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Abstract 
 
The deterministic power law logistic model is used to describe density-dependent population growth for 
cases when ordinary logistic model is found to be insufficient. This paper estimates the parameters of 
stochastic power law logistic model specifically the Lotka-Volterra model by employing the two-step 
approach. The Bayesian approach is implemented in the first step of estimating the regression spline
parameters. Combining the existing and proposed nonparametric criterion, the structural parameters of 
SDE are estimated in the second step. Results indicate high percentage of accuracy of the estimated
diffusion parameter of Lotka-Volterra model supporting the adequacy of the proposed criterion as an
alternative to the classical methods. 
 
Keywords: Stochastic differential equation; regression spline; Bayesian approach; truncated power series 
basis; Lotka-Volterra model 
 
Abstrak 
 
Model hukum kuasa berketentuan logistik digunakan bagi menerangkan pertumbuhan penduduk 
bersandar-kepadatan untuk kes-kes apabila model hukum kuasa logistik biasa didapati tidak mencukupi. 
Kertas ini menganggarkan parameter bagi model hukum kuasa stokastik logistik khususnya untuk model
Lotka-Volterra dengan menggunakan pendekatan dua-langkah. Pendekatan Bayesian dilaksanakan dalam 
langkah pertama bagi menganggarkan parameter regresi splin. Dengan menggabungkan kriteria bukan
parametrik yang sedia ada dengan yang dicadangkan, parameter struktur SDE dapat dianggarkan dalam
langkah kedua. Keputusan menunjukkan peratusan yang tinggi dalam ketepatan anggaran parameter
model Lotka-Volterra menyokong kecukupan kriteria yang dicadangkan sebagai alternatif kepada kaedah
klasik. 
 
Kata kunci: Persamaan pembezaan stokastik; regresi splin; pendekatan Bayesian; singkatan asas siri 
kuasa, model Lotka-Volterra 
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1.0  INTRODUCTION 
 
Population dynamics studies the changes in population size and 
age composition, the biological and environmental processes 
influencing those changes. It also deals with the affect of birth and 
death rates, immigration and emigration on population. The 
Malthusian growth model or simple exponential model is amongst 
the pioneer model used to model population dynamics. This 
model is refined and adjusted with a more general formulations 
was later proposed and expanded. One of such model is Power 
Law Logistic Model. 
 
1.1  Power Law Logistic Differential Equation  
 
Power law logistic differential equation used to describe 
population dynamic has the following form, 

dN aN bN
dt

ξ η= −                                                                 (1)  

where N  is population density, a  and b  are growth and  
crowding coefficients respectively, and ,  ,  ,  and a b ξ η  are 
constants. 

Let 1ξ = ,  ( )N x t= , 1sη = + , Eq.(1) becomes 

( ) ( )1( ) sdx t ax t bx t
dt

+= −                                                   (2) 

For a more general equation, let C b= −  thus 

( ) ( )1( ) sdx t ax t Cx t
dt

+= +                                                  (3) 
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The above model considers population interactions with a solution 

( ) ( )atx t e u t=  

where  
( )

( )
1/

0
1/

0 1

s

ss ats

a xu t
a Cx e

=
⎡ ⎤+ −⎣ ⎦

. 

 
2.2  Lotka-Volterra Model  
 
Extending Eq. (1),   

( ) ( ) ( )( )1 ,..., ( ( ))s
ndx t diag x t x t a Cx t dt⎡ ⎤= +⎣ ⎦    (4) 

where ( )1,...,
T

nx x x= , ( )1,...,
T

na a a= , ( )ij nxn
C c= ,

( )1 ,...,
Ts s s

nx x x= . 
A general equation of Lotka-Volterra model for interacting  n 
species is described by the  

( ) ( ) ( )( )[ ]1 ,..., ( ( ))ndx t diag x t x t a Cx t dt= +        (5) 

Population dynamics are usually affected by the noise either 
intrinsicly or extrinsicly by perturbing the deterministic Lotka-
Volterra model into Itô stochastic equation. In this work, only 
extrinsic perturbation is applied in the model. Considering a linear 
growth condition, every element of growth coefficients will be 

perturbed as i ia a dwtσ→ + . The stochastic differential 
equation for this model is 

