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Abstract 

 
Typically, a Poisson regression model is assumed for count data. In many cases, there are many zeros in 

the dependent variable, therefore the mean is not equal to the variance value of the dependent variable. 

Thus, we suggest using a hurdle and zero-inflated Poisson regression model. Furthermore, the response 
variable in such cases is censored for some values. In this paper, a censored hurdle Poisson regression 

model and a censored zero-inflated Poisson regression model will be discussed to handle the 

overdispersion problem when there are excess zeros in the response variable. The estimation of regression 
parameters using the maximum likelihood method is discussed and the goodness-of-fit statistics for the 

regression model are examined. An example and a simulation will be used to compare the censored 

hurdle Poisson regression model with the censored zero-inflated Poisson regression model in terms of the 
parameter estimation, standard errors and the goodness-of-fit statistics. 
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Abstrak 

 
Biasanya, model regresi Poisson diandaikan untuk data kiraan. Dalam banyak kes, terdapat banyak sifar 

dalam pemboleh ubah bersandar, maka min tidak sama dengan nilai varians pemboleh ubah bersandar. 

Oleh itu, kami cadangkan penggunaan model “hurdle and zero-inflated Poisson regression.” Tambahan 
pula, pemboleh ubah bersandar dalam kes-kes seperti itu ditapis untuk beberapa nilai. Dalam kertas kerja 

ini, model “censored hurdle Poisson regression” dan model “censored zero-inflated Poisson regression” 

akan dibincangkan untuk menangani masalah “overdispersion” apabila terdapat sifar yang berlebihan 
dalam pemboleh ubah bersandar. Anggaran parameter regresi menggunakan kaedah kebolehjadian 

maksimum dibincangkan dan statistik kebaikan kesesuaian bagi model regresi diperiksa. Satu contoh dan 

satu simulasi akan digunakan untuk membandingkan model “censored hurdle Poisson regression” dengan 
model “censored zero-inflated Poisson regression” dari segi anggaran parameter, ralat piawai dan statistik 

kebaikan kesesuaian. 
 

Kata kunci: Censored model; regresi Poisson; overdispersion; sifar berlebihan 
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1.0  INTRODUCTION 

 

Commonly, the starting point for the modeling of the number of 

reported claims is the Poisson distribution: 

𝑓𝑌𝑖
(𝑦𝑖) =

𝑒−𝜆𝑖𝜆𝑖
𝑦𝑖

𝑦𝑖!
        (1) 

where 𝑌𝑖 is the response variable which follows a Poisson 

distribution with mean value of 𝜆𝑖 and the covariates are included 

in the model by the parameter 𝜆𝑖 = exp(xi
′𝛽). The Poisson 

distribution is equidispersed since its mean and variance are both 

equal to 𝜆𝑖. In some cases, the number of zeros in the response 

variable is more than expected, thus the Poisson distribution 

cannot handle this kind of data anymore. In this case, there are 

two suggested models, hurdle model and zero-inflated model. 

Mullahy (1986) has first discussed hurdle count data models. 

Hurdle models permit for a systematic difference in the statistical 

process governing individuals (observations) below the hurdle and 

individuals above the hurdle. In particular, a hurdle model is 

mixed by a binary outcome of the count being below or above the 

hurdle (the selection variable), with a truncated model for 

outcomes above the hurdle. That is why hurdle models sometimes 

are also called as two-part models. 

  Lambert (1992) introduced the original formulation for the 

zero-inflated Poisson (ZIP) model. She also talked about the 

models' extension from the Poisson and negative binomial and 

argued about the derivation of the maximum likelihood (ML) 

estimates. In her work, she discussed some simulations to test the 

sufficiency of the model. She also concluded that these 
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simulations with one covariate are suitable for both 𝜆 (parameter 

of the Poisson model) and 𝑝 (the parameter of the logit part of the 

model). 

  The hurdle model is flexible and can handle both under- and 

overdispersion problem. A generalized hurdle model is introduced 

by Gurmu (1998) for the analysis of overdispersed or 

underdispersed count data. Greene (2007) has discussed about the 

comparison between hurdle and zero-inflated models as two part-

models. He also discussed the hurdle and zero-inflated regression 

models with and without covariates. 

