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Abstract 

 

The non-homogeneous hidden Markov model (NHMM) generates the rainfall observation depends on 

few weather states which serve as a link between the large scale atmospheric measures. The daily rainfall 
at 20 stations from Peninsular Malaysia for 33 years sequences is analyzed using NHMM during the 

northeast monsoon season. A NHMM with six hidden states are identified. The atmospheric variable was 

obtained from NCEP Reanalysis Data as predictor. The gridded atmospheric fields are summarized 
through the principle component analysis (PCA) technique. PCA is applied to sea level pressure (SLP) to 

identify their principal spatial patterns co-varying with rainfall. The NHMM can accurately simulate the 

observed daily mean rainfall, correlations between stations for daily rainfall amounts and the quantile-
quantile plots. It can be concluded that the NHMM is a useful method to simulate the daily rainfall 

amounts that may be used to prepare strategies and planning for the unpredicted disaster such as flood 

and drought. 
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Abstrak  

 

Model Markov tersembunyi bersifat tak homogen (NHMM) membangkitkan data taburan hujan 
bergantung kepada beberapa keadaan cuaca yang berperanan sebagai penghubung dengan atmosfera 

skala besar. Taburan hujan harian untuk 20 stesen di Semenanjung Malaysia selama 33 tahun dianalisis 

menggunakan NHMM pada musim monsun timur laut. NHMM dengan enam keadaan tersembunyi 
dikenal pasti. Pembolehubah atmosfera telah diperolehi daripada Reanalysis Data NCEP sebagai 

peramal. Grid sistem atmosfera diringkaskan melalui teknik Analisis Komponen Utama (PCA). PCA 

menganalisis tekanan aras laut (SLP) untuk mengenal pasti corak utama ruang berbeza-beza dengan 
taburan hujan. NHMM mensimulasikan min pengamatan taburan hujan harian, korelasi antara stesen-

stesen untuk jumlah taburan hujan harian dan plot-plot quantile. Kesimpulannya, NHMM adalah kaedah 
yang berguna untuk simulasi jumlah hujan harian yang boleh digunakan untuk menyediakan strategi dan 

perancangan untuk bencana tidak disangka seperti banjir dan kemarau.  

 
Kata kunci: Model Markov tersembunyi; taburan hujan harian; PCA  
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1.0  INTRODUCTION 

 

Rainfall modeling in space and time has important impacts on 

human and physical environments. Once the rainfall behavior is 

known, it is easy to predict the trends of future rainfall. In 

addition, it will help us to be aware to the unpredicted disaster 

such as flood. However, existing stochastic models of rainfall 

typically do not incorporate atmospheric information. Stochastic 

rainfall modeling which do not incorporate atmospheric 

information can only be used to simulate rainfall under climatic 

conditions which are stochastically similar to those used to fit the 

model. A model that has succeeded in incorporating atmospheric 

information will be useful in studies of climate variability or 

climate change. Hence this study will emphasis on modeling the 

rainfall process using hidden Markov model by linking synoptic 

atmospheric patterns to rainfall occurrence and amount. In order 

to incorporate the time-varying covariates, the non-homogeneous 

Markov chain model will be applied as well.  

  The main goal of this study is to assess the performance of 

NHMM in tropical climate. The study on the daily occurrence 

using hidden Markov model in rainfall occurrence was pioneered 

by Zucchini and Guttorp [1]. They introduced unobserved climate 

states which had different distribution of rainfall. Hughes and 

Guttorp [2] extended the HMM which was used by Zucchini and 

Guttorp [1] and described a non-homogeneous hidden Markov 

model (NHMM) to link the synoptic atmospheric information to 
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local precipitation. Hughes and Guttorp [3] extended the NHMM 

to the case of spatial dependence by using autologistic model for 

the transition probability of rainfall given the weather state. 

Hughes et al. [4] modeled a 15 year sequence of winter data for 

30 rainfall station in south-western Australia. The results showed 

that the model accurately reproduces the observed rainfall 

statistics and provides some useful insights into the rainfall 

process in south-western Australia. 

  Charles et al. [5] presented the nonhomogeneous hidden 

Markov model (NHMM) for climate change condition in 

southwestern Australia. They found that the NHMM can be 

placed against the criteria of Wilby et al. [6] for a useful 

downscaling model. Charles et al. [7] extended the NHMM by 

incorporating rainfall amount. The results showed that the 

extended NHMM accurately simulates the survival curves for dry 

(wet) spell lengths, wet day probabilities, daily rainfall amount 

distribution, and intersite correlations for daily rainfall amounts. 

