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Abstract 

 

Joint survival-longitudinal analysis gains popularity in recent clinical studies. A proportional hazards 

(PH) model in survival sub-model is commonly an alternative path to simplify a complex covariates 
hazard model into a regression model. The PH model however closed only to the Weibull distribution, 

brought about inappropriate application for the log-logistic observations. Proportional odds (PO) model in 

that case raised forward to perform similarly with the PH model. The subsequent modelling study is 
therefore producing a joint PO-longitudinal analysis rather than a widely applicable joint PH-longitudinal 

analysis. Latent parameters is introduced as a linkage technique between the two sub-models. 

Investigation in this study relies on the simulation statistics in which the survival time-to-event data and 
longitudinal measurements are both influenced by a covariate effects. The repeatedly measures data 

additionally allow for different kind of missingness mechanisms. Maximum likelihood estimation method 

is applied to the joint model parameters estimation. The performance of the joint model and separated 
sub-models are then be compared. The illustrated results contributed better estimators on the joint model 

instead of separated model.   

 

Keywords: Joint model; longitudinal model; maximum likelihood estimation; proportional odds (PO) 

model 

 

Abstrak 

 
Analisis bersama survival-longitudinal menguntungkan populariti dalam kajian klinikal baru-baru ini. 

Model bahaya berkadaran (PH) dalam survival sub-model biasanya merupakan laluan alternatif untuk 

memudahkan model bahaya covariat yang rumit ke dalam model regresi. Model PH bagaimanapun 
dianggar hanya dengan taburan Weibull, membawa permohonan yang tidak sesuai untuk pendapatan log- 

logistik. Model kemungkinan berkadar (PO) dalam hal ini dibangkitkan untuk melaksanakan tugas yang 

lebih kurang sama dengan model PH. Kajian model yang berikutnya menghasilkan analisis bersama PO-
longitudinal dan bukannya analisis bersama PH-longitudinal yang dipohon secara meluas. Parameter 

pendam diperkenalkan sebagai satu teknik hubungan antara kedua-dua sub-model. Penyiasatan dalam 

kajian ini bergantung kepada statistik simulasi di mana survival data masa-ke-kejadian dan pengukuran 
longitudinal kedua-duanya dipengaruhi oleh kesan covariate. Data pengukuran berulang tambahan pula 

membenarkan pelbagai jenis mekanisme missingness. Kaedah penganggaran kebolehjadian maksimum 

digunakan untuk anggaran parameter model bersama. Prestasi model bersama dan sub-model yang 
dipisahkan dibandingkan seterusnya. Keputusan yang ditunjukkan menyumbang penganggar yang lebih 

baik pada model bersama dan bukannya model yang dipisahkan.   

 
Kata kunci: Model bersama; model longitudinal; anggaran kebolehjadian maksimum; model 

kemungkinan berkadar (PO) 
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1.0  INTRODUCTION 

 

Joint model – a full model defined by the joint distribution 

between the separated models. It is frequently applying in the 

recent clinical studies of which the effect of the time-dependent 

covariates to the hazard of an event is of interest. The 

corresponding application study is subsequently contributes a 

widespread joint proportional hazards (PH) and longitudinal 

modeling in survival analysis. PH model in survival study has the 

ability to simplify the complex model into a regression model. 

Therefore, it is suit to the covariates-effects hazard model. 

According to Cox [1], the full model of the covariates hazard 

function can then easily be estimated by maximizing the partial 

likelihood. 

  PH model in addition closely related to a specific 

fundamental lifetime distributions, for instance Weibull function 
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in such a way that the characteristics of Weibull distribution is 

closed under the PH model [2]. Unfortunately, this profit is failed 

to deal with the log-logistic survival outcomes. Proportional odds 

(PO) model acts as an alternative path to achieve analogous 

ability with PH model, takes the advantage to model the 

covariates-effects odds model for the log-logistic distribution that 

is closed under the PO model. Collett [3] explained that the PO 

model is unpopular be applied due to the reasons: 1) PO model 

performed similarly to the PH model in the presence of time-

dependent variable to produce a non-proportional hazards model, 

and 2) PO model is lacked of the computer software to carry out 

the analysis. 