  In many applications, count data are often censored from 

above or below a specific point or a combination of them and this 

is because there are some outliers in the model which these 

outliers can be some large values or some small values. The case 

of variable threshold was considered by Caudill and Mixon 

(1995). To analyze censored data with a constant censoring 

threshold, Terza (1985) proposed the censored Poisson regression 

model and obtained the ML estimator using the Newton-Raphson 

method. In practice, censored count data are too dispersed to use 

the censored Poisson model. 

  In this article, we would like to study two problems together. 

The first problem is many zeros in the response variable that we 

suggested using a hurdle Poisson (HP) regression model or ZIP 

regression model. The second problem is the existing of some 

outliers or some large values in the response variable that we 

proposed to censor the data from the right side. In this paper, the 

main objective is to compare a censored hurdle Poisson (CHP) 

Regression model with a censored zero-inflated Poisson (CZIP) 

regression model. In section 2, the hurdle Poisson (HP) and ZIP 

regression models are defined and the likelihood function of the 

models in right censored data is formulated. In section 3, the 

parameter estimation is discussed using maximum likelihood 

method. In section 4, the goodness-of-fit statistics for the 

regression models is examined. A simulation for the CHP and 

CZIP regression models in terms of the parameter estimation, 

standard errors and goodness-of-fit statistic is conducted in 

section 5. 

 

 

2.0  MATERIALS AND METHODS 

 

2.1  HP Model 

 

Let 𝑌𝑖 , 𝑖 = 1,2, … , 𝑛 be a nonnegative integer-valued random 

variable and suppose 𝑌𝑖 = 0 is observed more than expected. We 

consider a hurdle Poisson regression model in which the response 

variable 𝑌𝑖(𝑖 = 1, . . . , 𝑛) has the distribution 

𝑃(𝑌𝑖 = 𝑦𝑖) = {

𝑤0 𝑦𝑖 = 0

(1 − 𝑤0)
𝑒−𝜆𝑖𝜆𝑖

𝑦𝑖

(1 − 𝑒−𝜆)𝑦𝑖!
𝑦𝑖 > 0

               (2) 

where 0 < 𝑤0 < 1 and 𝑤0 = 𝑤0(𝑧𝑖) satisfy  

logit(𝑤0) =  log (
𝑤0

1 − 𝑤0
) = ∑ 𝑧𝑖𝑗𝛿𝑗

𝑚

𝑗=1

                               (3) 

where 𝑧𝑖 = (𝑧𝑖1 = 1, 𝑧𝑖2, . . . , 𝑧𝑖𝑚) is the i-th row of covariate 

matrix 𝑍 and 𝛿 =  (𝛿1, 𝛿2, . . . , 𝛿𝑚) are unknown 𝑚-dimensional 

column vector of parameters. In this set up, the non-negative 

function 𝑤0 is modeled via logit link function. This function is 

linear and other appropriate link functions that allow w0 being 

negative may be used. In addition, there is interest in capturing 

any systematic variation in 𝜆𝑖, the value of 𝜆𝑖 is most commonly 

placed within a loglinear model 

log(𝜆𝑖) = ∑ 𝑥𝑖𝑗𝛽𝑗

𝑚

𝑗=1

                                                          (4) 

and 𝛽𝑗 's are the independent variables in the regression model and 

m is the number of these independent variables. 

 

2.2  ZIP Model  

 

Let Yi be a nonnegative integer-valued random variable and 

suppose that there are many zeros in the response variable even 

more than what would typically be predicted. We consider a zero-

inflated Poisson regression model in which the response variable 

Yi(i = 1, … , n) has the distribution 

𝑃𝑟(𝑌𝑖 = 𝑦𝑖) = {

𝜙𝑖 + (1 − 𝜙𝑖) exp(−𝜆𝑖),        𝑦𝑖 = 0

(1 − 𝜙𝑖)
exp(−𝜆𝑖) 𝜆𝑖

𝑦𝑖

𝑦𝑖!
,           𝑦𝑖 > 0

           (5) 

where the parameter 𝜆𝑖 and 𝜙𝑖 satisfy log(𝜆𝑖) = ∑ 𝑥𝑖𝑗𝛽𝑗
𝑘
𝑗=1  and 

0 < 𝜙𝑖 < 1.  