Bellone et al. [8] used NHMM to model the rainfall amount 

independently at each rainfall station as gamma deviates with 

gauge-specific parameters in Washington. They verified that the 

model responded to shifts in atmospheric circulation from a 

reserved data set.  

  Robertson et al. [9] applied the HMM to tropical rainfall 

occurrence over Northeast Brazil. They found that interannual 

variability in the frequency of occurrence of dry spells could be 

simulated well. Charles et al. [10] investigated the ability of the 

extended NHMM to reproduce observed interannual and 

interdecadal rainfall variability when driven by observed and 

modeled atmospheric field. Robertson et al. [11] applied hidden 

Markov model to 11 stations over North Queensland. The results 

showed that the hidden Markov model able to simulate accurate 

station level simulations of the interannual variability of daily 

rainfall amount and occurrence. Robertson et al. [12] used 

NHMM in conjunction with a crop model to investigate spatial 

and temporal disaggregation of seasonal rainfall for simulating 

maize yield at 10 stations over the southeastern United States. 

Greene et al. [13] applied 4-state homogenous hidden Markov 

model to a network of 13 stations in central western India. Their 

results have shown enough evidence to the HMM representation 

of monsoon spatio-temporal variability. Robertson et al. [14] 

applied NHMM to a network of 17 station over Indramayu 

district, Indonesia. They obtained results with accurate levels of 

interannual variance for more skillful quantities (onset date, 

seasonal total and rainfall frequency).   

  In this study, we fitted the non-homogeneous hidden Markov 

model for daily rainfall amounts in peninsular Malaysia during 

northeast monsoon season. The performance of NHMM is 

evaluated on its ability to reproduce the rainfall simulations. The 

rainfall simulations data are compared to the observations data on 

the daily mean, correlation and quantile-quantile plot. 

 

 

2.0  MATERIALS AND METHODS  

 

2.1  Data 

 

Daily rainfall data from 20 stations over Peninsular Malaysia from 

1975 to 2008 was obtained from the Malaysia Meteorological 

Service (MMS). These stations were selected from each region 

based on the completeness of the data and length of records.The 

station locations are given in Figure 1. The atmospheric variables 

were taken from the analysis product of the National Centers for 

Environmental Prediction (NCEP) [15]. The rainfall data is 

obtained from the Malaysia Meteorological Service (MMS). The 

rainfall daily data are categorized into 2 categories namely “wet 

day” which is defined by a day with a rainfall amount exceeds or 

equals a fixed threshold of 0.3 mm and labeled as “1”. On the 

other hand, a day with rainfall amount less than 0.3 mm is 

categorized “dry day” and labeled as “0”. The threshold of 0.3 

mm represents measurable rainfall is defined by World 

Meteorological Organisation [16]. The 120-day period beginning 

November 1 (November - December - January - February, NDJF) 

were selected, corresponding to the Northeast monsoon over 

Peninsular Malaysia. The 29 of February for leap year was 

withdrawn. The descriptive statistics for each rainfall stations 

during the Northeast monsoon is shown in Table 1. 

 

 
No Station longitude latitude 

1 Arau 100.27  6.43  

2 Kodiang 100.30  6.37  

3 Pendang 100.48  5.99  

4 SIK  100.73  5.81  

5 Senai 103.67  1.63  

6 Kluang 103.32  2.02  

7 Tangkak 102.57  2.25  

8 Malacca 102.25  2.27  

9 Mersing 103.83  2.45  

10 Endau 103.67  2.59  

11 Subang 101.55  3.12  

12 Gombak 101.73  3.27  

13 Kuantan 103.22  3.78  

14 Sitiawan 100.70  4.22  

15 Ipoh 101.10  4.57  

16 Gua Musang 101.97  4.88  

17 Selama 100.70  5.14  

18 Bkt Berapit 100.48  5.38  

19 Kota Bharu 102.28  6.17  

20 Alor Star 100.40  6.20  

 

Figure 1  The selected rainfall stations in Peninsular Malaysia 
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Table 1  Descriptive statistics for each rainfall stations 
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Sum 30009 22113 46485 22045 27482 22962 33720 19544 43394 12101 

