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Abstract 

 

Flood is a commonly occurring hazard in Malaysia. The climate change in combination with the sea level 

rise will affected the frequency of flood events especially in a tropical country like Malaysia. Many 

researches focused on modeling rainfall data have been carried out in Malaysia. However, most of the 
rainfall studies did not include the zero values. The importance of these zero measurements should be 

examined in order to increase the quality of the research. The main purpose of this paper is to study the 

effect of zero measurement in rainfall analysis by applying a mixed bivariate lognormal distribution. The 
inter-station correlation coefficient was calculated in three cases of datasets. The first case considered 

only the positive values at both stations, and the second case included the positive values at either one of 

the stations, while the third case considered all values including zeroes at both rainfall stations. It was 
found that only the cases considering the positive measurements are useful and valid for the 

characterization of rainfall fields in our analysis.   

 
Keywords: Mixed bivariate lognormal distribution; zero measurements; inter-station coefficient  

correlation 
 

Abstrak 

 

Banjir merupakan salah satu bencana alam yang sering melanda di Malaysia.  Perubahan iklim dan 

kenaikan aras laut akan menjejas kekerapan banjir, terutama di negara tropika seperti Malaysia. Banyak 

kajian yang telah dijalankan di Malaysia memberi tumpuan kepada pemodelan hujan data. Walau 
bagaimanapun, kebanyakan kajian tersebut tidak merangkumi nilai sifar. Kepentingan nilai sifar perlu 

diselidiki bagi meningkatkan kualiti penyelidikan. Tujuan utama kertas kerja ini adalah untuk mengkaji 

kesan nilai sifar dalam kajian hujan dengan menggunakan taburan cantuman bivariat lognormal. Pekali 
korelasi antara stesen dihitung bagi tiga jenis data. Kes pertama mempertimbangkan hanya nilai-nilai 

positif di kedua-dua stesen, dan kes kedua adalah termasuk nilai-nilai positif di salah satu stesen, 

manakala kes ketiga mempertimbangkan semua nilai termasuk sifar di kedua-dua stesen hujan. Didapati 
bahawa hanya kes pertama yang merangkumi nilai positif adalah berguna dan sah dalam analisis ini. 

 

Katakunci: Taburan cantuman bivariat lognormal; kesan nilai sifar; pekali korelasi antara stesen 
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1.0  INTRODUCTION 

 

Most of the rainfall studies conducted in Malaysia excluded the 

zero values from the analysis. Without the zero values, the 

distribution of rainfall will eventually become a continuous 

distribution. However, the rainfall characteristic is known to 

have a mixed property, which includes both discrete and 

continuous values. Zero values, which represent the non-rainy 

days, are considered as a discrete distribution, while nonzero 

rainfall values are considered as a continuous distribution. Since 

the mixed distribution includes the possibility of the no rain 

phenomenon and the skewness of real rain, the concept of mixed 

distribution is introduced in 1990’s [1]. Based on the study, the 

mixed lognormal distribution was found to be an excellent fit to 

the average rain rate as well as having a tendency to provide an 

adequate model. Their findings have successfully increased 

awareness of zero values in rainfall studies. 

Excluding the zero values without any appropriate test will put 

the validity of the studies at risk. Even when two nearby rain 

gauge stations are located within one river basin, the data 

collected from the two stations can be very different. When it is 

raining at station A, station B might not have rain at all. Two 

nearby rain gauge stations can have different fitted distributions 

[2]. In that sense, the total length of dry and wet periods and the 

characteristics of the wet and dry conditions become of interest 

in rainfall analyses such as trend analysis, fitting of 

distributions, and climate change studies. Even though the zero 

measurements are assumed to be important, they are not yet 

seriously considered in any of the studies in Malaysia. Zero 

values are assumed to be a barrier preventing easier 

characterization of rainfall in both time and space [3]. To 

investigate the importance of zero measurements in rainfall 

studies, two studies with a focus on the inter-station correlation 

coefficient with respect to the distance between the two rain 
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gauges have been conducted [3-4]. They considered three 

possible cases of data structure in the problem. The first case 

considers only positive measurements at both rain gauge 

stations. The second case considers both zero and positive 

measurements, but either one of the two measurements has to be 

positive. The third case considers all the measurements 

including zero at both rain gauge stations. Bivariate mixed 

lognormal distributions have been applied to analyse these three 

possible cases [5]. The main finding of their works was that 

only the case which considers only positive values at both 

rainfall stations provides correlation estimates that are useful for 

the characterization of the rainfall fields. 

  Preliminary studies investigating the rainfall pattern and 

distributions in Malaysia have been successfully conducted by 

many researchers. For example, some studies concluded that the 

mixed distribution is found to be better than a single distribution 

in fitting rainfall data [6-8]. However, the analysis was done 

based on positive rainfall values where they only considered the 

rainfall amount on wet days without considering the zero values. 

