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Abstract 

 

In this paper, we consider using nonparametric mixtures for density estimation. The mixture density 
estimation problem simply reduces to the problem of estimating a mixing distribution in the 

nonparametric mixture model. We focus on the least squares method for mixture density estimation 

problem. In a simulation experiment, the performance of the least squares mixture density estimator 
(MDE) and the kernel density estimator (KDE) is assessed by the mean integrated squared error. The 

performance improvement of MDE over KDE for some common densities is achieved by using cross-

validation method for bandwidth selection.  
 

Keywords: Nonparametric mixtures; least squares estimation; kernel density estimation; bandwidth 

selection; cross-validation 
 

Abstrak 

 
Dalam kertas ini, kami mempertimbangkan penggunaan model bercampur tak berparameter untuk 

penganggaran fungsi ketumpatan. Masalah penganggaran fungsi ketumpatan secara campuran merupakan 

masalah penganggaran taburan bercampur dalam model bercampur tak berparameter. Kami menumpukan  

kepada kaedah kuasa dua terkecil untuk masalah penganggaran fungsi ketumpatan secara campuran. 

Dalam satu ujikaji simulasi, prestasi penganggar kuasa dua terkecil fungsi ketumpatan secara campuran 

(MDE) dan penganggar fungsi ketumpatan secara inti (KDE) telah dinilai oleh min ralat kuasa dua 
terkamir. Peningkatan prestasi MDE terhadap KDE bagi sesetengah fungsi ketumpatan popular telah 

dicapai dengan menggunakan kaedah silang pengesahan untuk pemilihan lebar jalur.  

 
Kata kunci: Model bercampur tak berparameter; penganggaran kuasa dua terkecil; penganggaran fungsi 

ketumpatan secara inti; pemilihan lebar jalur; silang pengesahan 
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1.0  INTRODUCTION 

 

Density estimation is concerned with the problem of estimating a 

probability density function based on sample data. The books by 

Silverman [15] and Eggermont and LaRiccia [4] provide an 

excellent account of methods of density estimation. There are 

basically three main strands in density estimation, namely the 

parametric, nonparametric and mixture model approaches. The 

problem of parametric density estimation simply reduces to 

estimating the assumed model parameter by some standard 

method such as maximum likelihood or Bayesian estimation, and 

finally returns a plug-in density estimate. A parametric approach 

to density estimation is useful in the presence of a prior 

knowledge about the true density; otherwise it can be criticized, 

certainly on the grounds of specification of the model density. 

Many approaches have been proposed to deal with nonparametric 

density estimation problems. Specifically, the conventional 

nonparametric smoothing technique known as kernel density 

estimation offers a flexible framework for exploring the structure 

of the data or the shape of the underlying density. Nevertheless, 

the kernel method which employs a kernel function with  

bandwidth parameter to smooth out the discrete empirical density 

function tends to produce a flattened density estimate of the actual 

density.   

  Apart from the two standard approaches mentioned above, 

mixture models, which offer a flexible class of densities and 

contain the kernel models as special cases, are particularly useful 

for density estimation because they can approximate many 

densities reasonably well. Marron and Wand [10] illustrated the 

flexibility of the class of normal mixtures in covering a variety of 

different density shapes. Using a mixture model not only can 

avoid model misspecification, but also provide a sparser estimator 

compared to the kernel model. Recognizing the advantages of 

using mixtures for density estimation, Scott and Szewczyk [14] 

designed a procedure that starts with a kernel density estimate, 

then sequentially simplifies that overparameterized mixture 

estimate and finally selects a simplified mixture estimate based on 

some criterion. Similarly, the so-called variable location kernel 

density estimator, which automatically indicates a simpler mixture 

structure after the fitting by maximum likelihood, was studied in 

Jones and Henderson [5]. Other attempts at using mixtures for 
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density estimation include, but are not limited to, articles by 

Roeder and Wasserman [12] and Priebe and Marchette [11].  