 

 

2.2  Method  

 

The non-homogeneous hidden Markov model (NHMM) 

generates the rainfall observation that is dependents on few 

weather states which serve as a link between the large scale 

atmospheric measures [2]. The assumption for the hidden 

process can be summarized as: 

 

𝑃(𝑆𝑡|𝑆1
𝑡−1, 𝐗1

𝑇) = 𝑃(𝑆𝑡|𝑆𝑡−1, 𝐗𝑡) (1) 

 

where 𝑆𝑡 is the weather state at time t and 𝐗𝑡 is a vector of 

atmospheric variables at time t, 1 ≤ 𝑡 ≤ 𝑇. The notation 𝐗1
𝑇 

indicates all the values of 𝐗𝑡 from time 1 to T and similarly 𝑆1
𝑡−1 

denotes all the values of 𝑆𝑡 between time 1 and time t-1[2]. 

  The parameterization we adopt for 𝑃(𝑆𝑡|𝑆𝑡−1 = 1, 𝐗𝑡) is  

 

𝑃(𝑆𝑡 = 𝑗|𝑆𝑡−1, 𝐗𝑡) ∝ 𝛾𝑖𝑗exp [−
1

2
(𝐗𝑡 − 𝜇𝑖𝑗)Σ−1(𝐗𝑡

− 𝜇𝑖𝑗)′] 

(2) 

 

where Σ is the variance-covariancematrix for the atmospheric 

data. The 𝜇𝑖𝑗 parameters represent the mean vectors of the 

atmospheric variables when the state of the weather at the 

previous time point was state i and the current state of the 

weather is j, while the  𝛾𝑖𝑗 parameters can be interpreted as 

baseline transition probabilities [2]. The constraints ∑ γij =𝑗

1 and ∑ 𝜇𝑖𝑗 = 0𝑗  are imposed to ensure identifiability of the 

parameters 

The hidden Markov model assumptions for the observed process 

can be summarized by  

 

𝑓𝑅𝑡|𝑆1
𝑇,𝑅1

𝑡−1,𝐗1
𝑇(𝑟) = 𝑓𝑅𝑡|𝑆𝑡

(𝑟) (3) 

 

where f denotes a probability density function, 𝐑𝑡 is the vector 

of precipitation amounts at a network of stations at time t and 

𝐑1
𝑡−1 indicate all the precipitation data from time 1 to t-1 [8]. 

  Amounts are introduced by modelling rainfall at each 

station, given the weather state, as a mixture of a point mass at 

zero and a gamma distribution. The resulting parameterization is 

 

𝑓𝑅𝑡|𝑆𝑡
(𝑟) = ∏[𝑝𝑠𝑖𝐺(𝑟𝑡

𝑖 − 𝑐; 𝛼𝑠𝑖 , 𝛽𝑠𝑖)]
[𝑟𝑡

𝑖>𝑐]
 

1

(1

𝑁

𝑖=1

− 𝑝𝑠𝑖) [𝑟𝑡
𝑖≤𝑐]1

 

 

(4) 

 

where N is the number of rain stations, 𝑝𝑠𝑖 is the rainfall 

probability at Station i and time t. With 𝐺(𝑟𝑡
𝑖; 𝛼𝑠𝑖 , 𝛽𝑠𝑖), the 

density at 𝑟𝑡
𝑖 of a gamma distribution is indicated with 

parameters 𝛼𝑠𝑖 and 𝛽𝑠𝑖which depend on the state s and the 

Station i: 

 

𝐺(𝒓; 𝛼𝒔𝒊, 𝛽𝒔𝒊) =
𝛽𝒊𝒔

𝛼𝑖𝑠

Γ(𝛼𝒊𝒔)
𝒓𝛼𝑖𝑠−1e−𝐫β𝐢𝐬 

 

(5) 

 

where Γ(𝛼𝒊𝒔) is the gamma function with argument 𝛼𝑖𝑠. The 

indicator function [𝑟𝑡
𝑖 > 𝑐]

 

1
 takes on a values of 1 if the rainfall 

amount at time t and station i is above the prescribed cutoff c; it 

takes on a value of 0 if the precipitation amount is below c [8]. 

Thus amounts below c are treated as no rainfall. 

