
 
63:2 (2013) 41–44 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | ISSN 0127–9696 

 

Full paper 
Jurnal 

Teknologi 

Quality Control in Cocoa Powder Production Process: A Robust MSPC 
Approach 
 
S. L. Leea*, M. A. Djauharia 

 
aDepartment of Mathematical Sciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, johor, Malaysia 
 

*Corresponding author: leesiawli@gmail.com 

 
 

Article history 

 
Received : 21 January 2013 

Received in revised form :  

7 May 2013 
Accepted : 25 June 2013  

 

Graphical abstract 

 

 
 

 

 

 

Abstract 

 
To monitor a multivariate process mean, Hotelling’s T2 control chart is often used. However, the presence 

of multiple outliers may go undetected due to the masking effect or swamping effect. In this study, we 

propose a robust Hotelling’s T2 control charts where the mean vector and the covariance matrix are 
estimated by using fast minimum covariance determinant (FMCD) which gives a high breakdown point 

estimates. This study found that the latter approach performs far better than the former in terms of the 
ability in detecting an out-of-control situation during the start-up stage. We present and discuss our 

experience in monitoring the process mean of cocoa powder production process in a Malaysian company 

located in Johor Bahru.   
 

Keywords: Control chart; statistical process control; multivariate normal process; robust estimation; fast 

minimum covariance determinant 
 

Abstrak 

 

Untuk memantau min proses multivariat, carta kawalan T2 Hotelling sering digunakan.Walau 

bagaimanapun, kehadiran pelbagai titik terpencil mungkin tidak dapat dikesan oleh kesan pelekat. Dalam 

kajian ini, kami mencadangkan carta kawalan T2 Hotelling di mana vektor min dan matriks kovarians 
adalah dianggarkan dengan menggunakan minimum kovarians penentu (FMCD) yang memberikan 

anggaran titik kerosakan yang tinggi. Kajian ini mendapati bahawa pendekatan kedua jauh lebih baik 

daripada yang pertama dari segi keupayaan untuk mengesan keadaan di luar kawalansemasa peringkat 
permulaan. Kami hadir dan membincangkan pengalaman kami dalam memantauproses pengeluaran 

serbuk koko di sebuah syarikat Malaysia di Johor Bahru. 

 
Kata kunci: Carta kawalan; kawalan proses statistik; proses normal multivariat; anggaran teguh; penentu 

kovarians minimum 
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1.0  INTRODUCTION 

 

The concept of quality has long been understood and defined by 

many people as the way a physical product compared to some 

defined ideal. If the product close to the ideal, its quality was 

considered good; otherwise the quality was poor. However, 

nowadays the concept of quality has expanded to mean as “a 

measure of superior or a state of being free from defectiveness 

and significant variations, brought about by the rigorous and 

consistent adherence to measurable and verifiable standards to 

achieve uniformity of output that satisfies specific customer or 

user requirements”. (Business Dictionary) 

  Due to increase of customer demands on products, 

monitoring the process variables are become complex and 

multivariate in nature. Monitoring these process variables 

separately will be misled because without taking their correlation 

into consideration [1]. Therefore, some great reviews discussed 

about Multivariate Statistical Process Control (MSPC) with the 

use of multivariate control chart in considering the correlation 

among the process variables can be found in Mason and Young 

[2], Johnson and Wichern [3], and Montgomery [4].  

  According to Alt [5], monitoring process variables consists 

of two distinct phase – Phase I and Phase II. Although both phases 

are devoted in identify the out-of-control signals, but each phase 

has unique goal. In Phase I, based on a historical data set, a data 

subset (so-called reference sample) is selected which is clean from 

outliers. The reference sample is then used to estimate all 

parameters. In Phase II, the results of Phase I are then used to 

monitor the process by detecting departures from the statistical 

parameters that have been estimated. Jensen et. al. [6] have 

remark that a successful of monitoring process in Phase II 

depends on a successful analysis during Phase I.  

  As we mention in the previous paragraph, the main problem 

in Phase I is to estimate the parameters of in control process. Any 
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changes in the process parameters can give high impact on a 

critical quality attribute and therefore, the choice of the 

parameters estimation is important. There are two parameters that 

we need to monitor, namely mean vector and covariance matrix. 

However, in real data sets, it often exists that some observations 

are different from majority (so-called outliers) which strongly 

influence the parameter estimation [7]. In consequence, estimating 

the parameters from the reference sample is not effective and 

leads to poor properties in detecting out-of-control signals. 

  To handle this problem, we need a high breakdown point 

robust parameter estimator. There are many different robust 

estimation methods available in the literatures, but the most 

popular method is Fast Minimum Covariance Determinant 

(FMCD) which is introduced by Rousseeuw and Van Driessen 

[8]. FMCD is a hybrid algorithm based on an iterative scheme and 

the Minimum Covariance Determinant (MCD) estimators. It is 

widely used because of the computation efficiency and time 

saving. 

  In what follows, we compare control charts constructed by 

using the classical approach and the robust approach. The rest of 

the paper is organized as follows. The next section recalls the 

Hotelling’s T2 statistic based on the classical sample mean vector 

and sample covariance matrix. Section 3 presents the robust 

Hotelling’s T2 statistic where the parameters are estimated by 

using FMCD. In section 4, we present an industrial example. At 

the end of this paper, we will discuss the conclusion. 

 

 

2.0  CLASSICAL APPROACH 

 

Suppose that we have a data matrix X of size (m x p) which 

consisting of m independent observations from the p–variate 

normal distribution Np (µ, ∑). The p variables are to be monitored 

simultaneously based on that data matrix. Based on the historical 

data set, the unknown parameters   and Σ  are estimated and 

replaced with sample mean vector  X  and sample covariance 

matrix S , respectively, 
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Based on this approach, Hotelling’s 
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iT  statistics is  
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See Chou et al. [9] for the details of the proof of equation (2). 