  We, however, prefer the direct specification of mixture 

models for density estimation and particularly advocate 

nonparametric mixture models (Lindsay [8]; Bӧhning [2]). Here, 

we mention the work of Wang and Chee [17], in which 

nonparametric mixtures by maximum likelihood estimation were 

used for density estimation. Basically, for a fixed value of the 

bandwidth parameter, the mixture density estimation problem 

simply reduces to the problem of estimating a mixing distribution 

in the nonparametric mixture model. In the literature, the 

maximum likelihood method for nonparametric estimation of the 

mixing distribution has flourished for many years. Recently, 

nonparametric estimation via the least squares method has been 

considered; see, e.g., Yuan [18] and Balabdaoui and Wellner [1]. 

Following the same vein, we consider the least squares functional 

for nonparametrically estimating the mixing distribution in this 

paper. We then apply the resulting mixture density to density 

estimation.  

  This paper is organized in the following way. Section 2 gives 

a very brief background description on some density estimators. 

Section 3 outlines the nonparametric least squares estimation 

problem, along with some computational aspects of estimating a 

mixing distribution. Section 4 gives a report on a simulation 

experiment carried out to investigate the finite sample 

performance of both the least squares mixture and kernel density 

estimators. Section 5 contains some concluding remarks.  

 

 

2.0  SOME DENSITY ESTIMATORS 

 

In this section, we only very briefly describe the fixed bandwidth 

kernel and mixture density estimators. Kernel density estimation 

is undoubtedly one of the most popular nonparametric smoothing 

techniques in the statistical literature. The kernel density estimator 

(KDE) based on a random sample 𝑥1, . . . , 𝑥𝑛 ∈ 𝑅 with common 

density f is given by 

 

(1) 

 

with 𝐾ℎ(𝑦) = 𝐾(𝑦/ℎ)/ℎ, where 𝐾 is called a kernel function and 

ℎ > 0 is known as the bandwidth or smoothing parameter. The 

kernel 𝐾 is usually taken to be a symmetric and unimodal density 

function. In practice, it is well-known that the impact of the 

choice of the kernel function as compared to that of the bandwidth 

is essentially of little concern. Selecting the bandwidth has been 

an active and challenging research topic and numerous methods of 

bandwidth selection have been proposed but none is superior or 

better than the others in all cases; see, e.g., Jones et al. [6] and 

Loader [9].  

  As can be seen from (1), an obvious drawback of the kernel 

method is that all data points are needed in the construction of the 

KDE. To provide sparse representation for the data, one can use 

nonparametric mixtures. The density of the nonparametric 

(location) mixture model is given by 

 

(2) 

 

with 𝐾𝛽(𝑦) = 𝐾(𝑦/𝛽)/𝛽, where 𝛽 > 0  is a bandwidth parameter 

and 𝐺 is called the mixing distribution. Here, 𝐺 is treated as an 

arbitrary mixing distribution, which can be either discrete, 

continuous or in any parametric family. The theory of 

nonparametric estimation of mixtures establishes that under mild 

conditions the nonparametric maximum likelihood estimate 

(NPMLE) of 𝐺 for any fixed 𝛽 is always discrete (Lindsay [8]). 

Thus, as far as the method of maximum likelihood is concerned, 

we may write (2) as 

 

 

 

where                          is a support point vector of distinct 

elements with corresponding probability mass vector                           

.                        . The vector π is elementwise positive and its 

components sum to unity. With the availability of the NPMLE for 

a fixed 𝛽, it is straightforward to construct the maximum 

likelihood mixture density estimate. Similar to the kernel density 

estimation, bandwidth selection remains a challenge for the 

mixture density estimation (Wang and Chee [17]). In contrast, we 

shall study the least squares mixture density estimator in this 

paper. 

 

 

3.0 NONPARAMETRIC LEAST SQUARES 

ESTIMATION 

 

The method of least squares has a long tradition in regression 

estimation. In nonparametric smoothing, the idea of least squares 

cross-validation is applied to selecting the bandwidth parameter. 

Further use of this method as a practical estimation method for a 

variety of parametric models can be found in Scott [13]. 