  The entire review studies are only focused on the joint PH-

longitudinal model application (Wulfsohn and Tsiatis [4], 

Henderson et al. [5], Guo and Carlin [6], Tsiatis and Davidian [7] 

and Ibrahim et al. [8]). The main difference between Wulfsohn 

and Tsiatis [4] and Henderson et al. [5] is in terms of the linkage 

method. Former paper associated the survival and longitudinal 

model by means of a conditional score approach whilst the latter 

paper introduced a latent random-effects parameter to connect the 

two sub-models. Henderson et al. [5] and Guo and Carlin [6] are 

respectively differed from the estimation approach in such a way 

that Henderson et al. [5] proposed a two-stage model in fitting the 

joint model and Guo and Carlin [6] evaluated the parameters from 

the Bayesian approach. Tsiatis and Davidian [7] and Ibrahim et al. 

[8] are the review paper explained based on the PH-longitudinal 

model. 

  From the review study, limited learning is assessed on the 

joint PO-longitudinal model. As a result, the principle of this 

paper is to develop a unity model that form by the survival PO 

model and longitudinal model. The conjunction criteria between 

the two sub-models is therefore interplay by each other via the 

latent linkage parameters. The proposing joint model 

performances are followed to compare with the separated model. 

  The upper limitation is only valid for the joint model, 

however there is still a number of independent PO studies have 

been revised by the previous researcher, especially from the 

estimation approaches. The available estimation techniques are 

such as modified maximum likelihood approach [9,10,11], ranks 

based approach [12,13,14], likelihood sampler method [15], 

estimating equation approach [16], sieve maximum likelihood 

estimation [17] and Minorization-Maximization (MM) Algorithm 

[18]. 

  On the other hand, Laird-Ware [19] proposed that the 

repeated measurements collected against time usually 

formularized in form of a random-effects model. The researchers 

hereby classified the random-effects model into a two-stage 

model in order to proceed with the estimation procedure. There is 

another form of classification provided by Goldstein [20], named 

as multilevel model. In the corresponding paper, the multilevel 

model hierarchically split the random-effects model into three 

simple linear regression models, which enclosed by one within-

subjects model and two between-subjects models. The multilevel 

model is estimated by the iterative generalized least squares 

estimation that is proved to have similar performance with the 

maximum likelihood estimation (MLE). 

  In a real system, each longitudinal collections is sick of the 

missing datum. They are either restricted to the condition of 

missing completely at random (MCAR), missing at random 

(MAR) or missing not at random (MNAR) [21]. The probability 

of MCAR missingness is independent on both of the observed and 

missing values against to the probability of MNAR missingness 

mechanisms, which relied heavily on the observed and missing 

data evaluation, while the probability of MAR only depends on 

the observed variable. 

 

2.0  JOINT MODELING 

 

This section discusses the mathematical modeling of the joint 

survival model and the longitudinal model. The longitudinal 

model is formularized by a random-effects model at the same time 

as the survival model represented by a proportional odds (PO) 

model. 

 

2.1  Random-Effects Longitudinal Sub-Model 

 

Let the repeated measurement for i subject of interests and k 

number of visited time-points represented as 

 

ikikiikiik tWty   )()( 1
.       (1) 

 

Model (1) has approximately the same symbol notation with the 

Laird-Ware random-effects model [19], 

 

iiiii εuZbXy  .       (2) 

 

Comparing model structure (1) with model structure (2), the mean 

response and latent variable features are respectively written in 

term of 
11)( bX iiki t   and 

iiiki tW uZ11 )(   throughout the joint 

modeling process. 1b  and iu  are the regression coefficients 

corresponding to 
i1X  explanatory variables and 

i1Z  matrix 

design. The error term whereas Normally distributed with mean 

zero and variance sigma square, ),0(~ 2

Niε . The subject-

specific random-effects ),( 10 ii uu  are then followed a zero-mean 

bivariate Gaussian distribution
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2.2  Proportional Odds (PO) Survival Sub-Model 
 

This subdivision is to explain the development of a joint modeling 

from survival approach. The basic survival odds model is usually 

given by 

 

)exp(
)(
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)|(1
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0

0 bx
tS

tS

xtS

xtS
toddsi







 ,      (3) 

 

where )|( xtS  is the conditional survivor function of an 

individual with covariate x, 
)(

)(1

0

0

tS

tS
 is the baseline odds 

function given that )(0 tS  is the baseline survivor function, and 

)exp( bx  is a non-negative function with covariate x along with 

the corresponding regression coefficients b. 

