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Abstract 

 

The dependence structure of rainfall is usually very complex both in time and space. It is shown in this 

paper that the daily rainfall series of Ipoh and Alorsetar are affected by nonlinear characteristics of the 
variance often referred to as variance clustering or volatility, where large changes tend to follow large 

changes and small changes tend to follow small changes. In most empirical modeling of hydrological time 

series, the focus was on modeling and predicting the mean behavior of the time series through 
conventional methods of an Autoregressive Moving Average (ARMA) modeling proposed by the Box 

Jenkins methodology. The conventional models operate under the assumption that the series is stationary 

that is: constant mean and either constant variance or season-dependent variances, however, does not take 
into account the second order moment or conditional variance, but they form a good starting point for 

time series analysis. The residuals from preliminary ARIMA models derived from the daily rainfall time 

series were tested for ARCH behavior. The autocorrelation structure of the residuals and the squared 
residuals were inspected, the residuals are uncorrelated but the squared residuals show autocorrelation, 

the Ljung-Box test confirmed the results. McLeod-Li test and a test based on the Lagrange multiplier 

(LM) principle were applied to the squared residuals from ARIMA models. The results of these auxiliary 
tests show clear evidence to reject the null hypothesis of no ARCH effect. Hence indicates that GARCH 

modeling is necessary. Therefore the composite ARIMA-GARCH model captures the dynamics of the 

daily rainfall series in study areas more precisely. On the other hand, Seasonal ARIMA model became a 
suitable model for the monthly average rainfall series of the same locations treated.   

 

Keywords: Volatility clustering; ARIMA; GARCH; autocorrelation function; McLeod-Li test; ARCH LM 
test; Ljung-Box test 

 

Abstrak 

 

Struktur kebersandaran hujan biasanya sangat kompleks dalam masa dan ruang. Di dalam kertas kerja ini, 
siri hujan harian di Ipoh dan Alorsetar dipengaruhi oleh ciri-ciri linear varians yang sering dirujuk sebagai 

kelompok varians atau turun naik, di mana perubahan besar lebih cenderung untuk mengikuti perubahan 

besar dan perubahan kecil lebih cenderung untuk mengikuti perubahan kecil. Dalam model empirikal siri 
masa hidrologi, tumpuan utama adalah pada pemodelan dan meramalkan tingkah laku min siri masa 

melalui kaedah konvensional Model Purata Autoregresi Bergerak (ARMA) yang dicadangkan oleh 

kaedah Box Jenkins. Model konvensional berfungsi dengan andaian bahawa siri hujan adalah pegun iaitu: 
min malar dan sama ada varians berterusan atau perbezaan bergantung kepada musim, bagaimanapun, ia 

tidak mengambil kira masa tertib kedua atau varians bersyarat, tetapi mereka membentuk satu titik 

permulaan yang baik untuk analisis siri masa. Ralat daripada model ARIMA dari masa siri hujan harian 
telah diuji untuk tingkah laku ARCH. Struktur autokorelasi ralat dan ralat kuasa dua telah diuji, 

berdasarkan ujian Ljung-Box didapati ralat tidak berkorelasi tetapi reja kuasa dua menunjukkan 

autokorelasi. Ujian McLeod-Li dan ujian berdasarkan prinsip pendarab Lagrange (LM) telah digunakan 
untuk reja kuasa dua daripada model ARIMA. Keputusan ujian menunjukkan bukti yang jelas untuk 

menolak hipotesis nol iaitu tiada kesan ARCH. Oleh itu, keputusan  menunjukkan model GARCH 

diperlukan. Oleh yang sedemikian, komposit ARIMA-model GARCH digunakan untuk mengesan 
dinamik siri hujan harian di kawasan kajian dengan lebih tepat. Sebaliknya, model ARIMA bermusim 

menjadi model yang sesuai untuk purata hujan bulanan siri lokasi yang sama dirawat. 