  The least squares functional based on the observations 

𝑥1, . . . , 𝑥𝑛 is defined as  

 

(3) 

 

  In this paper, we study the problem of minimizing the least 

squares functional (3) for any fixed  𝛽. Also, we consider 

approximating the estimate of 𝐺 by a discrete distribution. As a 

matter of fact, an appropriate discrete distribution can 

approximate any distribution to any desired level of accuracy. We 

shall refer to this discrete nonparametric estimate of 𝐺 as the 

nonparametric least squares estimate (NPLSE). Due to using a 

discrete NPLSE, the estimated nonparametric mixture density has 

a discrete form, similar to that obtained by maximum likelihood 

estimation. We shall call the resulting density estimate the least 

squares mixture density estimate (MDE). 

  The NPLSE is completely characterized by the gradient 

function given by 

 

 

 

We have that a candidate 𝐺∗ is the NPLSE if and only if 

𝑑(𝜃; 𝐺∗) ≥ 0 for all 𝜃, and if 𝐺∗ is the NPLSE, its support points 

are contained in the set {𝜃: 𝑑(𝜃; 𝐺∗) = 0}. The result given here is 

an analogous development to that of the nonparametric maximum 

likelihood estimation of a mixing distribution (Lindsay [8]; 

Bӧhning [2]). 

  By far the most common 𝐾 used in practice is the standard 

normal density, and hence we confine our study to the Gaussian 

kernel. An advantage of using the Gaussian kernel is that we 

obtain an explicit closed-form expression for the objective 

functional. Denoting the density of the Gaussian distribution with 

mean 𝜇 and standard deviation 𝜎 by 𝜙𝜎(𝑥 − 𝜇), we have  

 

 

 

Using the above identity, we have a simple expression for             

. 
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Also, for this special case, the gradient function can be easily 

shown to be: 

 

 

 

Denoting                              and                                    the 

objective functional can be written more compactly in matrix 

form: 

(4) 

 

  For the NPLSE computation, we modify the CNM algorithm 

of Wang [16] which is proposed for computing the NPMLE of a 

mixing distribution. However, we omit the outline of the 

algorithm and direct the interested reader to Wang [16]. Basically, 

both algorithms have the same critical ingredients, i.e., updating 

the mixing proportions π, and contracting and expanding the 

support set 𝜽. 

  With known 𝜽 and  𝛽, minimizing (4) with respect to π can 

be written as follows: 

 

 

(5) 

 

where R satisfying               is called the upper triangular 

Cholesky factor of D, d is the solution of the lower triangular 

system                          is the 𝐿2 norm,                          and             

.                      . In principle, D is a symmetric positive definite 

matrix as long as all elements of 𝜽 are distinct but in practice, it 

can be singular. In actual implementation, we add a small positive 

value to all diagonal elements of D so that Cholesky factorization 

can be safely applied to decompose D. Problem (5) can be solved 

numerically by the NNLS algorithm of Lawson and Hanson [7] 

after employing the method of Dax [3], which transforms it into 

the least squares problem with only non-negativity constraints:  

               

 

(6) 

 

where                                  , with r(𝑗) being the jth column of R. It 

is established that if �̃� solves problem (6), then          solves 

problem (5). We note that there is a little difference between the 

CNM algorithm for the NPMLE and the algorithm for the 

NPLSE. For the NPLSE, after updated π, one does not need to 

perform a line search. 

  Those support points with zero masses after π being updated 

are discarded before the next iteration. To obtain new support 

points, we have to rely on the gradient function. Following the 

method of Wang [16], we add many good support points, i.e., the 

localminima of the gradient function, to the support set at each 

iteration by using the combined Newton-bisection method. 

