systems must be able to process a significant amount 

of data in a reasonable time. As the proposed system 

is highly scalable, it can be used for batch 

processing. A model for storing ontologies in 

relational databases is proposed in the form of tables 

that contain ontology’s semantic material with 

accompanying probability values. 

Sensor-based HAR is preferred for many 

applications since it is more pervasive, has fewer 

privacy issues, and requires less computational 

process and storage space compared to camera-

based HAR. In sensor-based recognition, inertial 

measurement units (IMUs) and the indoor positioning 

system (IPS) track subjects’ and environmental 

objects’ movements and location. These sensors are 

basically analog de-vices that generate continuous 

signals. IMU sensors' data are processed with signal 

processing techniques; data-driven, classification 

methods convert them to posture (e.g., sitting or 

walking), and low-level, fine-grained activities (e.g., 

taking a coffee cup with the right hand). IPS signals 

are also used to calculate subjects’ location in a 

room or building. This information is used to find out 

high-level activities, such as resting time, performed 

by the subject. Many algorithms have been 

presented for sensor-based HAR, from simple 

statistical models to deep learning [1].  

In this paper, we proposed a HAR model. The 

main contributions of the current research are ability 

to deal with uncertainty, scalability and storing 

probabilistic ontological knowledge in ordinary 

relational databases. One of the challenges in HAR 

systems is uncertainty. The input information is 

essentially uncertain; sensors used in activity 

recognition are usually powered by unreliable 

batteries, data transmission is in a noisy wireless 

medium, and sensors might be displaced from their 

original position. Moreover, classification methods 

used for predicting low-level activities are not 

perfect. In short, there is no guarantee that whatever 

obtained from sensors' data is correct. However, the 

degree of belief, the probability of having correct 

information, is somehow calculable. When 

information such as low-level activities and location is 

available, one popular approach is to store them in a 

knowledge base system like an ontology system. 

Afterward, the knowledge base system does 

reasoning and infers high-level activities. In addition 

to probabilistic information obtained from sensors’ 

data, known as ABox, the activity recognition 

knowledge base is also uncertain because the 

definition set, TBox, is also uncertain. For example, if 

Alice is certainly standing in place x in the kitchen 

taking a cup with her right hand and moving the 

chair with her left hand, she is probably in “tea-time” 

(80%), or she is in “cleaning time” (20%). This research 

models uncertainty with probabilistic representation 

and makes use of a probabilistic ontology to develop 

the proposed human activity recognition knowledge 

base. To the best of our knowledge, this is the first 

ontology-based activity recognition work with 

probabilistic observations from sensors. 

Another aspect of HAR systems is their computing 

mode that can be real-time or batch processing. 

Real-time systems are for applications such as elderly 

monitoring and gaming, while batch processing is 

suitable for applications like employee monitoring, on 

parole criminal monitoring, and medical or 

praxeological studies on people’s behavior. In real-

time HAR systems, the processing time should be only 

less than or equal to the performing time and the 

window size should be small. However, batch 

processing recognition systems must be able to deal 

with a significant amount of data from several 

subjects, each performed in a long-time span. 

Therefore, scalability is one of the key challenges in 

these systems. This paper proposes a probabilistic 

method for sensor-based human activity recognition 

to overcome both obstacles: uncertainty and 

scalability.  

Storing data and reasoning about the knowledge 

base are difficulties of HAR batch processing. There 

are some knowledge management systems for 

storing and reasoning about conceptual knowledge 

bases. They are appropriate to use for a limited 

amount of data in research labs. On the other hand, 

relational database management systems (RDBMSs) 

are incredibly efficient, even though they are not 

designed to deal with complex knowledge structures. 

Decades of experience, billions of investments, and 

millions of active users have enabled RDBMSs to store 

and manage huge databases reliably and securely. 

For achieving scalability, this study designs a 

procedure to store activity recognition knowledge 

and do reasoning about them in a relational 

database. There are some research works on storing 

ontologies in databases. However, we didn't find any 

research on storing probabilistic ontologies on 

ordinary relational databases. 

The organization of this paper is as follows. Section 

2 reviews the relevant works on ontology-based 

activity recognition, probabilistic data, and 

knowledge bases and ontology storage in relational 

databases. Section 3 describes the applied dataset 

as the material and the applied methods for the 

probabilistic ontology model and reasoning and 

discusses about experimental issues on software 

development and storing the knowledge base in a 

relational database. Section 4 reports the analysis, 

results, and comparisons, and Section 5 contains the 

conclusion and possibilities for future works. 

 

 

2.0 BACKGROUND AND LITERATURE REVIEW 
 

2.1 Ontology-based HAR 
 

Recent works on sensor-based high-level human 

activity recognition fall into two categories: 1) data-

driven recognition that approaches the problem 

from pattern recognition or machine learning 
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viewpoint and 2) knowledge-driven recognition that 

applies logical reasoning and, in particular, 

knowledge-based systems. The probabilistic Markov 

model is frequently used in data-driven approaches 

[2]. used this model for predicting users’ situation, 

while providing low-level activities to the system, and 

[3] proposed a location-based activity recognition 

using the Markov model. In some recent studies, 

including [4] and [5], the Markov model and 

knowledge bases have been applied together, 

called the hybrid approach. Logical reasoning has 

been used to recognize and predict human activities 

from the long past [6]. Only it is regarded as a huge 

progress after modern knowledge representation 

models are developed. Nowadays, ontologies are 

one of the best tools for activity recognition purposes 

[7]. Despite numerous studies on HAR, RapidHARe [8] 

is the only method we know which deals with 

processing time in this area. 

Chen and Nugent [9] proposed an ontology-

based approach that was one of the first integrated 

frameworks for activity recognition based on a 

conceptual essence. They did not use any dataset 

and presented the framework with a sample 

ontology. However, in an extension of their work [10], 

later they presented an activity recognition method 

based on the previously presented ontological 

model. The method is designed to confront a cold 

start, a common problem in data-driven activity 

recognition, when there are no or few labeled data 

for learning the system at the beginning point. At the 

starting point, there is an ontology developed 

according to human knowledge. Using the ontology, 

the system labels some activities, and then, new 

activities are discovered using labeled information 

and data-driven techniques. The labeled information 

is used to discover more activities via data-driven 

learning, and discovered activities are used to 

populate the ontology. More information is labeled 

by running all phases more than once. As a result, the 

ontology becomes more completed. In this method, 

the ontology and the information are deterministic, 

although the machine learning process is 

probabilistic. 

Riboni and Bettini [11] proposed an ontology web 

language (OWL) 2 model for human activities. They 

also developed another hybrid, statistical, and onto-

logical activity recognition method [12]. It was 

published simultaneously with Chen and Nugent’s 

method, and both claimed their models to be the 

first in the field. This method obtains low-level 

activities using data-driven techniques from the body 

and environmental sensors and gathers the subject’s 

location from GPS for outdoor and RFID for indoor. 