 
Kata kunci: Kelompok turun naik; ARIMA; GARCH; fungsi autokorelasi; ujian McLeod-Li; ujian ARCH 

LM; ujian Ljung-Box  

© 2013 Penerbit UTM Press. All rights reserved. 
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1.0  INTRODUCTION 

 

In most empirical modeling of hydrological time series, the focus 

was on modeling and predicting the mean behavior of the time 

series through conventional methods of an Autoregressive 

Moving Average (ARMA) modeling proposed by the Box Jenkins 

methodology. The conventional models operate under the 

assumption that the series is stationary that is: Zero mean and 

either constant variance or season-dependent variances, however, 

does not take into account the second order moment or 

conditional variance. In the field of time series there are many 

linear processes that can be modeled by the autoregressive 

moving average (ARMA) models. However, several time series 

does not exhibit a linear behavior. These processes cannot be well 

fitted by the common ARMA models. To adequately fit these 

non-linear time series, other more complicated models that have 

the ability to capture the dynamics of the series more precisely 

have to be taken into account. 

  Much work has been done to capture the observed statistics 

of rainfall in peninsular Malaysia, among others, (Zalina et al., 

2002) applied Quantitative goodness of fit tests to determine the 

probability distribution most appropriate for describing annual 

maximum rainfall series in Peninsular Malaysia. Suhaila and 

AbdulAziz (2007) analyzed the statistical distribution of the daily 

rainfall amount. Suhaila et al. (2011) compare rainfall patterns 

between regions in Peninsular Malaysia via a functional data 

analysis technique. Hanaish et al. (2011) applied a Bartlett Lewis 

Rectangular Pulses Models to Rainfall data in Peninsular 

Malaysia. Wong et al. (2009) analyzed and quantified the spatial 

patterns and time-variability of rainfall in Peninsular Malaysia 

and obtained an overview of rainfall patterns. Juneng (2010) 

forecast the Malaysian winter monsoon rainfall anomalies using 

four statistical techniques.  Kang and Fadhilah (2012) applied four 

methods for the homogeneity test to daily rainfall series of three 

locations in peninsular Malaysia, observed that all stations in 

those three areas are homogeneous and considered as useful when 

annual mean and annual maximum rainfall are used as testing 

variables. However, little or not have been done on the application 

of Heteroskedastic models to rainfall occurrence in Peninsular 

Malaysia. The aim of this paper is to model the temporal 

characteristics, that is, serial dependence and time varying 

variance (volatility) of daily rainfall series of Ipoh and Alorsetar.  

  The dependence structure of an observed rainfall is usually 

very complex both in time and space. It could be shown that 

rainfall data are affected by nonlinear characteristics of the 

variance often referred to as variance clustering or volatility, in 

which large changes tend to follow large changes, and small 

changes tend to follow small changes (Laux et al., 2011). One of 

the most prominent tools for capturing such changing variance 

was the Autoregressive Conditional Heteroskedasticity (ARCH) 

and Generalized ARCH (GARCH) models developed by Engle 

(1982), and later extended by Bollerslev (1986). Two important 

characteristics within rainfall time series are highly skewed or 

kurtotic distributions (Villarini et al., 2010) and volatility 

clustering, which can be captured by the GARCH family models. 

Volatility clustering can be thought of as clustering of the 

variance of the error term over time: if the regression error has a 

small variance in one period, its variance tends to be small in the 

next period, too. In other words, volatility clustering implies that 

the error exhibits time-varying heteroskedasticity that is, 

unconditional standard deviations are not constant. 

  The nature of rainfall in Peninsular Malaysia which consists 

of heavy rainfall in a short duration and light rainfall in a long 

duration can be well explained by some stochastic models. In this 

study, ARIMA/GARCH rainfall models are fitted to the data sets 

from Ipoh and Alorsetar stations in Peninsular Malaysia for the 

period from 1968 to 2003. 

  In a related study (Wang, 2005) verified the existence of 

conditional heteroskedasticity in the residual series from linear 

models fitted to the daily and monthly stream flow processes. 

Szolgayova (2011) investigated whether Heteroskedastic effect 

can be detected in selected time series of daily discharges in 

Slovakia. The results show that heteroskedasticity was present in 

all of the tested time series. However, the GARCH model was 

applicable only in one case. The EGARCH (1,1) model had to be 

used otherwise. So far, only few attempts on application of 

GARCH class models on discharge data were reported in the 

hydrological modeling literature.  

  The objective of this paper is to propose a hybrid model that 

can capture the temporal behavior (serial dependence) and time 

varying volatility in daily rainfall time series of Ipoh and 

Alorsetar.  