 

2.3  Censored Model 

 

The value of response variable, 𝑌𝑖, for some observations in a data 

set, may be censored. If censoring occurs for the 𝑖th observation, 

we have 𝑌𝑖 ≥ 𝑦𝑖 (right censoring). However, if no censoring 

occurs, we know that 𝑌𝑖 = 𝑦𝑖. Thus, we can define an indicator 

variable 𝑑𝑖 as 

𝑑𝑖 = {
1 if 𝑌𝑖 ≥ 𝑦𝑖  
0 otherwise

 

We can now write 

Pr(𝑌𝑖 ≥  𝑦𝑖) = ∑ Pr(𝑌𝑖 = 𝑗)

∞

𝑗=𝑦𝑖

= 1 − ∑ Pr(𝑌𝑖 = 𝑗)

𝑦𝑖−1

𝑗=0

 

Therefore, the log-likelihood function of the censored 

regression model can be written as 

log 𝐿(𝜃𝑖; 𝑦𝑖) = ∑ {(1 − 𝑑𝑖)[𝐼𝑦𝑖=0log 𝑓(0; 𝜃𝑖)

𝑛

𝑖=1

+ 𝐼𝑦𝑖>0log 𝑓(𝑦𝑖; 𝜃𝑖)]

+ 𝑑𝑖 log ( ∑ 𝑃𝑟(𝑌𝑖 = 𝑗)

∞

𝑗=𝑦𝑖

)} 

Thus, we can write the log-likelihood function for the censored 

HP and ZIP as follows, 

𝐿𝐿𝐶𝐻𝑃 = ∑ {(1 − 𝑑𝑖)[𝐼𝑦𝑖=0 log 𝑤0

𝑛

𝑖=1

+ 𝐼𝑦𝑖>0{log(1 − 𝑤0) − 𝜆𝑖

+ 𝑦𝑖 log  𝜆𝑖  – log(𝑦𝑖!) − log(1 − 𝑒−𝜆𝑖)}]

+ 𝑑𝑖 log ∑ 𝑃𝑟(𝑌𝑖 = 𝑗)

∞

𝑗=𝑦𝑖

} 

𝐿𝐿𝐶𝑍𝐼𝑃 = ∑ {(1 − 𝑑𝑖)[𝐼𝑦𝑖=0 log{𝜙𝑖 + (1 − 𝜙𝑖) exp(−𝜆𝑖)}

𝑛

𝑖=1

+ 𝐼𝑦𝑖>0{log(1 − 𝜙𝑖) − 𝜆𝑖

+ 𝑦𝑖 log  𝜆𝑖  – log(𝑦𝑖!)}]

+ 𝑑𝑖 log ∑ 𝑃𝑟(𝑌𝑖 = 𝑗)

∞

𝑗=𝑦𝑖

} 

 

2.4  Parameter Estimation 

 

In this section, we obtain the parameters estimation by the ML 

method. By taking the partial derivative of the likelihood function 

and setting it equal to zero, the likelihood equation for estimating 
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the parameter is obtained. Thus we obtain the likelihood equations 

for the censored HP and ZIP regression models as follows, 

𝜕𝐿𝐿𝐶𝐻𝑃

𝜕𝛽𝑟
= ∑ {(1 − 𝑑𝑖)𝐼𝑦𝑖>0 [𝑦𝑖 − 𝜆𝑖 −

𝜆𝑖𝑒−𝜆𝑖

1 − 𝑒−𝜆𝑖
] 𝑥𝑖𝑟

𝑛

𝑖=1

+
𝑑𝑖

∑ 𝑃𝑟(𝑌𝑖 = 𝑗)∞
𝑗=𝑦𝑖

𝜕 ∑ 𝑃𝑟(𝑌𝑖 = 𝑗)∞
𝑗=𝑦𝑖

𝜕𝛽𝑟
} = 0 

𝜕𝐿𝐿𝐶𝐻𝑃

𝜕𝛿𝑡
= ∑{(1 − 𝑑𝑖)[𝐼𝑦𝑖=0(1 − 𝑤0) − 𝐼𝑦𝑖>0𝑤0]}𝑧𝑖𝑡

𝑛

𝑖=1

= 0 

where 

𝜕 ∑ 𝑃𝑟(𝑌𝑖 = 𝑗)∞
𝑗=𝑦𝑖

𝜕𝛽𝑟
= ∑ (1 − 𝑤0)