  In constructing a joint model, )exp( bx  is essential to 

comprise of a subject-specific random-effects component, it is 

therefore re-formularized into )](exp[ 222 tW ii  bX . By 

definition, 
22 bX i

  may or may not have the element in common 

with 
11 bX i

  from longitudinal model. According to Henderson et 

al. [5], )}(),({)( 21 tWtWtW iii   are the latent association which 

introduced to perform the stochastic dependence between the two 

sub-models. They are proportionally assuming in such a way that 

)()( 12 tWtW ii  . Therefore, the modify PO sub-model is defined 

as 
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Taking the natural logarithm to the Eq. (4), a log-odds model is 

then displayed as 
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2.3  Simulation Procedure and Estimation 

 

This study is concentrated on the computer simulation analysis. 

Therefore, a fully simulation procedures are specify in this paper. 

Goldstein’s [20] multilevel model is suitable for simulating the 

repeated measurements. The simulation algorithm is as reported in 

the paper of Chin et al. [22] but with some correlation 

improvement between the two time-points [23]. Specify the full 

random effects longitudinal model with single covariate 

information as below: 

 

ikikiiikiiikik tuutxbxbtbby  1013121110 )( .      (6) 

 

Model (6) is split into a within-subjects model (Eq. 7) and two 

between-subjects models (Eq. 8) by the multilevel model. Along 

the simulation process stated in the unpublished paper, correlation 

between the predictors and dependent variables are additionally 

counted in the entire model (7) and (8). 
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iii uxbbv 012100   and iii uxbbv 113111  .      (8) 

 

  Next, for the simulation study of the missing covariate X, 

adjusted logistic regression had been made from Mohamad [24] 

and Ho et al. [25]. The modified logistic regression in this study is 

therefore only assessed on the missing completely at random 

(MCAR) and missing at random (MAR) missingness mechanism. 

Given that 
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logistic regression model to generate exact proportions of missing 

data. Set the letter b = c = 0 if the probability of model (9) lead to 

a MCAR model; in contrast, set b = 1, c = 0 to produce a MAR 

missing mechanism. The q percentage of the highest observations 

in model (9) is defined to be the missing values. The estimation of 

the separated longitudinal model is thus approximated using the 

complete-case analysis in which the entire subject i with missing 

values are forced to eliminate from the study. 

  Simulation avenue currently turns into the survival approach. 

The main observations is the events time which follow a log-

logistic distribution influenced by the covariate effects. Given a 

set of random variable T can be generated from an inverse 

cumulative distribution function. The interested covariate log-

logistic outcomes with the presence of linkage parameter is 

generated by 
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In the computer simulation process, define 
ii xb2122  bX  and 

iiii uuWTW 120122 )(   . ),( 21   hence executes as the latent 

association between the separated measurements and time-to-

event developments. 

The special properties of the proportional hazards (PH) model and 

proportional odds (PO) model at the same time allowed them to 

closed under the accelerated failure-time model. As a result, the 

corresponding log time is assumed to have a linear model [2]. 

Transform the simulated failure time, T from Eq. (10) into a 

modified log time, Y, the model is assumed to has 

 

  )(ln 2 YWTY iXδ ,     (11) 

 

where   has a standard logistic distribution in this study. Notice 

that the model (5) has a similar form as the model (11). Therefore, 

the parameters ),,( δ  are estimated through a maximum 

likelihood estimation method. As for the log-logistic distribution, 

the log-odds function (5) is defined as below: 

 

)()/log()(log 222 TWTTodds iii  bX
 .    (12) 

 

The log-logistic parameters ),,,( 2 γb  are then related to 

),,,( λδ  by taking 
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3.0  ANALYSIS OF SIMULATION STUDIES 

 

In this study, a series of pre-setting value is chosen arbitrarily for 

the entire estimators embedded in the survival model and 

longitudinal model. The true value of the parameters are assumed 

as follow: (1) time: [0,1,2], (2) covariate: )4,30(~ 2Nx , (3) 

longitudinal element: 5.210 b , 25.011 b , 5.0xy , 10 v , 

21 v , 5.0 , 1y , and (4) survival components: 1 , 

8 , 25.021 b , 5.10  , 21  . The remaining true 

values in the longitudinal model are evaluated by a mathematical 

relation such as 

xvxyb  /012  , 

xvxyb  /113  , 
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100 samples are generated for each of the simulation iterations. 

Assuming   as the true parameter, the estimator is then 
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ˆˆ   where M is the total number of 

simulations performed. 