 

 

2.0  MATERIALS AND METHODS  

 

The time series can be viewed as the realization of a stochastic 

process that is, a series of random variables ordered in time. Many 

problems related to water resources and environmental systems 

among which rainfall is included deal with temporal data that 

need to be analyzed by means of time series analysis, which 

became a major tool in hydrology and meteorology. It is used for 

building mathematical models to describe hydrological data, 

forecast hydrologic events, detect trends, provide missing data, etc 

(Svetlíková et al., 2009). 

 

2.1  ARIMA Modelling  

 

The autoregressive integrated moving average ARIMA (p, d, q) 

model of the time series { ty },    t = 1,2, … … developed by Box 

& Jenkins (1976) is still very popular time series modelling. 

Defined as 

( ) ( )d

t tB y B                                                (1) 

 

where ty  and t represent rainfall time series and random error 

terms at time t respectively. B is the backward shift operator. The 

( )B  and ( )B  are of order p and q and defined as 

 
2

1 2( ) 1 ......... p

pB B B B         

2

1 2( ) 1 ......... q

qB B B B         

 

Where 1 2, ,..., p   are the autoregressive coefficients that 

attempt to predict an output of a system based on the previous 

outputs and 
1 2, ,..., q    are the moving averages coefficients. 

  In modeling ARIMA (p, d, q) processes, the first step is to 

determine whether the time series is stationary or non-stationary. 

If it is non-stationary it has to be transformed into a stationary 

time series by applying the appropriate order of degree of 

differencing d. The appropriate values of autoregressive order p 

and moving average q is chosen by examining the autocorrelation 

function (ACF) and partial autocorrelation function (PACF) of the 

time series. 
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2.2  Serial Dependance  

 

The existence of serial correlation complicates statistical inference 

of time series analysis (Hong, 2006). It is therefore important to 

check serial correlation for the estimated residuals, which serves 

as a misspecification test for a linear dynamic regression model.  

 

2.2.1  Ljung-Box Test  

 

Ljung and Box (1978) proposed a Q-Test called Ljung–Box test 

which is commonly used in autoregressive integrated moving 

average (ARIMA) modeling. It is applied to the residuals of a 

fitted ARIMA model, not the original series, and in such 

applications the hypothesis actually being tested is that the 

residuals from the ARIMA model have no autocorrelation, or it 

performs a lack-of-fit hypothesis test for model misspecification, 

which is based on the Q-statistic given as: 
2

1

ˆ
( 2)

( )

L
j

j

Q N N
N j





 


                                 (2) 

Where N = sample size, L = number of autocorrelation lags 

included in the statistic, and 
2ˆ
j is the squared sample 

autocorrelation at lag j. Under the H0 (no serial correlation), the 

Q-test statistic is asymptotically 
2 distributed. The p-values 

above 0.05 indicate the acceptance of the null hypothesis of model 

accuracy under 95% significant levels. 

 

2.3  Test for Heteroskedasticity  

 

2.3.1  Mcleod-Li Test 

 

This test for ARCH effects was proposed by McLeod and Li 

(1983) It looks at the autocorrelation function of the squares of the 

pre whitened data and tests whether corr(
2

tx ,
2

t jx  ) is non-zero 

for some j. The autocorrelation at lagjfor the squared residuals {
2

tx } is estimated by: 

 

 

2 2 2 2
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Where 
2

2

1
ˆ

N t

t

x

N



  

 

Under the null hypothesis that tx  is an i.i.d process, McLeod and 

Li (1983) show that, for fixed L: ˆ ˆ ˆ( (1),..., ( ))N L   is 

asymptotically a multivariate unit normal. Consequently, for L 

sufficiently large, the usual Box-Ljung statistic  

 
2

1

ˆ
( 2)

( )

L
j

j

Q N N
N j





 


                                 (4) 

 

is asymptotically 
2 ( )L  under the H0of a linear generating 

mechanism for the data. Typically L is taken to be around 20 

(Ashley and Patterson, 2001). 