Therefore, the corresponding upper control limit (UCL) and lower 

control limit (LCL) are 
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3.0  ROBUST APPROACH 

 

Consider a random vector data set of p–variate normal 

observations. The FMCD algorithm is as follows (see [8] for more 

details): 

  oldH is an arbitrary subset containing 
1

2

m p
h

 
  data 

points. 

 Compute the mean vector 
oldHX and covariance matrix 

oldHS

of all observations belonging to   oldH . Then compute 

     2 1'
old old old oldH i H H i HT i X X S X X      for 1,2, ,i m   

 Sort these  2

oldHT i  value in increasing order, 

      2 2 2(1) 2 ( )
old old oldH H HT T T m    . 

where  is a permutation on   1,2, ,m . 

 Define  (1) (2) ( )   , , ,new hH X X X    .Calculate   
newHX , 

newHS and  2  
newHT i . 

 If   det 0
newHS   or      det det

new oldH HS S , the process is 

stopped. Otherwise, the above process is continued until the k-th 

iteration. Thus, 
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 Let RX  and RS  are the sample mean and covariance matrix 

given by that process. Hotelling’s 2
,R iT  statistic is defined as 

   2 1
, 'R i i R R i RT X X S X X        for 1,2, ,i m      (5) 

  By using robust estimate, the distributional property of 2
,R iT  

is still open to be explored. In Jensen et al. [6], the distribution of 

the 2
,   R iT converges in distribution to Chi-square distribution for 

1,2, ,i m   as  m . In this paper, 2
p  distribution 

approximation is used. According to Chi-square distribution, the 

cut-off values are as follows: 
2

, pUCL   (6) 

2
1 , pLCL     (7) 

  A friendly user toolbox in LIBRA [10] contains 

implementations of robust methods and functions for location and 

scale estimation. In this study, MATLAB will be used to get the 

results. Besides that, in this paper we plan to use    0.75h m . 

When a large proportion of contamination is presumed, 

intermediate value for 0.75h m  is recommended to obtain a 

higher-sample efficiency [10]. 

 

 

4.0  INDUSTRIAL EXAMPLE 

 

In this section, we compare the classical approach and robust 

approach during Phase I operation for the production process of 

cocoa powder in a food industry, Industry A Sdn Bhd. The name 

of Industry A is kept confidential upon request made by the 

management of the industry. There are p = 7 quality variables, 

namely 1x  = intrinsic color L, 2x  = intrinsic color a, 3x  = 

intrinsic color b, 4x  = fineness, 5x  = pH, 6x  = fat content, and 

7x  = moisture. The number of individual observations is m = 

147. Observations from the first 100 sample are utilized as the set 
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of historical data during Phase I and remain 47 samples are 

reserved for future observations during Phase II. 

  In order to develop the reference samples, outlier purging 

process is undergoing. Here, the T2 statistic is applied to detect 

out-of-control signals. Firstly, we showed the difference in Phase 

I between classical estimation and robust estimation. The mean 

vector and covariance matrix based on classical estimation are  
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  From the table of Beta distribution with degree of freedom p 

= 7 and probability of false alarm 0.0027, we get 

  20.24245UCL   and   0.84065LCL  . Figure 1 visualizes Phase I 

based on classical approach and we can clearly see that no 

observation lies outside the control limits. 

 

 
 

Figure 1  Phase I based on classical Hotelling’s T² statistic 

 
 

  Next we continue to further analyze Phase I using robust 

Hotelling’s T2 statistic to see whether masking and swamping 

effects occur. The mean vector and covariance matrix based on 

robust estimation by using FMCD are:  
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  From the table of Chi-square distribution, with p = 7 and 

probability of false alarm 0.0027, 16.01276UCL   and

  1.68987LCL  . Figure 2 shows the Phase I control chart based 

on robust Hotelling’s T2 statistic. Sample number 1, 2, 3, 4, 5, 6, 

7, 12, 13, 14, 15, 16, 17, 18, 29, 35, 72, 73, 74, 75, 82, 83, 84 and 

99 have the largest T2 value and lie outside the control limits. 

 

 
 

Figure 2  Phase I based on robust Hotelling’s T2 statistic 

 

 

  The figure presents the information that cannot be provided 

by classical Hotelling’s T2 chart. Therefore 24 outliers need to 

remove for further analysis. By removing all 24 outlying 

observations and recalculating the parameter estimates with m = 

76 and p = 7, the new mean vector and sample covariance matrix 

were obtained. The results are presented as below: 
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  Reconstructing the control chart, we observe that in Figure 3 

there is none of the observation lie outside the control limits. If we 

compare that result with that given by classical approach, (see 

Figure 1) where no outlier is detected, the use of classical 

approach will be misleading. 
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Figure 3  Robust Hotelling’s T2 control chart with reference sample 

 

 

  Now we present the advantage of the robust approach for 

Phase II process mean monitoring. Figure 4 represent the history 

of process mean using classical Phase I and robust Phase I. By 

comparing the performance of monitoring process mean in Figure 

4, the robust Phase II monitoring is more sensitive compared to 

the classical Phase II monitoring. 

 

 
(a) Classical approach 

 

 
(b) Robust approach 

 

Figure 4  Classical and robust Phase II monitoring 

 

 

5.0  CONCLUSION 

 

In this paper, we compare the control charts by using the classical 

approach and robust approach. We successfully point out the 

inability of the classical Hotelling’s T2 control chart for detecting 

out-of-control signals due to special causes, e.g. masking effect 

and swamping effect. The robust T2 charting technique has taken 

advantage of the robust estimators to address the problem of 

inevitable effects exist in cocoa powder production process. 
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