𝑒−𝜆𝑖𝜆𝑖
𝑗

(1 − 𝑒−𝜆)−2𝑗!
[𝑗(1 − 𝑒−𝜆𝑖)

∞

𝑗=𝑦𝑖

− 𝜆𝑖]𝑥𝑖𝑟 

and 

𝜕𝐿𝐿𝐶𝑍𝐼𝑃

𝜕𝛽𝑟
= ∑ {(1 − 𝑑𝑖) [𝐼𝑦𝑖=0

−𝑤𝑖
−1𝑒−𝜆𝑖

1 + 𝑤𝑖𝑒−𝜆𝑖
𝑥𝑖𝑟𝜆𝑖

𝑛

𝑖=1

+ 𝐼𝑦𝑖>0(𝑦𝑖 − 𝜆𝑖)𝑥𝑖𝑟  ]

+
𝑑𝑖

∑ 𝑃𝑟(𝑌𝑖 = 𝑗)∞
𝑗=𝑦𝑖

𝜕 ∑ 𝑃𝑟(𝑌𝑖 = 𝑗)∞
𝑗=𝑦𝑖

𝜕𝛽𝑟
} = 0 

𝜕𝐿𝐿𝐶𝑍𝐼𝑃

𝜕𝛿𝑡
= ∑ {(1 − 𝑑𝑖) [𝐼𝑦𝑖=0

1 − 𝑒𝜆𝑖

𝑤𝑖 + 𝑒𝜆𝑖
− 𝐼𝑦𝑖>0]

𝑤𝑖

1 + 𝑤𝑖
𝑧𝑖𝑡}

𝑛

𝑖=1

= 0 

where 𝑤𝑖 =
𝜙𝑖

1−𝜙𝑖
= exp{∑ 𝑧𝑖𝑗𝛿𝑗

𝑚
𝑗=1 }. Furthermore, the expression 

for 𝜕 ∑ Pr(𝑦𝑖 = 𝑗) /𝜕𝛽𝑟
∞
𝑗=𝑦𝑖

 can be written as follows, 

𝜕 ∑ Pr(𝑦𝑖 = 𝑗)∞
𝑗=𝑦𝑖

𝜕𝛽𝑟
= − ∑ Pr(𝑌𝑖 = 𝑗) (𝑦𝑖 − 𝜆𝑖)𝑥𝑖𝑟

𝑦𝑖−1

𝑗=0

 

 

2.5  Goodeness-of-fit 

 

For the count regression models, a measure of goodness of fit may 

be based on the deviance statistic D defined as 

 

𝐷 = −2[log 𝐿(𝜃𝑖 ; �̂�𝑖) − log 𝐿(𝜃𝑖; 𝑦𝑖)]         (6) 

 

where log 𝐿(𝜃𝑖; �̂�𝑖) and log 𝐿(𝜃𝑖; 𝑦𝑖) are the model’s likelihood 

evaluated respectively under 𝜃𝑖  and 𝑦𝑖 (Lambert, 1989). 

  For an adequate model, the asymptotic distribution of the 

deviance statistic 𝐷 is chi-square distribution with 𝑛 − 𝑘 − 1 

degrees of freedom which 𝑘 is the number of estimated 

parameters. Therefore, if the value for the deviance statistic 𝐷 is 

close to the degrees of freedom, the model may be considered as 

adequate. When we have many regression models for a given data 

set, the regression model with the smallest value of the deviance 

statistic 𝐷 is usually chosen as the best model for describing the 

given data. 

  In many data sets, the �̂�𝑖’s may not be reasonably large and 

so the deviance statistic 𝐷 may not be suitable. Thus, the log-

likelihood statistic log 𝐿(𝜃𝑖; 𝑦𝑖) can be used as an alternative 

statistic to compare the different models. Models with the largest 

log-likelihood value can be chosen as the best model for 

describing the data under consideration. 

  When there are several maximum likelihood models, one can 

compare the performance of alternative models based on several 

likelihood measures which have been proposed in the statistical 

literature. The 𝐴𝐼𝐶 is the most regularly used measure. The 𝐴𝐼𝐶 is 

defined as 

𝐴𝐼𝐶 =  −2𝑙 +  2𝑝 

where 𝑙 denotes the log likelihood evaluated under μ and p is the 

number of parameters. For this measure, the smaller the 𝐴𝐼𝐶, the 

better the model is (Lambert, 1989). 