( ) ( ) ( )( )[ ]1 ,..., ( ( )) ( )ndx t diag x t x t a Cx t dt dw tσ= + +
                                                                                                     (6)  

where ( ) ( ) ( )( )1 ,..., ,
T

ndw t dw t dw t= n  dimensional 

Brownian motions, and ( )ij n n
σ σ

×
=  is a matrix representing 

the intensity of noise with the assumptions, 0ijσ >  if   

1 i n≤ ≤  whilst 0ijσ ≥   if  i j≠ . Pang et al. (2008) studies 
the asymptotic properties of this model when the noise is 
relatively small. Many estimates in their paper indicate strong 
existence of a stationary distribution. Mao (2011) had shown 
theoretically this model has stationary distribution. The pdf 

( )iX tf  does not depend on it , therefore a single sample path can 
be utilized to estimate the parameter of SDE. Consider a scalar or 
one dimensional case: 

( ) ( ) ( )( ( ))dx t x t b ax t dt dw tσ⎡ ⎤= − +⎣ ⎦                      (7) 

Considering only two parameters of SDE replacing b θ=  and  

a
c
θ

=  where c is a constant. Thus the general form of the scalar 

model becomes ( ) ( ) ( )( )(1 )x tdx t x t dt dw t
c

θ σ⎡ ⎤= − +⎢ ⎥⎣ ⎦
.                                                                                                    (8) 
 
 

2.0  MATERIALS AND METHODS 
 
Parameter estimation of stochastic differential equation (SDE) is 
largely based on classical methods such as non-linear least 

squares, maximum likelihood, methods of moment and filtering 
such as the extended Kalman filter. Nonparametric approach in 
estimating the parameters of SDE has recently been introduced by 
Varziri et al. (2008) who developed Approximate Maximum 
Likelihood Estimation (AMLE).  
  A new version of a two-step method is proposed via the 
minimization of the negative of natural logarithm of approximate 
probability density function to estimate the drift and the spline 
parameters of the SDE. The estimated disturbance intensity was 
then repeatedly improved by a noise estimator. This approach 
however causes computational burden since it involves the 
approximation of transitional probability. Furthermore, Bayesian 
approach with spline implementations have not been considered 
in parameter estimation of SDE.  
  Wide literatures may be found in the implementation of 
regression spline. For example: Budiantara (2001), Lee (2002), 
Molinari et al. (2004), Leathwick et al.  (2005), Hunt and Li 
(2006), Calderon et al. (2010) but few have involved Bayesian 
approach. Works employing Bayesian regression spline include Li 
and Yu (2006) who estimated the term structure with Bayesian 
regression splines based on nonlinear least absolute deviation. The 
method was found to be robust to outliers in a chosen case study. 
Lang and Brezger (2004) proposed a Bayesian version for P-
splines for generalized additive models. The approach has the 
advantages of allowing simultaneous estimation of smooth 
function and smoothing parameter, and had been extended to 
more complex formulations. Wallstrom et al. (2008) implemented 
BARS (Bayesian Adaptive Regression Splines) in C by 
manipulating B-splines for normal and Poison cases. This has 
improved the original implementation of BARS in S.  
  The objective of this paper is to estimate SDE parameters, 
with Bayesian regression spline in the first step for estimating the 
spline parameters. For the second step, a criterion introduced by 
Varah (1982) and a our proposed criterion with a non-likelihood 
based with a spline approach are used to estimate the SDE 
parameters.  
 
2.1 Proposed Methods 
 
Consider a one dimensional Itô SDE given by 
                                   

( ) ( )( ) ( ), , , , ,dx t dW tf x t g x t
dt dt

θ σ= +                        (9) 

where ( , , )f x t θ  is the average drift term, ( , , )g x t σ is the 

diffusion term, and ( )dW t  is the Brownian noise. A two-step 
method with a non-likelihood based approach will be used to 
estimate the structural parameter of SDE by firstly estimating the 
parameters of regression spline with Bayesian approach in the 
first step and next estimate the parameters  of the drift and 
diffusion term in SDE in the second step.  
 