They used a novel technique, called historical 

variant, to temporally optimizing obtained low-level 

activities. Afterward, they utilized ontological 

reasoning, only for locations of objects, to predict 

high-level activities. Input and output data and the 

reasoning process were not probabilistic, and the 

most probable state was always chosen as the 

deterministic answer. Palumbo et al. [13] proposed a 

HAR process that is implemented within the reservoir 

computing paradigm. Ni et al. [14] proposed a HAR 

model consists a network of ontologies that aims 

smart homes especially for the elderly in the 

healthcare domain. 

The probabilistic essence of human activity 

recognition calls for probabilistic logic and reasoning 

[15]. Nevertheless, early attempts preferred to avoid 

probabilistic logic because of its difficulties [16]. The 

most recent research attempts to avoid probabilistic 

ontologies because there is no established model 

and standard for that (see section 2.2). There are a 

few studies about adopting ontologies and 

probabilistic models and reasoning in activity 

recognition. Yamada et al. [17] was a preliminary 

research on using ontology in activity recognition 

that applied probabilistic modeling. Environmental 

objects are equipped with RFID tag and RFID reader 

sensors installed in the activity area. They track 

objects’ location. However, because of the overlap 

between activity spaces and the RFID system 

unreliability, the process is probabilistic.  

Helaoui et al. [18] is more similar to the current 

research, not only for using ontology and a 

probabilistic model but also for utilizing the 

Opportunity dataset, which is the earlier version of 

the dataset used in the current study. The dataset is 

about daily morning activities; the subjects’ bodies 

and environmental objects are covered with 

different kinds of sensors, and RFID tags are installed 

in their gloves to track the subjects’ location. In a 

newer version of the dataset used in this research, 

the state-of-the-art IPS system is utilized for indoor 

tracking. In addition to sensor data, the dataset 

contains labels for postures and low- (right and left 

hand interaction with objects and hand movements) 

and high-level activities. Dataset developers made 

annotations via video checking. Additionally, this 

particular research annotates two medium-level 

activities: simple activities and manipulative gestures. 

The probabilistic ontological reasoning process is as 

follows: information about location and posture is 

ignored, and hands’ interaction with objects and 

hands’ movements are combined and named 

atomic gestures (Level 4). A set of related and 

sequential atomic gestures characterize a 

manipulative gesture (Level 3); for example, 

“opening a drawer” and “fetching a knife” is “taking 

the knife”. In the same way, a set of manipulative 

gestures characterize a simple activity (Level 2), and 

a set of simple activities characterize a high-level 

(complex) activity (Level 1). Level 4 labels are 

available in the dataset, meaning that regardless of 

errors, they are somehow obtained from sensor data. 

For levels 3 to 1, the state of each level is deducted 

from lower level using ontological reasoning. The 

axioms, Tbox, of ontology are manually developed 

and weighed as confidence property, the probability 

of working of the assertion axiom. The manually 

annotated labels for levels 1 to 3 are used to 

evaluate the method. There are two points to note 

about this research. First, the input and output of 
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each step are not probabilistic. In other words, the 

reasoner with probabilistic rules receives deterministic 

values from the lower level and only passes the most 

probable value to the higher level (similar to the 

aforementioned works). Second, model reusability is 

not achievable in this method. For each individual 

with a specific lifestyle, the system needs a special 

set of simple activities and ontology assertion axioms. 

One of very few works on activity recognition with 

uncertain observations is Roy et al. [19] Similar to the 

previous research, they designed a multilevel 

reasoning model. However, the model is not 

ontology-based, and their approach is possibilistic, 

and not probabilistic, meaning that each attribute’s 

value is characterized by a degree of certainty. In 

other words, each level (including the lowest level: 

sensors’ reading) passes one or more values to the 

higher level or no value at all for total ignorance. The 

model is designed for recognizing only one specific 

activity: taking the medication by the patient. 

Therefore, unlike general activity recognition systems, 

the design of activities for different levels and the 

reasoning system for them is feasible. In this research, 

activities and events are modeled based on 

possibilistic networks. 

The probability theory is not the only approach for 

measuring and dealing with uncertainty, and other 

approaches include belief functions, possibility theory 

(based on fuzzy logic), and plausibility theory used to 

model problems with an uncertainty of different 

nature [20]. Besides the earlier mentioned method, 

there are some studies on activity recognition that 

used non-probabilistic models to confront challenges 

made by an uncertain essence of an activity 

recognition task. For example, Rodríguez et al. [21] 

utilized fuzzy ontologies, Roy et al. [19] proposed a 

possibilistic reasoning method, and Noor et al. [22] 

developed an ontological reasoning process with 

belief functions (Dempster–Shafer) theory. All these 

studies are about knowledge-driven human activity 

recognition. 

Ontologies, in the original style and with OWL 

language, do not support temporal reasoning. 

Without temporal reasoning, the knowledge-driven 

system will recognize activity instances as 

independent parts of information. In this approach, 

the efficiency decreases [23]. There are some 

proposals to add time information in RDF language 

[24]. For filling this gap, Meditskos et al. [25] proposed 

a framework for combining OWL and SPARQL to be 

used for activity recognition. SPARQL is a query 

language suitable for querying knowledge bases and 

capable of handling temporal relations. In [26], they 

extend the framework and combined it with a 

semantic activity model, and finally in [27], they 

presented a similar framework with SPARQL and 

implemented an activity recognition system 

according to it in the field of healthcare to monitor 

people with dementia. SQL is another query 

language used in the current research. Similar to 

SPARQL, it can deal with temporal information. 

However, relational databases’ querying systems, 

including SQL language, do not have functions to 

support semantic knowledge querying directly. 

 

2.2 Probabilistic Data and Knowledge Bases 

 

There are several situations that must be dealt with 

probabilistic data. For example, information retrieval 

systems from textual corpus produce probabilistic 

data. Because of uncertainty on knowing the fact in 

the text or imperfectness of information retrieval 

methods, there are some discovered relationships 

without one hundred percent confidence. Such a 

data needs to be stored and queried efficiently. 

Therefore, the database community proposed 

probabilistic databases to answer this demand. 

Depending on the probabilistic relational 

database model, the probability might appear in 

some properties, the tuple level, or a group of tuples 

known as block level. Whatever model is used, the 

amount of probability is stored as an extra property in 

the database. Query processing is not as easy as 

storage. Unlike conventional databases that work 

with one world, probabilistic databases deal with a 

numerous number of possible worlds. In this condition, 

it is impossible to compute some queries since they 

are hard for #P, the counting version of NP 

nondeterministic polynomial time, especially in a 

system that is supposed to be scalable, i.e. it cannot 

limit the amount of data. Probabilistic relational 

database management systems (PR-DBMSs) must 

determine whether they can evaluate the query 

before attempting to execute it. In addition to 

probabilistic databases, probabilistic data can be 

stored and reasoned via a graph in the form of 

Bayesian networks or Markov networks. In this case, 

the complexity is the tree-width, meaning that there 

is a non-computable query. On the other hand, the 

data model is more complicated, and data 

modification in a static graph is not as easy as 

adding some tuples to the database [28]. 