The objective of this study is to determine the importance of 

zero values in rainfall analysis by applying a mixed bivariate 

distribution. The proposed distribution is lognormal. The present 

study is conducted in two ways: first, the analysis is done for 

stations that pass the lognormality test; second, the analysis is 

conducted for the stations that are based on the lognormal 

assumption. 

 

 

2.0  MATERIALS AND METHODS  

 

2.1  Study Area and Data 

 

The daily rainfall data were obtained from the Malaysian 

Meteorological Department and Drainage and Irrigation 

Department. The period of the study was from 1975 to 2007, a 

period of 33 years. The percentage of missing values during 

those periods was found to be less than 10% and they were 

estimated using the several weightings method [9]. The rainfall 

data were then checked through the homogeneity tests such as 

the standard normal homogeneity test, Buishand range test, the 

Pettit test, and the Von Neumann ratio test to ensure the quality 

of the data [10]. In total, 70 rain gauge stations were chosen after 

the homogeneity test. These stations were scattered over 

Peninsular Malaysia and their locations are shown in Figure 1. In 

this study, station NW17 is chosen as the target stations. The 

reason of choosing station NW17 is this station has many 

surrounding stations that nearly located. 

 
 

Figure 1  The locations of 70 stations in Peninsular Malaysia 

2.2  Bivariate Model for Rainfall Data  

 

The rainfall data used in this study can be categorized into four 

types of datasets: (0, 0), (x*, 0), (0, y*), and (x,y), where x*, y*, 

x, and y stand for positive values. The dataset is shown in Table 

1, where Nn
r

r 

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the number  3 ,2 ,1 ,0rnr  is a non-negative integer. 

 
Table 1  Restructured rainfall data at two rain gauge stations 
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  Let a non-negative random vector  ,X Y
 
be the value of 

rainfall measurements at two rain gauge stations. The type of 

data in Table 1 suggested that a bivariate mixed distribution 

should be used to model the rainfall measured at two rain gauge 

stations [5]. The probability distribution of  ,X Y can be 

represented as: 

 

  00, 0P X Y   
 

   10 , 0 , 0P X x Y F x x    
 

   20, 0 , 0P X Y y G y y    
 

   30 , 0 , , , 0P X x Y y H x y x y     

         (1) 

 

Where 0 1( 0,1,2,3)r r   and

0 1 2 3 1       , F and G are univariate positive 

continuous distribution functions, and H is a bivariate positive 

continuous joint distribution function. The conditional 

distribution at both of the rain gauge stations or at either one of 

the stations is as follows: 

   | 0 , 0 0P X x X x Y F x x     

 

   | 0, 0 0P Y y X Y y G x y     

   
 

   , | 0, 0 , , 0P X x Y y X Y H x y x y     

         (2) 

 

  In modelling rainfall data, any kind of positive skewed 

distribution can be used for F or G and any bivariate distribution 

such as an exponential, gamma, or lognormal joint distribution 

can be used for H [11].However, only 19 rainfall stations were 

found to pass the lognormality test, while the rest showed a 

different fitted distribution. However, based on the findings by 
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[2], the majority of the stations showed a mixed lognormal 

distribution or a univariate case. Therefore, the bivariate mixed 

lognormal distribution defined by [5] and [10] was adopted for 

the bivariate analysis in this study. The method of parameter 

estimation for bivariate mixed lognormal distribution can also 

be found in [5]. The estimated parameters were then substituted 

into the equations formulated by [3] and [4] to find the inter-

station correlation coefficient between two stations. 

 

2.3 Inter-station Correlation Coefficient Between Two 

Stations 

 

In order to compute the inter-station correlation coefficient of 

rainfall data between two rainfall stations, this study follows the 

formulated equation simplified by [3] and [4]. The relationship 

between the restructured rainfall data of two rain gauge stations 

can be determined in the following three cases. 

 

(i) Case A, where A = 0 0X and Y  and 

the data  ,x y  are used;  

(ii) Case B, where  0 0B X or Y   and 

the data  *,0x ,  *0, y , and  ,x y
 
are 

used; 

(iii) Case C, where  0 0C X and Y    and 

all of the data  0,0 ,  *,0x ,  *0, y , and 

 ,x y are used.                                                                                                   

(iv) We denote i  as the inter-station correlation 

coefficients under the three circumstances where 

, ,i A B C . The inter-station correlation 

coefficients A  
and B  

are conditional on A  

and B , while C  
is the unconditional inter-

station correlation coefficient.  