  In this study, the sea level pressure is used as the classifier 

to the hidden state in the NHMM. Before the sea level pressure 

is used as classifier, principle component analysis (PCA) is 

applied to reduce the dimension of the raw sea level pressure 

data. The atmospheric variables typically are available on 

several grid nodes. Therefore, principle component analysis is 

preformed to summarize the atmospheric data from several grid 

nodes into few values. The k-th PCA at time t is 

 

𝑃𝑡(𝑘) = ∑ 𝐞𝑗
𝑘 [

𝑥𝑡(𝑗) − �̅�(𝑗)

𝑠(𝑗)
]

𝑗

 
 

(6) 

 

where 𝑥𝑡(𝑗) is the sea level pressure at node j at time t, �̅�𝑡(𝑗) 

and 𝑠(𝑗) are the mean and standard deviation of the seal level 

pressure time series at the j-th node. The 𝐞𝑘 denotes the k-th 

eigen vector of the covariance matrix of the sea level pressure. 

  The Spearman Rank Correlation is used to measures the 

strength of the relationship between historical and simulated 

rainfall amounts at each station pair. 
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𝜌 = 1 −
6 ∑ 𝐷𝑖

2

𝑛(𝑛2 − 1)
 

 

where 𝐷𝑖 is the difference in ranks between the i-th station pair 

rainfall amounts. 

 

2.3  Parameter Estimation 

 

Parameter estimates are obtained by numerically 

maximizing the likelihood. The likelihood of the observed data: 

 

𝑳(𝜃) = 𝑓𝑅1
𝑇|𝑋1

𝑇=𝑥1
𝑇,𝜃(𝑟1

𝑇)  

 
= ∑ 𝑓(𝑅1

𝑇,𝑺1
𝑇|𝑋1

𝑇=𝑥1
𝑇,𝜃(𝑟1

𝑇 , 𝒔1
𝑇)

𝑚

𝑠1,𝑠2,…,𝑠𝑇=1

 

 

 

= ∑ 𝑃(𝑆1|𝐗𝑡)

𝑚

𝑠1,𝑠2,…,𝑠𝑇=1

𝑓𝑅1,𝑆1=𝑠1(𝑟1) ∏ 𝑃(𝑆𝑡|𝑆𝑡−1, 𝐗𝑡)

𝑇

𝑡=2

𝑓𝑅𝑡,𝑆𝑡=𝑠𝑡(𝑟𝑡) 

 

  

 

 

 

(7) 

where 𝜃 is the vector of the model parameters. The likelihood is 

computationally intractable. In order to make the calculation 

possible, the forward-backward procedure, a recursive algorithm 

is developed to solve the HMM [17]. Therefore, the likelihood 

function can be simplified as 

𝐿(𝜃) = 𝛿𝐏(𝑟1)Γ𝐏(𝑟2)Γ𝐏(𝑟3) … Γ𝐏(𝑟𝑇)𝟏′ 
 

𝐏(𝑟𝑡) = diag(𝑝1(𝑟𝑡), … , 𝑝𝑚(𝑟𝑡)) 

(8) 

 

(9) 

 

where 𝛿 is the initial distribution, Γ is the transition probability 

matrix for the Markov chain, and 𝐏(𝑟) is the 𝑚 × 𝑚 diagonal 

matrix with ith diagonal element of the state dependent 

probability 𝑝𝑖(𝑟) as shown in expression (9). The parameter of 

the likelihood function is then maximized by the Baum-Welch 

method which is also known as the EM algorithm [18]. 

  Fitting an NHMM to precipitation data involves the choice 

of a model order and of the atmospheric variable to be included. 

The number of the NHMM is determined before including the 

atmospheric variables. The standard likelihood-based method 

which is Bayesian information criterion (BIC) is used in this 

study. The BIC is defined as 

 

BIC = 2𝑙 − 𝑘 log(𝑇) (10) 

 

where l is the log-likelihood, k is the number of model 

parameters and T is the number of days of data. 

 

 

3.0  RESULTS AND DISCUSSION 

 

The NHMM model was fitted to 20 Malaysian rainfall stations. 

This model generated simulations of rainfall amounts that 

incorporated the sea level pressure. The standard hidden Markov 

model (HMM) was first fitted with different number of weather 

state from 2 to 8 states. It was noticed that the score of BIC 

reached a turning point that consists of six hidden states.  