 

 

3.0  RESULTS AND DISCUSSION 

 

The state wildlife biologists want to model how many fish are 

being caught by fishermen at a state park. Visitors are asked how 

long they stayed, how many people were in the group, were there 

children in the group and how many fish were caught. Some 

visitors do not fish, but there is no data on whether a person fished 

or not. Some visitors who did fish did not catch any fish so there 

are excess zeros in the data because of the people that did not fish. 

We have data on 250 groups that went to a park.  Each group was 

questioned about how many fish they caught (𝑐𝑜𝑢𝑛𝑡), how many 

children were in the group (𝑐ℎ𝑖𝑙𝑑), how many people were in the 

group (𝑝𝑒𝑟𝑠𝑜𝑛𝑠), and whether or not they brought a camper to the 

park (𝑐𝑎𝑚𝑝𝑒𝑟). 

  We will use the variables child, persons, and camper in our 

model. Table 1 shows the descriptive statistics of using variables 

and also the camper variable has two values, zero and one as 

Table 2. 
Table 1  Descriptive statistics 

 

Variable Mean Std Dev Min Max Variance 

𝐂𝐨𝐮𝐧𝐭 3.296 11.635028 0 149 135.373879 

𝐂𝐡𝐢𝐥𝐝 0.684 0.850315 0 3 0.7230361 

𝐏𝐞𝐫𝐬𝐨𝐧𝐬 2.528 1.112730 1 4 1.2381687 

 
Table 2  Camper variable 

 

 

 

 

 

 

We have considered the model as follow 

log 𝜆 = 𝑏0 + 𝑏1𝑐𝑎𝑚𝑝𝑒𝑟 + 𝑏2𝑝𝑒𝑟𝑠𝑜𝑛𝑠 + 𝑏3𝑐ℎ𝑖𝑙𝑑 , 
logit 𝜙𝑖   or  logit 𝑤0

= 𝑎0 + 𝑎1𝑐𝑎𝑚𝑝𝑒𝑟 +  𝑎2 𝑝𝑒𝑟𝑠𝑜𝑛𝑠 
+ 𝑎3 𝑐ℎ𝑖𝑙𝑑 

 

  Furthermore, we put two censoring points, 𝑐1 = 3, 𝑐2 = 6. 

Table 3 shows the estimation of the parameters according to 

different censoring constants. Also, the −2𝐿𝐿 and 𝐴𝐼𝐶 are 

presented as the goodness-of-fit measures. 

  According to the censoring points, there is 22.8% censored 

data when c1 = 3. It means that 22.8% of the values of the 

response variable (𝑐𝑜𝑢𝑛𝑡) is 0,1,2,3 and the rest (77.2%) of the 

values of the response variable is greater than 3 that is censored in 

the model. Also the percentage of the censoring for 𝑐2 = 6 is 

11.6%.  

 

 

4.0  CONCLUSION 

 

Table 3 shows the parameter estimation, standard errors and 

goodness-of-fit measures of the CZIP and CHP models for the 

different censoring points. The standard errors of all models are 

very close to each other and almost small. Also, the estimated 

value of each variable for all models are almost similar and it 

means that all regression models show quite a similar effect of 

each variable on the data. For instance, the estimated camper of 

the ZIP and HP models is a positive value for the different 

𝐂𝐚𝐦𝐩𝐞𝐫 Frequency Percent 

0 103 41.2 

1 147 58.8 
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censoring points, it means that while being a camper (𝑐𝑎𝑚𝑝𝑒𝑟 =
 1), the expected log(𝑐𝑜𝑢𝑛𝑡) will be increased by 

0.3843;  0.4247;  0.3927 and 0.4247 respectively for ZIP (𝑐1 =
3), HP (𝑐1  = 3), ZIP (𝑐2 = 6) and HP (𝑐2 = 6). 