 

 

 
Table 1  Comparison of separated model and joint model with the complete observations, 15% and 50% X missingness for 100 simulations 

 

Parameter True Value 

Estimator (s.e.) 

Complete Observations MCAR MAR 

Separated Joint Separated Joint Separated Joint 

      

    15% missing covariate X 15% missing covariate X 
Longitudinal        

1 0b  2.50 0.8351 (0.0299) 2.5108 (0.0699) 0.8288 (0.0331) 2.4969 (0.0680) 0.8791 (0.0302) 2.5656 (0.0654) 

1 1b  -0.25 1.1575 (0.1101) -0.1763 (0.1307) 1.1560 (0.1140) -0.1742 (0.1344) 1.2696 (0.1136) -0.0623 (0.1296) 

1 2b  0.125 0.1663 (0.0026) 0.1250 (0.0023) 0.1663 (0.0028) 0.1253 (0.0022) 0.1584 (0.0027) 0.1201 (0.0021) 

1 3b  0.25 0.1033 (0.0017) 0.2486 (0.0042) 0.1032 (0.0017) 0.2482 (0.0044) 0.0998 (0.0017) 0.2407 (0.0042) 

2

1  
0.75 1.4253 (0.0197) 0.8031 (0.0456) 1.4072 (0.0219) 0.8033 (0.0511) 1.2877 (0.0208) 0.7525 (0.0481) 

2

2
 

3 3.6666 (0.0406) 3.0406 (0.0848) 3.6531 (0.0524) 2.9931 (0.0965) 3.5988 (0.0470) 2.9052 (0.0913) 


 

0.75 0.2317 (0.0094) 0.6679 (0.0055) 0.2270 (0.0103) 0.6644 (0.0057) 0.2090 (0.0099) 0.6551 (0.0058) 
2

  
0.75 0.2581 (0.0034) 0.8697 (0.0217) 0.2584 (0.0036) 0.8857 (0.0252) 0.2579 (0.0037) 0.8772 (0.0256) 

Survival        
  1 1.1345 (0.0523) 0.9366 (0.0085) 1.2183 (0.0520) 0.9206 (0.0094) 1.2414 (0.0503) 0.9034 (0.0070) 

  8 2.9564 (0.0200) 8.1464 (0.0764) 2.9743 (0.0228) 8.2264 (0.0797) 3.0245 (0.0234) 8.2242 (0.0812) 

2 1b  0.25 0.0955 (0.0040) 0.2363 (0.0032) 0.1035 (0.0040) 0.2334 (0.0034) 0.1127 (0.0038) 0.2284 (0.0031) 

0  -1.5 - -1.5664 (0.0335) - -1.5948 (0.0376) - -1.5938 (0.0370) 

1  -2 - -2.0196 (0.0233) - -2.0397 (0.0249) - -2.0382 (0.0243) 

        

        

    50% missing covariate X 50% missing covariate X 
Longitudinal        

1 0b  2.50   0.8329 (0.0428) 2.4838 (0.0802) 0.8597 (0.0363) 2.6502 (0.0973) 

1 1b  -0.25   1.1151 (0.1406) -0.2170 (0.1559) 1.3171 (0.1531) 0.0512 (0.1778) 

1 2b  0.125   0.1665 (0.0034) 0.1253 (0.0025) 0.1503 (0.0036) 0.1113 (0.0035) 

1 3b  0.25   0.1034 (0.0021) 0.2490 (0.0051) 0.0949 (0.0024) 0.2291 (0.0061) 

2

1  
0.75   1.3982 (0.0288) 0.8016 (0.0689) 1.2069 (0.0257) 0.7998 (0.0943) 

2

2
 

3   3.6693 (0.0659) 2.8971 (0.1229) 3.5542 (0.0700) 2.7971 (0.1340) 


 

0.75   0.2126 (0.0123) 0.6676 (0.0067) 0.1756 (0.0145) 0.6421 (0.0084) 
2

  
0.75   0.2565 (0.0049) 0.9840 (0.0394) 0.2552 (0.0049) 0.9899 (0.0554) 

Survival        
  1   1.1581 (0.0549) 0.9290 (0.0090) 1.2724 (0.0702) 0.8838 (0.0087) 

  8   2.9857 (0.0268) 8.4699 (0.1027) 3.1002 (0.0314) 8.4274 (0.1016) 

2 1b  0.25   0.0972 (0.0047) 0.2438 (0.0041) 0.1218 (0.0055) 0.2276 (0.0040) 

0  -1.5   - -1.6883 (0.0528) - -1.6614 (0.0496) 

1  -2   - -2.1025 (0.0332) - -2.0961 (0.0322) 
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Table 2  Comparison of separated model and joint model with the complete observations, 15% and 50% X missingness for 500 simulations 

 

Parameter True Value 

Estimator (s.e.) 