Ontologies have been used as a tool for 

knowledge organization. As a conceptual model, 

(non-probabilistic) ontologies are visually modeled in 

the form of graph regardless of how they are actually 

implemented and stored. Indeed, knowledge graph 

is another name for ontology. OWL is a language for 

representing ontologies. There are a few frameworks 

proposed for probabilistic ontologies. The most cited 

framework among them is PR-OWL [29, 30]. It is a 

Bayesian framework probabilistic ontology that is 

based on multi-entity Bayesian networks [31]. Unlike 

OWL, PR-OWL is not endorsed by W3C as a standard 

language. It suffers from some problems: most 

specifically, it is not fully compatible with OWL. Be-

sides, regular ontologies and OWL (not PR-OWL) are 

supported by well-established software, and Protégé 

is the most famous one. Nevertheless, PR-OWL-based 

ontologies have some applications, for example, in 

the automation of procurement fraud detection in 

Brazil [32] or duplicate publication and plagiarism 

detection [33].  
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In ontology-based human activity recognition, there 

are some probabilistic attempts. However, only the 

reasoning engine, and not input/output information, 

is probabilistic. Scalability and accuracy are priorities 

of the current research. The system is modelled in the 

form of a fully probabilistic ontology to reach a high 

level of accuracy. For scalability, highly efficient 

commercial RDBMSs are used for data storage and 

processing. PR-OWL tools or the research-based PR-

DBMSs could help us implement this model more 

easily. However, they are not sufficiently reliable and 

efficient to manage such a big data. Even though 

the proposed system is modeled and implemented 

without adopting PR-OWL and PR-databases, the 

current work is partly inspired by both. 

 

2.3 Ontology Storage in Relational Databases 

 

There are similarities and dissimilarities between 

ontologies and databases, which can be 

categorized as information conceptualization, data 

representation (tuples vs. instances), data modeling, 

and, in practice, efficiency. In this regard, a new 

concept appeared: ontologies based on databases. 

The concept means using a relational data model to 

store data represented in an ontology [34]. Initial 

works in this field focused on proposing algorithms for 

transforming information and modeling from an 

ontology to a relational schema [35, 36, 37] and 

satisfying rules of relational databases such as 

primary and foreign key and data types [38]. Further 

studies confront other problems in this area, including 

query processing and optimization [39, 40] and few 

works on inference [41]. Pipitone et al. [42] is a model 

for estimating the most likely alignment between an 

OWL ontology and an entity relation diagram and 

relies on a hidden Markov model, not Bayesian 

interpretation of probability. There is a research on 

probabilistic ontologies and relational databases 

[43]. However, the idea is based on modification of 

relational algebra, similar with probabilistic 

databases. In other words, it is not applicable to 

ordinary relational databases. 

The Opportunity dataset has been used in some 

studies, enabling comparison of the approach’s 

recognition rate between this study and others. All of 

them used manual labels of low-level activities, and 

because there was no label for the location, they just 

ignored it. On the other hand, this research uses 

probabilistic information computed from sensors’ 

data [44]. applied a different classifier on the dataset 

to find out which classifiers had the best 

performance. [45] applied two modern methods for 

activity recognition: neutrosophic [46] lattice and 

fuzzy lattice.  

This research approach is to store probabilistic 

ontologies in regular relational databases. There has 

been no literature on this issue so far, and the storing 

model is slightly different from methods for storing 

regular ontologies in regular databases. The main 

difference is that all tuples in Tbox and Abox have an 

extra probability property. Moreover, database 

constraint rules, including the primary key, are 

different. Although, the inference process for 

probabilistic ontologies is entirely different from the 

reasoning process about non-probabilistic ontologies. 

Thus, the proposed model is a single purpose system 

for activity recognition. Running general queries on 

probabilistic ontologies in databases is out of the 

scope of this research. 
 

 

3.0 METHODOLOGY 
 

In this section, the chosen dataset for this research is 

discussed and the probabilistic ontological method 

for HAR information is explained. This information 

initially includes low-level activities and subjects’ 

locations. However, after the inference process, it will 

be populated to an ontology that contains high-level 

activities. The proposed data smoothing methods 

increase the accuracy of the results. 

 

3.1.  Applied Dataset 

 

“Activity and context recognition with opportunistic 

sensor configuration”, or Opportunity in short, is an EU 

project for developing a HAR dataset [47]. This 

dataset is a collection of data from several sensors, 

including accelerometers, gyroscopes, magnetic 

sensors, DIP switches, and an indoor tracking system, 

installed on subjects’ bodies and environmental 

objects. The dataset is collected from four subjects, 

each performing daily morning activities five times, 

each time about half an hour, and one drill that is 

repetitions of predefined acts. All activities are video 

recorded and using these videos, the dataset is 

manually labeled. In addition to raw sensor values 

and signals, the dataset contains labels for: 1) 

postures (e.g., sitting), 2), 3) right- and left-hand 

movements (e.g., unlocking), 4), 5) right and left 

hand-object interactions (e.g., dishwashing), 6) 

gestures (e.g., opening a dishwasher), and X) high-

level activities (e.g., sandwich time). The proposed 

system aims to predict X. 

In the previous work [48], the Opportunity dataset 

was used to generate a new dataset with 

probabilistic predictions. Fast signal processing 

methods, suitable for batch processing, are applied 

to compute proper features from sensor signals. For 

each subject, the first three activities and the drill are 

used as a training set, and the system gives some 

probabilistic predictions for labels 1 to 6. High-level 

activities are more complicated to be efficiently 

predicted by a data-driven method. Figure 1 reports 

the probability of detection in different number of 

candidates. This figure justifies adopting probabilistic 

predictions. While the relying on the first choice is not 

very efficient, the probability of having the right 

answer in the first three choices, in the 18 choices of 

gestures, is about 0.9. In addition to predicting these 

six labels for the test set, the research proposes 

methods for calculating two more properties that are 
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not labeled in the dataset. 7) Compass: it refers to 

the direction of subjects’ bodies (non-probabilistic). 

8) Location: the performance room is divided into 64 

rectangle regions, 8 × 8, and the system must detect 

which rectangle is the current location of the subject. 

Because of the noisy nature of indoor tracking 

systems, the system makes a probabilistic guess, even 

though four independent tags locate the subject 

independently.  

The current research will not use all calculated 

probabilistic properties obtained in the previous 

research. Since posture recognition accuracy was 

very high, it is used as a non-probabilistic property, 

and only the most probable choice is used. In 

practice, we observe that hand movements do not 

increase the recognition rate of high-level activities. It 

makes sense in a way that when the subject interacts 

with a cup, they are in the middle of breakfast or are 

involved in a cleaning activity, no matter if they 

reach or release the cup. 