 
Table 3  Estimated ZIP vs HP with censoring. (Numbers in parenthesis 

are standard error of the estimates) 

 

 𝒄𝟏 = 𝟑 𝒄𝟐 = 𝟔 

Parameter CZIP CHP CZIP CHP 

𝒂𝟎 
1.5321 

(0.5876) 
2.3087 

(0.4612) 
1.7449 

(0.5267) 
2.3087 

(0.4612) 

𝒂𝟏 
-0.952 

(0.4136) 

-1.0179 

(0.3246) 

-0.9356 

(0.3681) 

-1.0179 

(0.3246) 

𝒂𝟐 
-0.9613 
(0.2269) 

-1.1104 
(0.1911) 

-0.9821 
(0.2083) 

-1.1104 
(0.1911) 

𝒂𝟑 
2.1395 

(0.3673) 

2.138 

(0.3107) 

2.0655 

(0.3366) 

2.138 

(0.3107) 

𝒃𝟎 
-0.4261 

(0.2902) 

-0.4326 

(0.2949) 

-0.241 

(0.222) 

-0.4326 

(0.2949) 

𝒃𝟏 
0.3843 

(0.1884) 

0.4247 

(0.1895) 

0.3927 

(0.1397) 

0.4247 

(0.1895) 

𝒃𝟐 
0.4532 

(0.0859) 

0.4495 

(0.0864) 

0.471 

(0.0624) 

0.4495 

(0.0864) 

𝒃𝟑 
-0.4641 
(0.1759) 

-0.4762 
(0.1745) 

-0.557 
(0.1296) 

-0.4762 
(0.1745) 

−𝟐𝑳𝑳 440.3 440.4 584.4 584 

𝑨𝑰𝑪 456.3 456.4 600.4 600 

 

 

  The goodness-of-fit measure of the CZIP model is very close 

to the CHP model for each censoring point. As expected, the 

goodness-of-fit measure of the CZIP and CHP models increases 

when the percentage of censoring decreases (or the value of the 

censoring point increases) and it is because of the used data in the 

noncensored part of the regression model. 

  Table 4 shows the estimated count variable of the zero-

inflated and hurdle model versus the real count of the Fish data 

when the censoring point is 3 and 6. In this case, the number of 

zeros in the real data is 142 and the censored hurdle Poisson 

regression model estimate 142 zeros too for both censoring 

points. Furthermore, the CHP regression model show a closer 

estimates to the real counts compared to CZIP regression model 

for the number of ones to the number of censored values for both 

censoring points. 

 
Table 4  Estimated CZIP and CHP models vs real count 

 

 
 

 

Acknowledgement 
 

We would like to acknowledge the financial support from 

Universiti Teknologi Malaysia for the Research University Grant. 

 

 
References 

 
[1].  Caudill, S. B. and Mixon Jr., F. G. 1995. Modeling Household Fertility 

Decisions: Estimation and Testing of Censored Regression Models for 

Count Data. Empirical Economics. 20(2): 183–197. 

[2]. Greene, W. 2007. Functional Form and Heterogeneity in Models for 

Count Data. Foundations and Trends in Econnometrics. 1(2): 113–218. 

[3]. Gurmu, S. 1998. Generalized Hurdle Count Data Regression Models. 

Economics Letters. 58: 263–268. 

[4]. Lambert, P. J. 1989. The Distribution and Redistribution of Income - A 

Mathematical Analysis. Oxford, U.K.: Basil Blackwell. 
[5]. Lambert, P. J. 1992. Zero-Inflated Poisson Regression, with an 

Application to Defects in Manufacturing. Technometrics. 34(1): 1–14. 

[6]. Mullahy, J. 1986. Specication and Testing of some Modified Count 

Data Models. Journal of Econometrics. 33: 341–365. 

[7]. Terza, J. V. 1985. A Tobit-Type Estimator for the Censored Poisson 

Regression Model. Economics Letters. 18: 361–365. 
 

 

First censoring point Second censoring point 

𝒄𝒐𝒖𝒏𝒕 Real CZIP CHP 𝒄𝒐𝒖𝒏𝒕 Real CZIP CHP 

0 142 139.87 142 0 142 139.87 142 

1 31 31.82 31.04 1 31 23.4 22.94 

2 20 33.75 33.04 2 20 30.11 29.53 

Cen 57 44.57 43.92 3 12 25.83 25.33 

    4 6 16.62 16.3 

    5 10 8.55 8.39 

    Cen 29 5.62 5.51 
 