Complete Observations MCAR MAR 

Separated Joint Separated Joint Separated Joint 

      

    15% missing covariate X 15% missing covariate X 
Longitudinal        

1 0b  2.50 0.8552 (0.0141) 2.5483 (0.0313) 0.8575 (0.0155) 2.5421 (0.0335) 0.9073 (0.0147) 2.6256 (0.0335) 

1 1b  -0.25 1.1793 (0.0523) -0.1296 (0.0606) 1.1929 (0.0558) -0.1160 (0.0641) 1.2974 (0.0556) -0.0120 (0.0641) 

1 2b  0.125 0.1646 (0.0013) 0.1234 (0.0010) 0.1643 (0.0014) 0.1236 (0.0011) 0.1567 (0.0014) 0.1181 (0.0011) 

1 3b  0.25 0.1027 (0.0008) 0.2465 (0.0020) 0.1024 (0.0009) 0.2460 (0.0021) 0.0993 (0.0009) 0.2390 (0.0022) 

2

1  
0.75 1.4038 (0.0092) 0.8147 (0.0194) 1.3962 (0.0100) 0.8090 (0.0203) 1.2900 (0.0097) 0.7807 (0.0206) 

2

2
 

3 3.6935 (0.0216) 2.9828 (0.0363) 3.6890 (0.0242) 2.9643 (0.0398) 3.6508 (0.0238) 2.9104 (0.0388) 


 

0.75 0.2290 (0.0042) 0.6680 (0.0026) 0.2273 (0.0046) 0.6676 (0.0028) 0.2142 (0.0046) 0.6589 (0.0029) 
2

  
0.75 0.2529 (0.0015) 0.8544 (0.0092) 0.2521 (0.0017) 0.8638 (0.0095) 0.2517 (0.0017) 0.8543 (0.0101) 

Survival        
  1 1.1785 (0.0249) 0.9264 (0.0047) 1.1829 (0.0248) 0.9264 (0.0047) 1.2058 (0.0253) 0.9008 (0.0034) 

  8 2.9644 (0.0095) 8.1772 (0.0314) 2.9753 (0.0107) 8.2290 (0.0334) 3.0139 (0.0107) 8.2154 (0.0333) 

2 1b  0.25 0.0996 (0.0019) 0.2336 (0.0016) 0.1000 (0.0020) 0.2351 (0.0017) 0.1080 (0.0019) 0.2276 (0.0014) 

0  -1.5 - -1.5395 (0.0138) - -1.5564 (0.0148) - -1.5553 (0.0151) 

1  -2 - -2.0368 (0.0102) - -2.0475 (0.0109) - -2.0446 (0.0109) 

        

        

    50% missing covariate X 50% missing covariate X 
Longitudinal        

1 0b  2.50   0.8585 (0.0206) 2.5350 (0.0500) 0.8854 (0.0179) 2.5825 (0.0439) 

1 1b  -0.25   1.1651 (0.0727) -0.1434 (0.0853) 1.2384 (0.0725) -0.0524 (0.0840) 

1 2b  0.125   0.1647 (0.0018) 0.1239 (0.0016) 0.1507 (0.0018) 0.1136 (0.0015) 

1 3b  0.25   0.1028 (0.0011) 0.2469 (0.0028) 0.0965 (0.0011) 0.2329 (0.0028) 

2

1  
0.75   1.3822 (0.0133) 0.9377 (0.0415) 1.1966 (0.0111) 0.8596 (0.0367) 

2

2
 

3   3.7133 (0.0321) 2.9166 (0.0497) 3.6272 (0.0316) 2.7847 (0.0507) 


 

0.75   0.2189 (0.0059) 0.6637 (0.0047) 0.1894 (0.0061) 0.6452 (0.0049) 
2

  
0.75   0.2533 (0.0022) 0.9960 (0.0452) 0.2502 (0.0022) 0.9485 (0.0205) 

Survival        
  1   1.2399 (0.0380) 0.9236 (0.0049) 1.2220 (0.0347) 0.8912 (0.0040) 

  8   3.0161 (0.0146) 8.3808 (0.0446) 3.1008 (0.0148) 8.4230 (0.0447) 

2 1b  0.25   0.0975 (0.0028) 0.2386 (0.0020) 0.1147 (0.0027) 0.2302 (0.0018) 

0  -1.5   - -1.5744 (0.0213) - -1.5774 (0.0225) 

1  -2   - -2.0881 (0.0142) - -2.0998 (0.0151) 

        

 

 

  Table 1 and Table 2 show the results of the simulation study. 