 

0

0.2

0.4

0.6

0.8

1

1st 2nd 3rd

 
 

Figure 1 The probability of detection in the first, first two, and first three choices of the gestures 

 

 

All the information, belongs to four subjects, is 

imported from the dataset to the ontology in the 

form of RDF, resource description framework, 

semantic triples. There are three instances per 

second; each instance has an instance number 

unique in the whole dataset (all instances have a 

fixed duration of 0.33 seconds). There are three 

properties of elemental information of an instance. 1) 

ID: is a unique instance number in the whole dataset. 

It is the first item of all triplets. 2) Serial: is a number 

referring to the activity number. In this case, the first 

digit presents the subject number (1 to 5), and the 

second digit shows the sequence number of the 

activity, with 1, 2, and 3 being daily morning 

activities, 9 being a drill, all used for training, and 4 

and 5 being daily morning activities aiming to 

recognize their high-level activities. 3) Instance time: 

it refers to the beginning time of instance in seconds.  

The predicted and calculated labels are merged to 

generate two atomic codes describing subjects’ 

situation. 1) Location, Angle, and Posture (LAP), a 

four-digit code: the first two digits indicate the 2-

dimension location of the subject in the room, the 

third digit is for the subject’s angle, and the fourth 

digit indicates the subject’s posture. The only 

probabilistic item in these groups is location. 

Therefore, the probability of location is the probability 

of instance. For example, for “11067” id, the LAP 

code is “6402” with a probability of “0.2”. It means 

that during the instance number 11067, the subject 

location is in x=6, y=4 rectangle a chessboard-like 

room; the subject’s face is between 0 ° (north pole) 

and 59.9 °, and her posture is walking. 2) Both hands 

object interactions (BHO): During each instance, the 

subject’s both hands might interact with two different 

objects. Also, it is possible that one or both hands are 

idle. For example, for “11067” id, the BHO code is 

“2000” with a probability of “0.746”, showing that 

during the instance number 11067, the subject’s right 

hand interacts with the fridge and her left hand is 

idle. Right- and left-hand interactions are separate 

activities, and each hand has its own probability. 

Therefore, the probability of both interactions 

occurring is the product of them. In this example, the 

probability of being idle for the left-hand is 0.91 and 

being in interaction with the fridge for the right-hand 

is 0.82. Probabilities less than or equal to 0.01 are not 

used in the calculation. In addition to the mentioned 

classes, Null, with 0 code, is used when the class has 

no value; for example, the location is not calculable, 

or the posture is between sitting and standing. 

 

3.2 Ontology Model, Population and Constraints 

 

In the presented model, the RDF triples constitute the 

foundation of the primary ontology. The ontology is 

drawn using Eddy [49]. Since the ontology will be 

implemented in a relational database and we are 

not going to code it in OWL, Eddy is a suitable 

graphical tool for our purpose. It also guarantees the 

syntactic correctness of the design. As shown in 

Figure 2, each instance has a unique ID and two 

other attributes: serial and Instance time plus LAP 

(location, angle, and posture) and BHO (both hands-
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objects interactions) made by combining LHO, the 

left hand, RHO, and the right hand. High-level 

activities are empty at the starting point for under 

investigation (testing) instances and must be 

assigned during the reasoning process. For available 

training instances, BHO is deterministic and high-level 

activities are known; both are manually labeled. In 

the primary ontology, each instance (triple) 

represents 0.33 seconds of an activity and is 

independent from other instances. After starting the 

process, the ontology is extended. Some triples are 

replaced with more exact ones, assertion axioms are 

added to the ontology, high-level activities are 

formed gradually, and, finally, the secondary 

ontology containing high-level daily activities is 

developed. In other words, the semi-automatic 

ontology population process, adding new instances 

of concepts to the ontology [50], is performed by 

step-by-step data fusion. Integrating data starts from 

fine-grained independent instances and ends with 

an ontology of coarse-grained activities.  

 

 
 

Figure 2 The primary ontology formed from triples coming from signal processing 

 

 

The predicted and calculated labels are merged 

to generate two atomic codes describing subjects’ 

situation. 1) Location, Angle, and Posture (LAP), a 

four-digit code: the first two digits indicate the 2-

dimension location of the subject in the room, the 

third digit is for the subject’s angle, and the fourth 

digit indicates the subject’s posture. The only 

probabilistic item in these groups is location. 

Therefore, the probability of location is the probability 

of instance. For example, for “11067” id, the LAP 

code is “6402” with a probability of “0.2”. It means 

that during the instance number 11067, the subject 

location is in x=6, y=4 rectangle a chessboard-like 

room; the subject’s face is between 0 ° (north pole) 

and 59.9 °, and her posture is walking. 2) Both hands 

object interactions (BHO): During each instance, the 

subject’s both hands might interact with two different 

objects. Also, it is possible that one or both hands are 

idle. For ex-ample, for “11067” id, the BHO code is 

“2000” with a probability of “0.746”, showing that 

during the instance number 11067, the subject’s right 

hand interacts with the fridge and her left hand is 

idle. Right- and left-hand interactions are separate 

activities, and each hand has its own probability. 
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Therefore, the probability of both interactions 

occurring is the product of them. In this example, the 

probability of being idle for the left-hand is 0.91 and 

being in interaction with the fridge for the right-hand 

is 0.82. Probabilities less than or equal to 0.01 are not 

used in the calculation. In addition to the mentioned 

classes, Null, with 0 code, is used when the class has 

no value; for example, the location is not calculable, 

or the posture is between sitting and standing. 

 

3.3 Probabilistic Data Smoothing 

 

All instances are computed only from sensors’ 

reading during that particular instance. In other 

words, each instance is independent of others. This is 

not very realistic because the instance time is much 

shorter than the duration of an activity, and it is more 

likely that consecutive instances have the same 

value. For example, <walk, walk, lie, walk, walk> are 

five consecutive instances. It appears that the fourth 

instance is not correct and must be replaced. In this 

process, called data smoothing, data not in a normal 

pattern (outliers) are altered. The moving average is 

one of the most common data smoothing algorithms; 

the value of each point is replaced with the mean 

value of an interval with the point in its center or in 

real time systems at the end of it. For non-numeric 

data, the mode of data at the interval can be used 

instead of the mean value. However, this algorithm is 

for deterministic data, while this research deals with 

probabilistic data.  

There is limited literature on probabilistic data 

smoothing. Merigó et al. [51] research is based on 

expertons theory and fuzzy logic. Hiemstra et al. [52] 

developed a probability smoothing technique for 

language modelling, text information retrieval. Kim et 

al. [53] is another research that is for target tracking 

in a surveillance space. These methods cannot be 

used for the purpose of this research. In addition to 

fundamental incompatibilities, it is for two states (win 

and lose), while the activity recognition system of this 

research must deal with multiple states in both LAP 

and BHO. As the current system is developed for 

batch processing, access to future instances is 

feasible. The probabilistic version of statistical mode 

to be used in the interval is introduced. As a new 

operator for aggregating information[54], 

Probabilistic Mode (PM) is defined.  