2.2 Two-Step Method. The First Step  

 
The general equation of regression splines with truncated power 
series basis is : 

( ) 11

1 1
( ) ,

m k mj
j j j

j j
s t t tα δ ξ

−−

+
= =

= + −∑ ∑                                  (10) 

where s  is known as a spline of order m with knots 1,..., ,kξ ξ  t 

is the independent variable, 1,..., mα α  and  1,..., kδ δ  are 
some sets of coefficients. Given a choice of 
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),kξ ξ ξ1 2= ( , , ...,λ   let 
1

2 ( ) ,..., ( ) ,m
mx t t x t t −= =

1
1 1( ) ( ) ,m

mx t t ξ −
+ += − 1..., ( ) ( )m

m k kx t t ξ −
+ += −  and set  

( )'
1,..., , ,...,m kα α δ δ1β = . The least squares spline estimator 

can be rewritten as ( )
1

( )
m k

j j i
j

s t x tλβ
+

=

= ∑ . From Eubank (1988), 

adhoc rules for locating knots are as the followings: 

1.0 For 2m = , linear splines, place knots at points where the 
data shows a change in slope. 

2.0 For 3m = , quadratic splines, the knots are located near the 
local minima, maxima or inflection points of the data 

3.0 For 4m = , cubic splines, the knots are arranged near the 
inflexion points in the data  
In the first step of the proposed procedure, the values of α  

and δ are estimated using the Bayesian approach with the 
assumption of normal error and diffuse prior for the parameters. 

The estimation is carried out in Winbugs with 
610  MCMC 

simulations after selecting suitable number and the location of 
knots. The best number and location of knots of the fitted spline 
are determined by calculating the Generalized Cross Validation 
(GCV): 

( )
( )

( )

2

1 1
2 ,

1

n m k

i j j i
i j

y x t
GCV

m k
n

λβ
λ

+

= =

⎛ ⎞
−⎜ ⎟

⎝ ⎠=
⎛ ⎞+

−⎜ ⎟
⎝ ⎠

∑ ∑
                          (11)  

where iy  is the observed data, 
1

( ) ( )
m k

j j i
j

x t s tλβ
+

=

=∑
 
is the 

spline equation, k is the number of knots, m is the degree of 
spline, n is the number of the observations. The least value of 

GCV indicates the best fit of ( )s t .  
 
2.3  Two-Step Method. The Second Step 
 
In the second step, we first estimate the parameter of the average 
drift equation by minimizing 

2

1

ˆ ˆ( , , )
n

i
i

x f x t θ
=

⎡ ⎤−⎣ ⎦∑ � ,                                                           (12)  

where ˆ
ix�  is the derivative of the spline approximation of the true 

solution of ordinary differential equation (ODE) which is used to 

represent the average drift term, x̂  is the consistent estimator of 

the true solution, t  is the independent variable and θ  represents 

the parameter of ordinary differential equation. ˆ( , , )f x t θ  is the 
ODE used to represent the average drift term in SDE. Minimizing 
Eq. (12) was primarily introduced by Varah (1982) and used by 
many authors including Brunel (2008). By minimizing Eq. (12), it 
is expected to minimize the deviation between the differential of 
spline and the estimated ordinary differential equation.  
  A new criterion is proposed in estimating the diffusion term. 
Consider a one dimensional Itô SDE given by 

( ) ( )( ) ( ), , , , ,dx t dW tf x t g x t
dt dt

θ σ= +                      (13) 

where ( , , )f x t θ  is the average drift term, ( , , )g x t σ is the 

diffusion term, and  ( )dW t  is the Brownian noise. Rearranging 
equation (13), we have 

( ) ( )( ) ( ), , , , .dx t dW tf x t g x t
dt dt

θ σ− =                       (14) 

The discrete approximation of true solution of SDE using 
numerical descretization such as Euler or Milstein can be 
considered here. Here, Milstein numerical approximation is used 
to estimate the solution of (13) given as, 

'
1

1( ) ( ) ( ) ( )(( ) ).
2i i i i i i i i i ix x h f x g x W g x g x W h+ = + + Δ + Δ −

   
SDE can be rewritten in a form of difference quotient such as in 
Taylan et al. (2008) where   

( ) ( ) ( ) ( ) ( )2
'1 1

2
ii

i i i i i
i i

WWx f x g x g x g x
h h

⎛ ⎞ΔΔ ⎜ ⎟≈ + + −
⎜ ⎟
⎝ ⎠

�

                                                                                                   (15) 

(RHS is the Milstein scheme). In order to estimate θ  and σ  
they minimize  

( ) ( ) ( ) ( ) ( )
22

'

1

1 1
2

N
ii

i i i i i
i i i

WWx f x g x g x g x
h h=

⎛ ⎞⎛ ⎞ΔΔ⎜ ⎟⎜ ⎟− − − −
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ �

                                                                                                   (16) 

where 
'
ix s are the observed data, 1,..., ,i N=  

1
,

i it t tW W W
+

Δ = −  and 1 .i i ih t t+= −  Therefore, there is an 
argument to support equation (13) which can be approximated by  

a difference quotient  
1i i

i
i

x xx
h

+ −
=� . The average drift term in 

Eq. (13) is of ODE form  and approximated by regression spline. 