4.0  A SIMULATION EXPERIMENT 

 

We carried out a simulation experiment to investigate the 

performance of both the KDE and MDE. Four normal mixture 

densities are considered in this simulation experiment. These 

densities taken from Marron and Wand [10] are named Gaussian, 

𝜙1(𝑥), skewed unimodal,   (1/5)𝜙1(𝑥)  + (1/5)𝜙2/3(𝑥 −

1/2) + (3/5)𝜙5/9(𝑥 − 13/12), bimodal, (1/2)𝜙2/3(𝑥 − 1) +

(1/2)𝜙2/3(𝑥 + 1) and skewed bimodal, (3/4)𝜙1(𝑥)  +

(1/4)𝜙1/3(𝑥 − 3/2). 

  The bandwidth parameter is crucial to the performance of the 

KDE and MDE. To select a bandwidth parameter λ, one could use 

the standard approach of cross-validation (CV). In the V-fold CV, 

the data set 𝑥1, . . . , 𝑥𝑛 is randomly split into V disjoint partitions, 

𝑃1, . . . , 𝑃𝑉, that are roughly equal in size. The λ is chosen so as to 

minimize the following criterion:  

 

 

 

 

where 𝑛𝑣 is the number of observations in 𝑃𝑣 and        is the model 

fitted to all observations but those in 𝑃𝑣. In this study, we use one 

run of 5-fold CV for the KDE and MDE. For the KDE (or MDE), 

the candidate density estimates are computed on a grid of values 

for ℎ (𝛽) ranging from 0.2ℎ𝑠 (0.2s) to 2.2ℎ𝑠 (1.2s) in steps of 

0.05ℎ𝑠 (0.05s), where ℎ𝑠 and s denote the Silverman’s rule-of-

thumb bandwidth (Silverman [15]) and the sample standard 

deviation respectively. 

  To evaluate the accuracy of the density estimates, we 

examine the integrated squared error (ISE) given by 

 

 

 

where 𝑓 is the true density and 𝑓 a density estimate. For each 

simulated density, we compute the ISE values numerically for 

each combination of estimator and replication. Subsequently, the 

mean integrated squared error (MISE) is empirically estimated by 

the average of these ISE values. 

  The results of the simulation study based on 100 replications 

with sample sizes 𝑛 = 250 and 𝑛 = 500  are summarized in 

Table 1. Shown here are the empirical MISE values with their 

corresponding standard errors in parentheses. Also, we performed 

paired sign tests at 5% level of significance and those significant 

results are marked by an asterisk. On the whole, the MDE 

achieves better performance when the true densities are the 

Gaussian, skewed unimodal and bimodal densities. On the other 

hand, the KDE outperforms the MDE for the skewed bimodal 

density. 

 

Table 1  Summary of the simulation results in terms of the empirical MISE (X 103) 

 

Density Estimator True Density 

 Gaussian Skewed Unimodal Bimodal Skewed Bimodal 

  𝑛 = 250  

KDE 5.01 (0.41) 6.86 (0.47) 5.61 (0.43)  7.17 (0.40)* 

MDE   4.59 (0.52)*   5.94 (0.43)* 5.33 (0.37) 8.02 (0.46) 

  𝑛 = 500  

KDE 2.35 (0.18) 3.40 (0.26) 3.15 (0.20)  3.72 (0.18)* 

MDE  1.80 (0.20)*  3.14 (0.36)*  2.57 (0.19)* 4.15 (0.22) 
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5.0  CONCLUDING REMARKS 

 

In this paper, the practical application of nonparametric mixture 

models, with a special emphasis on the least squares estimator, in 

density estimation is described. Specifically, we introduce the 

least squares mixture density estimator as an alternative to the 

kernel density estimator. A numerical study was performed to 

compare the performance of the MDE and KDE. The results show 

that the mixture method is capable of reducing MISE for some 

popular densities.  

  Apart from the improvement in estimation accuracy, the 

mixture method maintains advantages over the kernel method in 

terms of model flexibility and sparsity of an estimator (in terms of 

number of support points) in real applications. In addition, the 

MDE is easy and fast to implement. Actually, the current work is 

facilitated by a fast and stable algorithm for computing the mixing 

distribution estimate in a nonparametric mixture model. These 

promising benefits make the MDE much more attractive for 

practical utilization.  
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