Let {A1, A2, ,.,, An} be a collection of probabilistic 

arguments and D = {v1, v2, ,.., vm} a countable 

domain. Each Ai is a set of pairs; the first part is the 

value, from domain D, and the second part is its 

probability. For example, D = {sitting, standing, 

walking, lying} and A3 = {<sitting,0.6>, 

<standing,0.3>}. The probability of what is not 

mentioned in this set, walking and lying in this 

example, is 0, in known probability areas. When the 

summation of probabilities is less than 1, there is an 

open world space, 0.1 in this example, that belongs 

to all the domain members. PRai_j is the probability 

of vj in Ai. In this example, PRa3_1 = 0.6, PRa3_2 = 0.3, 

PRa3_3 = 0, and PRa3_4 =0.  

In the following formula, n is the size of the interval, 

m is the cardinality of the domain, B is a temporary 

variable, containing a set of pairs same as each Ai, 

and f is the Probabilistic Mode (PM) operator. 

 

if B = f ({A1, A2, ,...,, An}) then      

     for j = 1 to m  {PRB_j =(  }         (1) 

 

The regular mode function, non-probabilistic, can 

be defined according to the probability theory: 

mode is the value in the set that is most probable to 

be sampled. The defined probabilistic mode 

function is compatible with the regular mode; with 

deterministic inputs, each sample has one element 

with the probability of 1 and others are 0, and it will 

work same as the regular mode function if the most 

probable element of the result is taken. However, 

the probabilistic mode returns a probabilistic set, in 

the same format with arguments of the function 

input. Loosely speaking, the probabilistic mode (PM) 

calculates the average probability of each domain 

value. The PM function deals with known 

probabilities and does not consider the open world 

space. 

The PM function is used for data smoothing of 

probabilistic properties of an activity instance. For 

BHO, the interval size is 5, and the current instance is 

replaced with the PM of 11 instances: five instances 

before, five instances after, and the current 

instances. For LAP, the interval size is 3. The interval 

length is lower for instances located at the beginning 

or end of an activity serial. After the data smoothing 

process, there is still a probabilistic set of values for 

instances. However, the probabilities are updated, 

and outlier data are inconspicuous. 

 

3.4 Obtaining and Defining the Assertion Axioms 

 

A set of assertion axioms is needed to attain the 

reasoning process. The premises, left side, is what is 

already known from the applied dataset, and the 

conclusion, right side, is what is going to be 

discovered, which is either true or false. The following 

simple example is an assertion that leads to the 

activity from the location:  

 

(Bob is in the bed) → (Bob is in a resting time) 

 

In a real-world situation, the axioms of HAR 

systems are probabilistic. If Bob is in bed, he is in a 

resting time with a probability of 0.80 and he is in a 

reading time with a probability of 0.2. Axioms like this 

can be developed in two different ways. An ex-pert 

user, a person who knows Bob’s habits in this 

example, may define them. They also can be 

obtained from a training dataset. In this simple 

example, Bob’s bedroom area can be video 

recorded for some time, e.g. 3 days, and then, his 

activities in the bed are statistically investigated.  

In the current research, for each instance, there 

are two types of premise data: BHO (both hands-
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objects interactions) and LAP (location, angle, and 

posture). It is necessary to have a set of assertion 

axioms that lead from possible instances of BHO or 

LAP to high-level activities. Both methods, defining by 

the user and obtaining from the training data, are 

provided in the proposed system. The software 

system for defining the axioms will be discussed in 

Section 4. 

Assertion axioms can also be automatically 

obtained, which is known as ontology learning. In this 

case, some manually labeled data are needed. For 

BHO, we have everything we need; manually 

labeled properties for high- and low-level activities, 

including interaction with objects with right and left 

hands, are available in the Opportunity dataset. For 

LAP, there are labels for high-level activities; however, 

there is no label for locations and angles. We 

suppose what is calculated for angles is correct, and 

the most probable location and posture is assumed 

to be genuine. The naïve Bayes classification 

algorithm is applied. Axioms are calculated 

according to the Kolmogorov definition: 

 

 

                                           (2) 

For example, let’s take a training dataset with 

1000 instances. We are going to calculate the 

probability of being in “sandwich time” if “right hand 

is in interaction with bread”. 

 

                          (3)   

 
For all available, not all possible, BHO and LAP 

codes, the probability of being in each high-level 

activity can be calculated. There are two options to 

determine probabilities. One is manual defining that 

needs a user as an expert who knows all activity 

environment details. The other is automatic obtaining 

that requires a large amount of training data to 

collect a fairly accurate set of assertion axioms. Both 

methods have their own drawbacks. In practice, the 

combination of both methods yields the best 

performance. First, axioms are obtained using the 

automatic learning process. Then, a user can visually 

check them and do some modification. For example, 

there is a seat in the room that subjects may use it 

while eating. However, in the applied training 

dataset, accidentally no one has used it. In this case, 

the expert user can edit learned axioms to add this 

particular space to the eating area. There is a similar 

research, newNECTAR[55], that introduces a 

collaborative active learning process to refine the 

correlations in a HAR system. It obtains personalized 

temporal patterns of sensor events from the 

feedback. 
 

3.5  Inference Process 

 

Up to the current stage, there are some assertion 

axioms and some instances. Each instance has 

three or fewer BHO and three or fewer LAP states 

accompanying their probability values. For each 

BHO or LAP state, there is an assertion axiom, 

connecting it to the five probable high-level 

activities: relaxing, coffee time, early morning, 

cleanup, and sandwich time. After multiplexing 

probabilities of axioms and states and then the 

Cartesian product of BHO and LAP states, there are 

nine or fewer items for each instance: 

 

<PRBHO_relax, PRBHO_coffee, PRBHO_morning, PRBHO_clean, 

PRBHO_sandwich>,<PRLAP_relax, PRLAP_coffee, PRLAP_morning, 

PRLAP_clean, PRLAP_sandwich>  

 

For each item, there are two sets of probabilities of 

all high-level states: one obtained from BHO and 

another from LAP. Since BHO and LAP are from 

different and independent processes, the 

combination of probabilities, e.g. for relaxing, can 

be calculated according to: 

 

PRrelax = 1 – ((1 - PRBHO_relax) * (1 – PRLAP_relax))            (4)                                       

 

Even though the above formula is theoretically 

intact, in practice, some modifications improve the 

prediction accuracy of high-level activities. In fact, 

BHO and LAP do not have equal affection on a 

high-level activity, and it should be manually 

adjusted. For each high-level activity, the weighting 

coefficients, m and n, are defined between 0 and 

1, and the formula is rewritten as follows: 

 

PRrelax =1– ((1 – m * PRBHO_relax) * (1 – n * PRLAP_relax ))(5)                                                                               

 

For different high-level activities, BHO and LAP have 

a different efficacy. According to the empirically 

experiment of this research, the reported 

coefficients in Table 1 leads to relatively better 

results. 