(See Varah (1982) and Brunel (2008)). Thus, ( , , )f x t θ  can be 

approximated by ˆ( , , ).f x t θ Therefore, the approximation of 

equation (14) is obtained, that is 
( )ˆ ( , , )i

dW tx x g x t
dt

σ− ≈� � . 

In order for the values of σ  to produce the least variation 
between both of RHS and LHS of Eq. (14), the squared difference 

of both quantities is minimized. In order to estimate φ  in the 
second step, a new criterion is introduced by rearranging the terms 
as follows, 

minimizing
2

1

( )ˆ ( , , ) .
n

i i
i

dW tx x g x t
dt

σ
=

⎡ ⎤− −⎢ ⎥⎣ ⎦
∑ � �                   (17) 

The Brownian motion ( )dW t  is approximated by 

(0, )t iW N hΔ ∼  where t i i i iW Z t Z hΔ = Δ =  and 

( ) i

i

ZdW t
dt h

≈ . It can be seen that iZ  has a standard normal 
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distribution. The approximated values of  
( )dW t

dt can be 

generated by standard normal random numbers generator in 
MATLAB. 
 
 
2.4  Application  
 

A sample path is simulated by fixing the parameters with 3θ =    

and   0.2σ = , 

thus ( ) ( ) ( )( )3 (1 ) 0.2
3

x tdx t x t dt dw t⎡ ⎤= − +⎢ ⎥⎣ ⎦
 

Simulated sample path with EM scheme with ( )0 3x =  and 

step size 0.5h =  is shown in Figure 1. 
 

 
Figure 1  A simulated sample path of Lotka Volterra model 

 
 
  A Two-step method will be used to estimate the parameters 
of Lotka-Volterra model with a simulated data generated from the 
sample path shown 1. The optimal knot selection is shown in 
Table 1, a linear spline is chosen since it has the smallest GCV 
value and the single optimal knot is 242.5. 
 

Table 1  Optimal Knot selection for simulated data 
 

Order of spline Optimal Single Knot GCV 
Linear Quadratic 
Cubic 

242.5 
119 
144.5 

245.645 
245.971 
246.821 

 

  Using winbugs software with 
610  MCMC simulations, the 

estimated spline parameters are listed in Table 2, followed by the 
plot the regression spline of the simulated data in Figure 2. 
 
 

Table 2  Estimated Bayesian spline parameters for simulated data 
 

m Location of 
knot 

Interval Estimated Bayesian 
spline parameters 

1 242.5 
 

242.5t <   
242.5t ≥  

2.841,-0.0002247 
 
-1.239,0.01524,0.08174 

 
 
 
 

 
Figure 2  Linear regression spline of simulated data 

 
 
  From Table 3, the estimated drift  and diffusion parameter 
are 0.0123 and 0.19225 respectively with percentage of accuracy 
being 0.41% and 96.12%. High percentage of accuracy is 
obtained for the diffusion parameters which employ the proposed 
non-parametric criterion as in Eq. (17).  
 

Table 3  Estimated parameters of Lotka-Volterra SDE model 
 

Estimated drift parameter 
% of Accuracy 

0.0123 
0.41 

Estimated diffusion parameter 
Minimum of HANPIC 
% of Accuracy 

0.19225 
4.3610 
96.12 

Standard Deviation 
Lower Bound 95% CI 
Upper Bound 95% CI 
Mean 

0.10026 
0.12674 
0.25776 
0.07648 

 
 

3.0  CONCLUSION 
 
The estimation of diffusion parameter of Lotka-Volterra model 
resulted in satisfactory estimates with high accuracy for simulated 
data. This indicates the proposed criterion produced good estimate 
of the diffusion parameter of SDE. However the drift parameter 
estimation is unsatisfactory with low accuracy using the criterion 
introduced by Varah which may be due to the solution component 
of the system is oscillatory in nature and out of phase with each 
other (Varah, 1982). As a solution, a spline fit with many knots 
such as B-spline is possibly more suitable which is not considered 
in this case study.  
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