 

2.3.2  ARCH LM Test  

 

A methodology to test for the ARCH effect using the Lagrange 

multiplier test was proposed by Engle (1982). This procedure is as 

follows: Obtain the squares of the residual from fitted model 
2̂

and regress them on a constant and q lagged values:  

2 2

0

1

ˆ ˆ ˆ ˆ
q

t i t i

i

    



                                                (5) 

whereq is the length of ARCH lags. The null hypothesis is that, in 

the absence of ARCH components, we have 0i  for all i = 1, 

2, …q. The alternative hypothesis is that, in the presence of 

ARCH components, at least one of the estimated i coefficients 

must be significant. In a sample of T residuals under the null 

hypothesis of no ARCH errors, the test statistic 
2TR  follows the

2  distribution with q degrees of freedom. If 
2TR  is greater 

than the Chi-square table value, we reject the null hypothesis and 

conclude there is an ARCH effect in the ARMA model. If 
2TR  

is smaller than the 
2 table value, we do not reject the null 

hypothesis. 

 

2.4  GARCH Modelling  

 

The ARIMA(p,d,q) model cannot capture the heteroskedastic 

effects of a time series process, typically observed in the form of 

high kurtosis, or clustering of volatilities, and the leverage effect. 

Engle (1982) introduced the Autoregressive Conditional 

Heteroskedastic (ARCH) model, later generalized by Bollerslev 

(1986), named Generalized Autoregressive Conditional 

Heteroskedastic model (GARCH). The term “conditional” implies 

the level of association on the past sequence of observations and 

the “autoregressive” describes the feedback mechanism that 

incorporates past observations into the present (Laux et al., 2011). 

  The variance equation of the GARCH(p,q) model can be 

expressed as; 

t t tz  (6) 

tz  (0, 1) 

2 2 2

1 1

p q

t i t i j t j

i j

      

 

     

2 2

1( ) ( )t i t          (7) 

where  (0, 1) is the probability density function of the 

innovations or residuals with zero mean and unit variance.  

  Optionally,  are additional distributional parameters to 

describe the skew and the shape of the distribution. If all the 

coefficient  is zero the GARCH model is reduced to the ARCH 

model. Similar to ARMA models a GARCH specification often 

leads to a more parsimonious representation of the temporal 

dependencies and thus provides a similar added flexibility over 

the linear ARCH model when parameterizing the conditional 

variance. Bolerslev (1986) has shown that the GARCH(p, q) 

process is wide-sense stationary if the following conditions hold: 

http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
http://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average
http://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
http://en.wikipedia.org/wiki/Lagrange_multiplier_test
http://en.wikipedia.org/wiki/Lagrange_multiplier_test
http://en.wikipedia.org/wiki/Robert_F._Engle
http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Autoregressive_moving_average_model
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1. ( )tE  = 0 

2. var( )
(1 (1) (1))

t




 


 
 

3. cov( , )t s  , t s if and only if (1) (1) 1    

 

  In most applications, the simple GARCH(1, 1) model has 

been found to provide a good representation of a wide variety of 

volatility processes (Bollerslev et al., 1992). 

 

 

3.0  RESULTS AND DISCUSSION 

 

The importance of first modelling the autoregressive integrated 

moving average (ARIMA) models in rainfall modeling is mainly 

for their use in explaining whether there is a nonlinear mechanism 

in the data generating processes that can well be explained by 

GARCH class models. The generalized autoregressive conditional 

Heteroskedastic model is a nonlinear model derived from a 

residual series of an ARIMA model. In order to check and 

modeled the behavior of rainfall in the study areas, the daily and 

monthly average rainfall data sets of Ipoh and Alorsetar for the 

period 01/01/1968 to 31/12/2003 were used. The monthly series 

were obtained from daily data by taking the average of daily 

rainfall over a month. 

  The basic approach to fit a suitable ARIMA model to time 

series, is to transform a non stationary time series to stationary 

time series, in this case, the time series(s) were decomposed, the 

seasonal effects were calculated and subtracted from the series 

rendering the series free of seasonality. After differencing, the 

series(s) appears to be quite stable over time. The orders p and q 

of the ARIMA models were identified and estimated for both 

series following Box and Jenkins methodology. Table 1 displays 

the results of fitted ARIMA models. The models were selected 

based on information criteria.  