 

Table 1 Coefficients for high level activities 

 

 Relax Coffee Morning Clean Sandwich 

m 0.7 0.5 0.5 0.7 0.5 

n 0.7 0.7 0.4 0.9 0.6 

 

 

At this point, for each instance there are nine or 

fewer rows, each having a probability for each high-

level activity. Despite the whole process that was fully 

probabilistic, the final step should determine a 

deterministic suggestion for the high-level activity 

that the subject is performing during the instance. For 

each high-level activity, the highest probability value 

from all items is chosen, and then, the most probable 

high-level activity is the final candidate for the in-

stance. Table 2 presents the actual calculation of the 

probability of one particular instance (14940) using 

LAP, BHO, and a total combination of both. 

After obtaining a high-level activity for each in-

stance, we can work on a group of instances to 



192                         Pouya Foudeh & Naomie Salim / Jurnal Teknologi (Sciences & Engineering) 85:2 (2023) 183–199 

 

 

develop the final ontology. The final ontology has the 

same elemental information, ID, serial, and starting 

time, as well as a high-level activity label. There is no 

need for fine-grained labels, BHO and PAL. In this 

ontology, the duration of instances varies; therefore, 

an extra property, length, is needed to indicate the 

duration of the instance in seconds.  

It is very likely that the high-level activity of a 

particular instance is the same as instances before 

and after it. This situation is similar to BHO and PAL 

properties of instances; however, in this case, data 

smoothing methods cannot be used. A low-level 

hand activity or physical position of the subject 

usually takes a few seconds, while there are three 

instances in one second. Although, a high-level 

activity usually takes several minutes, i.e. hundreds of 

instances. 

Here is the algorithm for developing the final 

ontology and improving its prediction accuracy of 

high-level activities by eliminating some potential 

prediction errors. It is named three-step elimination. It 

removes some blocks of the predicted activities in 

three steps. The number of steps and the length 

thresholds are calculated empirically. 

 

 
 

 

After rearranging the ontology, all consecutive 

instances with the same high-level activity are 

replaced with only one instance. In other words, a 

large ontology with plenty of instances is converted 

to an ontology with a few instances. It will be even 

smaller and also more accurate after each step of 

elimination of short length instances. The ontology is 

rearranged after each step because there are 

possibly consecutive instances with the same high-

level activity value, after removing some instances.

Table 2 The calculated probability for one instance, L from LAP, B from BHO, and T from both (predicted and actual target class is 

“early morning”) 
 

 
 

 

3.6 Implementation of the Software for Defining the 

Assertion Axioms  

 

In the case of user define or edit axioms, a software 

application is needed. There are two visual 

interfaces. For BHO, the user is able to define the 

probability of being in a particular high-level activity 

while the right hand is in interaction with object X and 

the left hand is interaction with Y, as shown in Figure 

3. There are 23 objects and 529 different states for 

both hands. However, since many of them are 

impossible or very unlikely, there is no need to define 

all of them. For each “hands state”, the user sets the 

probability for all the five high-level activities. The 

application enforces the constraint that the 

summation of these five probabilities must be less 

than or equal to one. If it is less than one, the 

remaining probability is assigned to idle, which works 

the same as Null. 

As shown in Figure 4, the interface is more 

complicated for LAP; the subject is in a location in 

the room, their body has an angle toward north, and 

their posture is sitting, standing, lying, or walking. 

According to all these parameters, the user 

determines the probability of being in a particular 

high-level activity. For this purpose, the user should 

first choose an activity and then select a particular 

wedge from a particular circle. A group of circles 

and angles can be selected as well. The subject can 

increase or decrease the probability and its color 

changes accordingly, from white for zero to vivid red 

for one. The app enforces the probability constraint; 

the summation of probabilities of each wedge for all 

high-level activities cannot be more than one. For 

example, if the probability of a wedge is set to one, 

vivid red, for coffee time, the probability of the other 

four activities cannot increase from zero and they 

remain white if the user attempts to do that. 

 

 
 

Figure 3 The software interface for defining Axioms, for BHO 
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Figure 4 The software interface for defining Axioms, for LAP 

 

 

3.7 Ontology Storage in a Relational Database  

 

In this section, we have an overview of storing the 

ontology on a relational database. The information 

coming from the processed dataset is stored in the 

base relations. Each population step of the ontology 

is performed by running a view on the former version 

of the ontology. For example, a view receives 

unsmoothed data from another view and sends the 

smoothed information to the next view. It should be 

noted that in modeling, there is no difference 

between base relations and views; both of them are 

known as relations or SQL tables [56]. Thus, in any 

phase, there is a relation that presents the current 

version of the ontology. In some cases, views are 

materialized and stored in the form of base relation. 

There are automated serial numbers for all tuples 

in the base SQL tables that are set as the primary key, 

but are not used in the proposed method. Instead, 

the probabilistic primary key constraint, as defined in 

section 3.2, is enforced by defining SQL Server 

triggers. It guarantees that improper data will not 

appear in the base relations and, therefore, in the 

views.  

It is unnecessary to include all views and tables 

here, and only key functions and view should be 

presented. They are formulated in the relational 

algebra. It is shorter than an SQL code and easier to 

understand. The syntax of an SQL code also varies in 

different DBMSes; for example, a MS SQL Server code 

usually cannot run by My SQL, for complicated 

queries, and writing codes from relational algebra 

formula is easier than converting different SQL codes. 

For data smoothing, the following SQL table valued 

function is defined (it obtains an id number and finds 

the replacement set of probabilistic values for the 

location of that instant with interval = 5): 
 

datasmooth (@id) returns @trackingItems (location, pr) 
declare @temp (acv,prr) table 
declare @sm float 
@temp = π arc, pr σ id between (@id - 5) and (@id + 5) 
triples_loc 
@trackingItems = τ E1 asc π acv, E1 γ acv;  
SUM(prr)/11→E1 @temp 

@sm = π sm γ ; SUM(pr)→sm @trackingItems 
@trackingItems ← π pr trackingItems 
Retuen @trackingItems 
 

There is a preliminary work on using SQL for 

classification[57]. For obtaining Bayes axioms, as 

explained in 3.2.3, these set of consecutive views: 
 

ranked_obj query uses smoothing function (nbrfull) 

to give the smoothed probability of hand-object 

activity, and its ranking, for each instance. There is a 

similar query for 
 

ranked_obj = ρ id←iid, mxpr←pr π iid, hand, pr, 
rownum()→rnk     (6) 
 

mixed_arc query uses arcfull function to give the 

smoothed probability and ranking of the mixed 

angle, posture, and location for each instance. 
 

mixed_arc = ρ arc←location, mxpr←pr π iid,  
location, pr, rownum()→rnmx    (7) 
 

finalfr_arc query chooses the most probable arc for 

each instance. It will be used for training purposes. 
 