The estimators’ performances are compared in term of accuracy 

and efficiency. Accuracy of an estimator is evaluated based on an 

unbiasedness whilst efficiency is determined by a  standard error 

(s.e.) value. The bias is obtained significantly by the subtraction 

between the estimator value and the respective parameter true 

value,   ˆ)ˆ(Bias . The standard error on the other hand 

acquired by the division between the standard deviation and the 

simulation sample sizes, M, MSE  )ˆ( . 

  The first objective in this study is to compare the 

performance of a joint model to a classical separated model of 

longitudinal and survival model. In general, a joint model 

achievement is much more superior to a separated model. 

Referring to Table 1 and Table 2, the standard errors are small 

enough to identify the goodness of fit of a model. The joint model 

estimators are concurrent relatively closed to the true values, 

indicated that the biases are comparatively small to it. A 

contradicted appearance occurred to the separated model, the bias 

of the estimators are very large. A supportive fact from Table 1 

and Table 2, the performance of a 11b̂  value converges to a 

positive value rather than the negative true value. The 

performance of the joint model is therefore concluded to be better 

than a separated model in such a way that the survival and 

longitudinal processes in the joint model is influencing and 

improving each other via a latent association of (
21 ,WW ). 

  Next, this study also aims to compare the effect of the 

missing covariate bring to the longitudinal process, survival 

process and joint modeling. The simulation study is examined for 

the complete observations (0% missing data X), missing 

completely at random (MCAR) and missing at random (MAR). 

The estimator’s with complete observations always demonstrated 

the best performance to the analysis. All the estimated values are 
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closed to the true values with small bias values except for the 11b̂  

experienced an undesirable result in the simulations study. 

However, it does not affect the others parameters to converge.  

  This study also compare the percentage of missingness effect 

to the model. Although the estimators are converged 

approximately between the 15% and 50% missingness, the 

standard errors of the 50% missingness are higher than the 15% 

missingness. 

  Besides, the study on both of the 50% MCAR and 50% 

MAR cases in additional shows a better performance to the 

MCAR than MAR. The 100 simulations joint model outcome 

corresponds to a 50% MAR missingness mechanism seems to be 

unstable in such a way that the 11b̂  value has changed the 

direction of the slope from negative to positive. It is stable when it 

is undergone a 15% missingness or when the number of 

simulations is increased to 500 iterations. Eventually, as the 

number of simulation increases, the parameters estimators 

indicate improvement to the estimated values and/or the standard 

errors. The results are as displayed in Table 1 (100 simulations) 

and Table 2 (500 simulations). 

 

 

4.0  CONCLUSION 

 

In conclusion, this study is performed better under the joint model 

rather than the separated model of survival and longitudinal 

model. The presence of a latent linkage association (
21 ,WW ) in 

the joint model does improve the analysis by offering a good 

estimation for the joint model in this study. It is contrasting to the 

estimators obtaining from the separated model in such a way that 

the estimated parameters are seriously being underestimated or 

overestimated. 

  Furthermore, the performance of the simulation study is 

enhanced under the complete observations due to the deletion of 

15% or 50% missing covariate X in either MCAR or MAR has 

critically reduced the total number of subjects being analyzed in 

the study. This is due to the complete-case analysis or the listwise 

deletion in which for all the subjects that carried with missing data 

are being removed from the analysis. If according to Allison [26], 

complete-case analysis only validated for the covariate’s 

missingness that is independent of the dependent variable. 

Therefore, the method is fitting appropriately under the complete 

observations and MCAR missingness mechanism. As the degree 

of missing values increases, the accuracy of the estimators is 

further dropped. 
  Next, the increases number of simulations also influenced the 

accuracy of an estimator. The estimators approaches to the true 

values as the number of simulation study increases, it is as well as 

contribute a reduction to the standard error values. Therefore, the 

estimated parameters provide a better outcome to a large 

simulation studies. The same condition is applied to the model 

with a certain proportions of missing covariate. 
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