 

 

Table 1  Results for estimated model parameters: ARIMA (p, d, q) for daily rainfall and ARIMA (p, d, q)(P, D, Q)[12] for the monthly average rainfall of 

Ipoh and Alor Setar 

 

 Ipoh  Alor Setar  

 ARIMA (2, 1 2)  ARIMA (3, 1, 1)  

Coefficients Estimates S.E Estimate S.E 
ar1 0.6369 0.0098 0.1075  

ar2 0.0145 0.0087 0.0214  

ar3 - - 0.0188  
ma1 1.5787 0.0047 -0.9717  

ma2 -0.5804 0.0044 -  

 ARIMA (0, 0, 2)(1, 0, 
2)[12] 

 ARIMA(1, 0, 2)(0, 0, 
2)[12] 

 

Coefficients Estimates S.E Estimate S.E 

ar1 - - 0.8808 0.0885 
sar1 0.4996 0.1008 - - 

ma1 -0.8912 0.0467 -1.8691  0.0860 

ma2 -0.0809 0.0461 0.8719  0.0855 
sma1 -0.5614 0.1085 -0.0978 0.0499 

sma2 -0.1580 0.0511 -0.0733  0.0542 

 

  The autocorrelation function of the residuals from the fitted 

models seems to be uncorrelated and the Ljung-Box Q-test results 

given in Table 2 confirms the adequacy of the  

 

models. This shows that the seasonal ARIMA models can 

adequately capture the behavior of the data generating process for 

the  monthly series(s). 

 
Table 2  Ljung-Box Q-test results for ARIMA (p, d, q) models 

 

  ARIMA (2, 1, 2)- ARIMA (3, 1, 1)-   

Residuals  Statistic p value Statistic p-value 

 Up to lag 10 9.3006 0.1574 5.4503  0.4875 

 Up to lag 15 12.6054  0.3199 7.5319  0.7545 
 Up to lag 20 18.2709  0.3083 9.5371  0.8897 

Squared Residuals Up to lag 10 26.6501  0.000168 42.0539  1.794e-07 

 Up to lag 15 32.0267 0.000755 44.3489  6.313e-06 
 Up to lag 20 32.8587  0.007715 48.9038  3.422e-05 

 

  However, the autocorrelation function of the squares of the 

residuals for the daily series(s) shows autocorrelation. The Ljung-

Box Q-test given in Table 2 also confirms the results. This is an 

indication of ARCH effect in the daily series. Formally, McLeod-

Li test and a test based on the Lagrange multiplier (LM) principle 

were applied to the square residuals of the fitted models. The 

results of the McLeod-Li test for ARCH effect is given in Figure 

1 (a & b), clear evidence to reject the null hypothesis of no ARCH 

effect was established for the daily series(s), and accepted for the 

monthly series(s) as shown in (c &d). The ARCH LM test results 

in Table 3 also reject the hypothesis of no ARCH effect. Hence 

indicates that GARCH modeling is necessary. 
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(a)                                                                                                                (b) 

 
(c)                                                                                                                   (d) 

Figure 1  McLeod-Li test for the residuals from (a) ARIMA (2, 1, 2), (b) ARIMA (3, 1, 1), (c) ARIMA(0,0,2)(1,0,2)[12]  and (d) ARIMA(1,0,2)(0,0,2)[12] 

models 

  The ARIMA-GARCH model is a combination of two 

models: (1) ARIMA model that take into account the mean 

behavior of a time series and (2) GARCH model which is used 

to model the variance behavior (ARCH effect). Using the 

residual series from the fitted ARIMA models, suitable GARCH 

models were built. The results of the combined models are given 

in Table 4. 

  Moreover, Figures 2(a&b) and 3(a&b) shows the resulting 

standardized autocorrelation functions of residuals and square 

residuals from the fitted ARIMA-GARCH models for the 

observed daily rainfall series of Ipoh and Alorsetar respectively. 