 

  The well known theorem for conditional expectation by 

[12] is used to derive the relationship between the inter-station 

correlation coefficients. The theorem can be expressed as 

follows: 

 

     |
over x

E h Y E h Y X x P X x          (3) 

 

  By applying the theorem, the relationship between the 

moment under the condition C can be denoted by  kE X , 

and the moment under the condition A or B can be denoted by 

 |kE X A
 
or  |kE X B

 
respectively. The following 

equations can be found in [4]: 

 

         

   0

| |

1 |

k k k c c

k
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         (4) 

 

     1 3| 0, 0 |k k kE X E X X Y E X A    

         (5) 

 

where  P B
 

is the probability of B  and 

   1 cP B P B  . Using the same theorem as that 

applied for Equations (4) and (5), the moments of Y are as 

follows: 

 

     

   

2 3

0

| 0, 0 |

1 |

k k k

k

E Y E Y X Y E Y A

E Y B

 


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        (6) 

 

       3 0| 1 |k k k k k kE X Y E X Y A E X Y B   

         (7) 

 

All equations used to find the values of A , B , and C  can 

be found in [3] and [4]. 

 

 

3.0  RESULTS AND DISCUSSION 

 

A testing procedure for bivariate lognormality suggested by [11] 

was conducted for all 70 stations. The station NW17 was chosen 

as the target station along with another 18 neighbouring stations 

that passed the lognormality test based on the lowest value 

indicated by the AIC criterion. The distance between stations 

ranged from 21 to 533 km. The analysis in this study is 

conducted in two parts. First, the study will compute the inter-

station correlation coefficients between the station NW17 and 

the other 69 neighboring stations based on the assumption of 

lognormality. Next, the inter-station correlation coefficients will 

be recomputed again with only those stations that passed the 

lognormality test. 

  Figure 2 displays the inter-station correlation coefficient of 

station NW17 with each of the other 69 stations based on the 

lognormal assumption, while the inter-station correlation 

coefficient between station NW17 and the 18 stations that pass 

the test of lognormality is shown in Figure 3. Although both of 

the figures shown different trend lines for the inter-station 

correlation coefficients of the three cases, some similarities do 

exist. From both figures, the inter-station correlation coefficients 

in case A are located near the zero regions; the inter-station 

correlation coefficients of case B are mostly negatively 

correlated, and the inter-station correlation coefficients of case 

C are usually positively correlated. Besides, the inter-station 

correlation coefficient of case C is the highest compared to case 

A and case B. The inter-station correlation coefficient of case B 

is the lowest among the three cases.  
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Figure 2  Spatial correlations estimated for the three cases of station 

NW17 based on the lognormal distribution assumption with the other 69 

stations (rho is  ) 

 

 
 

Figure 3  Spatial correlations estimated for the three cases of station 

NW17 with 18 stations that pass the test of lognormality (rho is  ) 

 

 

  Cases A, B, and C in both figures provide consistent inter-

station correlation coefficients with respect to the distance 

between gauges due to small variations. However, the inter-

station correlation coefficients of cases A, B, and C in Figure 3 

are slightly more stable than in Figure 2. The difference in the 

variability of the correlation coefficient between both figures is 

hard to determine from the graphical display. Hence, the 

variances were computed and are shown in Table 2. The lowest 

variability occurs for case A, followed by case C. The 

variability of case B is between those of case A and case C. The 

percentage variability for the inter-station correlation coefficient 

of case A is 0.09% for those stations which are based on the 

lognormal assumption, while for stations that passed the 

lognormality test it is around just 0.05%. The difference is 

nearly 0.04%. Similarly for case C, the percentage variability 

for stations that are based on lognormal assumption is greater 

than the variance for stations that passed the lognormality test.  

Overall, the result is more accurate for those stations that have 

been proven to follow the lognormal distribution than for those 

for which the lognormal assumption is used. Based on the 

analysis, the study found that the value of the inter-station 

correlation coefficient for case A is the most consistent, 

compared to the other two cases. It is shown that case A, which 

only includes the positive values from both stations, is useful 

and valid for the characterization of rainfall fields in our 

analysis. 

 

 

 

 

Table 2 The percentage variance of the inter-station correlation 

coefficients of cases A, B and C 

 
Inter-station 
correlation 

coefficient 

A  B  C  

Stations with 

lognormal 
assumption 0.09% 0.14% 0.13% 

Stations that passed 

the lognormality 
test 0.05% 0.14% 0.08% 

 

 

4.0  CONCLUSION 

 

The importance of zero values in rainfall research was analysed 

in this study. A bivariate mixed distribution is used to compute 

the inter-station correlation coefficient for four types of datasets. 

Three cases were considered: Case A, which considered positive 

measurements from both stations, Case B, which considered the 

positive measurements from either one or both stations, and Case 

C, which considered all the rainfall measurements including 

zeroes at both of the stations.  

  The research was carried out using station NW17 as the 

target station. The analysis has been done using two different 

approaches: firstly, the inter-station correlation coefficient was 

computed for all stations based on the lognormality assumption, 

and secondly the inter-station correlation coefficient was 

computed only for stations that passed the test of lognormality. 

More variability was observed when considering the zero 

measurements (cases B and C) compared to case A. Case A 

showed the lowest variability, especially for those stations that 

have been proven to follow a lognormal distribution. 
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