finalfr_arc = π id, arcc, pr γ id;max(mxpr) →pr,max(arc)→arcc 
(σ rnmx=1 or rnmx=null mixed_loc ⟖ iid = id triples_main) 
      (8) 
 

tr_ar prepares the training data for the angle, 

posture, and location. The dataset is not annotated 

for the location and angle. Therefore, the most 

probable choice is supposed to be true for the 

training part. 
 

tr_ar = π triples_main.id, finalfr_arc.arcc σ  
( triples_main.subject = 1 )or( triples_main.subject = 2 ) or ( 
triples_main.subject = 3 ) (finalfr_arc ⟖ finalfr_arc.id  =  
triples_main.id triples_main)    (9) 
 

c101 gives a number of instances for each BHO. It 

will be used to discover axioms; a similar query is 

needed for 102 to 105 classes as well as for LAP. 

 
c101 = π c101 , codt γ codt;count(tr_ar.id)→c101  
(σ Lhlev <> '101' (tr_ar ⨝ tr_ar.id = tr_lab_train.id 
tr_lab_train))       (10) 

 

hrul gives learned axioms for both hands-objects 

activities. 
 

hrul = π tot.codt, c101 / ct→p101, c102 / ct→p102, c103/ 
ct→p103, c104/ ct→p104, c105 / ct→p105 (tot ⟕ tot.codt = 
a101.codt a101 ⟕ tot.codt = a102.codt a102 ⟕ tot.codt = 
a103.codt h103 ⟕ tot.codt = a104.codt a104 ⟕ tot.codt = 
a105.codt a105)          (11) 
 

At this stage, the assertion axioms, learned or 

defined by the user, are available. For the reasoning 

process, the system applies these axioms on 

instances that should be recognized. 

predict gives predictions for each instance, 

separate calculation by the hands and location. 

Sample results are shown in the left columns of Table 

2. 
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predict = (ts_ar ⟖ arcc = arct arul) ⟖ ts_ar.id = tr_lab_test.id 
((hrul ⟖ codt = accod ts_ho) ⟖ ts_ho.id = tr_lab_test.id 
tr_lab_test)            (12) 
 

mixhoar presents probabilities in a high-level 

activity for each instance. 

mixhoar = π id, Lhlev, 1 - ( 1 - 0.7 * p101 ) * ( 1 - 0.7 * 
h101 )→v101, 1 - ( 1 - 0.7 * p102 ) * ( 1 - 0.5 *h102 )→v102, 1 - 
( 1 - 0.4 *p103 ) * ( 1 - 0.5 *h103)→v103, 1 - ( 1 - 0.9 * p104 ) * 
( 1 - 0.7 * h104 )→v104, 1 - ( 1 - 0.6 * p105 ) * ( 1 - 0.5 * h105 
)→v105 predict         (13) 

 

 

4.0 RESULTS AND DISCUSSION 
 

4.1 Model Evaluation  

 

Zolfaghari et al. [58] proposed six criteria to evaluate 

human activity recognition models and frameworks 

and compare them with each other. Here, we exploit 

these benchmarks to show the proposed system’s 

advantages and drawbacks. 

1) Ability to handle uncertain, noisy data and 

incomplete ambiguous information: The proposed 

model is fully probabilistic in all stages, which 

provides a very high ability in dealing with 

uncertainty, including imperfect data from sensors 

and non-deterministic axioms. 

2) Ability to model complex activity 

correlations: Unlike OWL-based models, in the 

proposed model, axioms are not limited to a tree-like 

schema. A relational model empowers the system to 

store and manage complex correlations in the form 

of tuples.  

3) Supporting temporal reasoning: In the 

proposed system, instants are not isolated islands; the 

value of one instant is related to the values of 

instances before and after, and the duration of 

activities is involved in the inference process. If the 

dataset contains real-time stamps, SQL is able to 

store and process this type of data.  

4) Expressive representation: As the method is 

not implemented based on knowledge 

representation languages, the expressive 

representation benchmark cannot directly apply to 

it. On the other hand, almost all queries, with more or 

less effort for query designing, are expressible using 

SQL. There are only some exceptions like recursive 

queries that cannot be written in SQL.  

5) Reusability: The proposed model is highly 

reusable; it does not depend on any particular 

subject, environment, and activity set. In case of 

changing the location, e.g. from the kitchen to the 

workhouse, the only necessary change is to redesign 

the interface of the application of defining LAP 

axioms.  

6) Ability to model complicated activities: The 

proposed system does not model concurrent, 

parallel, and multi-subject activities. Opportunity, the 

applied dataset, does not contain such data and is 

limited to “daily morning activities” and not to full 

day activities. Nevertheless, the proposed model is 

extendable to model more completed activities, as 

discussed in section 6. 

 

4.2 Performance Evaluation  

 

In this section, we evaluate the impact of the 

proposed and applied methods. The first proposed 

method is probabilistic data smoothing. It is applied 

to LAP (location, angle, and posture) and BHO (both 

hand-object interactions). However, because there is 

no manual label for the location and angle of the 

subject, we cannot measure the correctness of the 

predicted labels for LAP. Labels for the right and left 

hands interactions with objects are available, and 

we can compare them with predicted labels, before 

and after data smoothing.  

There are 24 different states for each hand, 

meaning that there are 576 possible states for both 

hands. However, there are 479 available states in the 

dataset. We evaluate the predictions using a simple 

metric, hit rate: the number of correctly predicted 

instances to the number of all instances, not only 

because of numerous classes but also because the 

first, second, and third probable predictions are 

important in evaluation. The under/over fill window is 

equal to 1 second, and the definition is explained 

later in this section. In about half of instances, both 

hands are idle, and the value is null. The evaluation is 

done with and without null values. The results are 

shown in Table 3. 

 
Table 3 Hit rate of BHO, before and after the probabilistic 

data smoothing 
 

 Including nulls Excluding nulls 
bf smooth af smooth bf smooth af smooth 

1st  

prediction 
0.680 0.717 0.478 0.513 

1st or 2nd 

prediction 
0.781 0.807 0.627 0.658 

1st, 2nd or 3rd 

prediction 
0.832 0.850 0.710 0.730 

 
This system’s main goal is to correctly predict high-

level activities. The evaluation of the results of this 

part will reveal the performance of the whole system, 

including obtaining assertion axioms and the 

inference process. Since manual labels are in the 

form of fix length instances, we convert the final 

ontology to this schema. The assertion axioms are 

automatically obtained. Some apparent manual 

modifications in LAP axioms, using the application, 

lead to some improvement of results. However, be-

cause of difficulties in documenting the details of 

modifications, we ignore the results. 
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Figure 5 The F-score for the prediction of high-level activities; 

(a) using the first choice (most probable) only, (b) using all 

probable choices (both a and b predictions are made with 

the help of naïve Bayes), (c) after three steps of removing 

short activities, named final, and (d) after eliminating the 

under/over fill effect 

 

 