Both autocorrelation functions for the standardized residuals and 

standardized squared residuals of the ARIMA-GARCH models 

exhibits no serial dependence.  
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Table 3  ARCH LM test results for ARIMA models 

 
  ARIMA (2, 1, 2)  ARIMA (3, 1, 1) 

Statistic p-value Statistic p-value  

Residuals     
Up to lag 10 25.1211 0.0051 39.4692.101e-05  

Up to lag 15 29.7672 0.0128 41.386 0.0003 

Up to lag 20 30.5759  0.0310 45.236 0.0010 
Squared Residuals     

Up to lag 10 1.9495 0.9967  1.383 0.9993 

Up to lag 15 2.6618 0.9998  1.651 1 
Up to lag 20 3.3169  1 1.8 1 

 
Figure 4  The results of the estimated ARIMA-GARCH model for Ipoh and Alor Setar 

 
 Ipoh   Alor Setar   

Parameter Estimate Std. Error t value Estimate Std. Error t value 

  0.141677 0.116191 1.219  0.013686 0.104685 0.131 

  65.97217 10.42572 6.328 65.97217 10.42572 6.328 

  0.053076 0.008384 6.331 0.047572 0.004666 10.196 

  0.587048 0.062261 9.429 0.892369 0.010182 87.645 

 
(a) (b)  

Figure 2  Autocorrelation function for standardized residuals from (a) ARIMA(2, 1, 2)-GARCH(1, 1) and (b) ARIMA (3, 1, 1)-GARCH(1, 1) model 

 
(a)                                                                                                       (b) 

Figure 3  (a) and (b) Autocorrelation function for standardized squared residuals from ARIMA(2, 1, 2)-GARCH(1, 1) and ARIMA (3, 1, 1)-GARCH(1, 1) 

models
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The Ljung-Box Q-test is applied to the residuals and squared 

residuals of the fitted ARIMA-GARCH models, the results are  

presented in Table 5. 

 
Table 5  Ljung-Box Q-test results for ARIMA-GARCH model's goodness of fit 

 

  ARIMA (2, 1, 2)-

GARCH (1, 1) 

ARIMA (3, 1, 2)-

GARCH (1, 1) 

  

Std. Res  Statistic p-value Statistic p-value 
 Up to lag 10 8.78889  0.55225 12.78526 0.23593 

 Up to lag 15 13.0454 0.59879 16.12719 0.37365 

 Up to lag 20 19.0083  0.52129 19.23229 0.50678 
Std. Sqr. Res Up to lag 10 3.75911 0.95756 5.92739 0.82133 

 Up to lag 15 10.1500 0.81020 8.94127 0.88057 

 Up to lag 20 11.2073  0.94067  10.7504 0.95244 
Std. Res = Standardized Residuals; Std. Sqr. Res = Standardized Squared Residuals 

 

  According to the results, all models were specified 

correctly. Also McLeod-Li test for ARCH effect was applied to 

the residuals of the fitted ARIMA-GARCH models shown in 

Figure 4(a&b) visual inspection clearly shows that there is no 

any heteroskedastic effect left in both series, therefore, the 

models fits the daily rainfall data sets well.  

 
(a)             (b) 

Figure 4  (a) and (b) McLeod-Li test for the residuals from fitted ARIMA (2, 1, 2)-GARCH(1,1) and ARIMA (3, 1, 1)-GARCH(1,1) models respectively 

 

 

4.0  CONCLUSION 

 

It is shown in this paper that daily rainfall series of Ipoh and 

Alorsetar are affected by nonlinear characteristics of the 

variance often referred to as variance clustering or volatility, in 

which large changes often follow large changes, and small 

changes often follow small changes. In this work, a hybrid 

ARIMA-GARCH models were developed to take into accounts 

both the serial dependence and volatility in the daily rainfall 

series of Ipoh and Alorsetar. On the other hand, seasonal 

ARIMA models were developed and proved to be adequate for  

modelingthe monthly average rainfall time series of the stations 

considered. Thesemodelscan provideinformationthat will 

helpdecisionmakersin understandingthedynamicbehaviorof 

therainfall of Ipoh and Alorster for Agricultural and other 

hydrological issues. The methodology in the paper presupposes 

that trend analysis is not a factor in the modelling process; this 

puts a limit on the scope of the study. On the other hand 

incorporating it does not make the problem amendable. 

Modeling the mean and volatility of rainfall time series is not 

satisfactory to capture the whole mechanism that generates the 

rainfall due to the complex nature of its dependence structure. 

Therefore, further research based on long memory volatility 

modeling  is suggested for better results.  
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