Therefore, the hidden state of the model was set to six and the 

PCAs were then fitted to the model. It is noticed that the best 

model consists of six hidden states and includes PCA (1) with 

the minimum value of BIC. The BIC scores are given as 

follows: 

 

 

 

Table 2  Comparison between the various hidden states of the model by 

BIC 

 
Model Number of 

parameter 

BIC 

S2 243 336516 

S3 368 334897 

S4 495 334971 
S5 624 332313 

S6 755 331951 

S7 888 332166 
S8 1023 332827 

S6 P(1) 
760 328195* 

S6 P(1) P(2) 765 328235 

S6 P(1) P(2) 

P(3) 770 328276 
S7 P(1) 895 329384 

S7P(1) P(2) 
900 329433 

S7P(1) P(2) 

P(3) 905 329482 

 

 

  Figure 2 (a) compares the historical daily mean rainfall 

amount with the simulated daily mean rainfall amount. All 

station show points that are much closer to the x=y line. This 

shows that the NHMM does well in reproducing the daily mean 

rainfall.  Figure 2 (b) compares the historical versus simulated 

Spearman rank inter-site correlation. There is a negative bias in 

the simulated correlations across the historical correlation range. 

When the correlation between rain gauge stations is strong, the 

simulated Spearman rank correlation is underestimated. 

 

(a) 

 

 
 

(b) 

 

 
 

 
Figure 2  Historical versus simulated based (a) Daily mean rainfall 

amount. (b) Spearman rank correlations between all station pairs 
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The rainfall patterns of daily rainfall associated with each of the 

states which were identified by the NHMM including the first 

summary variable for sea level pressure are plotted in Figure 3 

(a) and (b). The six weather states describe daily rainfall 

conditions varying from wet to dry in terms of rainfall 

probability at each station in Figure 3 (a) and the rainfall 

distribution on wet days which in terms of mean rainfall 

amounts in Figure 3 (b). State 3 has a high probability of rainfall 

over the entire region with a mean of rainfall amounts over 10 

mm for all the station. On the contrary, state 5 corresponds to 

the dry days with a mean of rainfall amounts lower than 10 mm 

for majority of the stations. State 2 has a high probability of 

rainfall all over the region except the northwestern region and 

the mean of rainfall amounts are extremely high in the 

southwestern region. The state 1 has a probability of almost the 

same with state 2 but the mean of rainfall amounts are quite low 

in the southwestern region. State 4 represents a moderate dry 

condition over the entire region and state 6 represents a 

moderately wet condition over the entire region except the 

northwestern region. 

 (a) 

 (b) 

 
Figure 3  (a) Rainfall Probabilities and (b) Rainfall amounts 

corresponding to the six weather states identified by the NHMM 

including the first summary variable for sea level pressure 

 

 

  Figure 4 shows the quantile-quantile plots to compare the 

fits of the historical rainfall and the simulated rainfall from 6-

hidden states of NHMM. The NHMM does well in reproducing 

the daily rainfall distributions at all selected stations, since the 

quantile function evaluated at the simulated rainfall amount is 

quite close to the historical rainfall amounts, yielding points that 

are very closed to the x=y line. For stations Kota Bharu and 

Malacca, the simulated rainfall amounts are lower than the 

historical especially at the maximum amount, thus stations Kota 

Bahru and Malacca are underestimated. However, for the 

stations Arau and Kluang, the simulated rainfall amounts are 

higher than the historical, thus it is overestimated especially at 

the maximum amount. 

 

 

4.0  CONCLUSION 

 

The non-homogeneous hidden Markov model (NHMM) can be 

used to generate simulations of rainfall amounts that are linked 

to the atmospheric information. In this study, NHMM was 

applied to daily rainfall data from 20 stations over Peninsular 

Malaysia and was linked to the sea level pressure. The 6-hidden 

state NHMM was determined by Bayesian information criterion 

(BIC). The performance of the model was evaluated by 

comparing the correlation and the quantile-quantile plot between 

observation and simulation rainfall amounts. The NHMM seems 

to reproduce the overall distribution of simulated rainfall 

amounts reasonably well although the fit varies from station to 

station. It can be concluded that the NHMM is a useful method 

to simulate the daily rainfall amounts that may be used to 

prepare strategies and planning for the unpredicted disaster such 

as flood and drought.  

 

   

   

   
Figure 4  Quantile-quantile plots of observed versus model at selected 

stations 
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