Figure 5 depicts the F-score for predicting high-

level activities: (a) considering only the most 

probable choice or the first reported choice, which 

means using non-probabilistic input data, (b) 

considering three most probable choices and their 

probability values. In both a and b, selection of the 

target is done with the naïve Bayes method, (c) after 

three steps of removing short length activities, and 

(d) after eliminating the under/over fill effect. 
As shown in Figure 1, three most probable choices 

are more informative, and the proposed method 

take advantage of this fact to improve results from 

(a) to (b). After removing short activities which are 

most likely to be errors, the results are again improved 

from (b) to (c). As the manual labels are assigned by 

a human observer, the boundary between activities, 

e.g. from sandwich time to cleaning, are not very 

clear, and even different human observers may 

choose a different time. The automatic system also 

may determine the starting time of the activity a bit 

earlier, underfill, or a bit later than what the observer 

has labeled, overfill. In such a situation, the system 

performance is underestimated. A window is defined 

to negate this effect; in (d), if the correct answer is 

not in the exact place that is predicted, but it is still 

inside the window, the predicted answer is supposed 

to be correct. Since the usual length of high-level 

activities equals several minutes, the window size is 30 

seconds. In short, in each step, the obtained results 

are improved. 

Figure 6 compares the actual labels made 

manually by video checking, with labels made by 

the system that implements the proposed method 

before and after three steps of removing short 

activities, in three consecutive lines. As clearly shown 

with a magnifier, predicted labels sometimes differ 

from actual labels, as there are some wrong 

predictions. The proposed technique of removing 

short activities in three steps could successfully 

correct some of these wrong predictions. For 

instance, the third line of the subject 1 in Figure 6 

shows that predicted labels are disturbed with wrong 

predictions when compared with actual labels. The 

middle line of the same subject shows that many of 

these wrong predictions are corrected using the 

proposed method. What is reported as “Final” in 

Figure 6 is the same as “Final” in Figure 5, and 

“Predicted” in Figure 6 is the same as “Prob” in Figure 

5. Target wise, the highest improvement more than 

17%, goes to cleaning up with this method, which is 

depicted with green lines in Figure 5. 

 

 
 

Figure 6 Comparison of actual, manually labeled activities with predicted labels by the proposed system before and after three 

steps of removing short activities, for four subjects, each performing two sets of testing activities 

 

 

According to [44] KNN has relatively the best 

performance on the same dataset. We employ KNN 

on our training and testing sets in the same way that 

they had used. In addition to the KNN classifier, we 

compare our approach with that in a previous 

research applying the same dataset used in the 
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current study. They employed Neutrosophic lattice 

and fuzzy lattice methods for activity recognition.45 

All these three methods use manual labels of low-

level activities provided by the dataset developers. In 

contrast, the fully probabilistic method, proposed in 

this research, uses probabilistic predictions computed 

from sensors’ data. In other words, the input data is 

not error-free in our method, but it is in the other three 

methods.  

As shown in Figure 7, although our proposed 

method deals with uncertain data from sensors, it 

outperforms the other methods. For all targets, the 

fully probabilistic method shows a considerable 

improvement. Target wise, the highest improvement, 

compared to the average performance of the other 

two methods, goes to cleaning up with 30%, while 

the lowest improvement goes to early morning with 

10% improvement. Moreover, the proposed method 

has less deviation; the performance is almost the 

same for all targets of high-level activities. The results 

can be improved even more if we perform 

probabilistic reasoning on the order of activities. 

Although in the applied dataset, as shown in Figure 6, 

all subjects perform activities in the same order. 

0
10
20
30
40
50
60
70
80
90

KNN Neutro Fuzzy Fully Probabilistic

 

Figure 7 The performance (F-score) of KNN, Neutrosophic 

lattice, Fuzzy lattice, and the proposed method: fully 

probabilistic for five targets of high-level activities 

 

 

The running times of queries reported by the SQL 

Server are recorded. The experiment is carried out on 

Dell Precision 3620 machine, which is equipped with 

3.6GHz Intel i7-4790 quad-core processor and 16 GB 

RAM running Microsoft SQL Server 2016 express 

edition, the free version, 64 bits. The training data is 

about 3 hours and a half, and there is about 2 hours 

of testing data. With this amount of data, for all 

queries, including obtaining assertion axioms and the 

inference process, the running time is reported as 

zero, meaning that it is less than one second. There 

are only three exceptions: the running time of 

procedures for data smoothing of LAP (for all 

available data, interval size 3) and BHO (for testing 

data, interval size 5) as well as the three-step 

elimination of high-level activities reported in Table 4, 

is longer than the others. In short, the processing time 

for preprocessing, obtaining axioms, and inference 

time are very short. However, the applied techniques 

to im-prove the system performance are relatively 

time-consuming. The current system running on the 

computer mentioned previously for processing the 

testing data is 27 times faster than a real-time system 

and processing the training data is 61 times faster. 

 
Table 4 The running time of procedures in hours, minutes, 

and seconds, the length of the activity of the processed 

data, and the ratio of processing to activity time 

 
Procedure Data 

length 

Process 

time 

Ratio 

BHO data smooth 2:02:42 0:02:40 0.0217 

LAP data smooth 5:30:00 0:05:25 0.0164 

3-Step proc of HL 1:49:53 0:01:02 0.0094 

 

 

5.0 CONCLUSION 
 

This paper presented a set of methods to recognize 

coarse-grained, high-level human activities from 

probabilistic fine-grained, low-level activities 

obtained from location, body, and environmental 

sensors. The system was modeled in the form of 

probabilistic ontologies and was implemented in a 

relational database management system. The 

method is able to deal with uncertainty, e.g. sensor 

failure, and it is reusable for different subjects, 

environments, and activities. The activity recognition 

performance is relatively high compared to other 

proposed methods. Moreover, the major advantage 

of the proposed system is the required performing 

time, making it highly scalable for batch processing 

tasks. 

The proposed method appears to be capable of 

being extended to deal with complex high-level 

activities to discover the order and relationship 

between them and do temporal reasoning about 

instances with real timestamps. The selected dataset 

for this research, Opportunity, had merits and 

demerits. Near real-world circumstances, fully 

covered with sensors with some controlled sensor 

faults and failures in addition to favorable assortment 

and labeling help us develop a reusable, fully 

probabilistic ontology-based system for HAR on it. 

However, it is limited to a short period of daily 

activities, from waking up in the morning to finishing 

the breakfast. Even though subjects are free to do 

each activity in the desired timespan, all high-level 

activities are performed in the same order. For the 

purpose of developing more advanced and 

practical activity recognition systems, superior 

datasets are required to be recorded with a sufficient 

sensor coverage in near real-life conditions and with 

proper labeling, like Opportunity, which contain 

activities of whole or a major part of the day, are 

performed on various orders, and include local time. 

In such a dataset and HAR system, high-level 

activities are not only obtained from low-level 
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activities, and they can also be obtained from 

relationships between high-level activities, time, and 

other available information. 
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