A Test for Normality in the Presence of Outliers

Pooi Ah Hina*, Soo Huei Chinga
${ }^{a}$ Sunway University Business School, No 5, Jalan Universiti, Bandar Sunway, 46150 Petaling Jaya, Selangor, Malaysia
*Corresponding author: ahhinp@sunway.edu.my

Article history

Received :21 January 2013
Received in revised form :
7 May 2013
Accepted :25 June 2013

Graphical abstract

$\boldsymbol{t}=\left[\begin{array}{c}t_{1} \\ t_{2} \\ \vdots \\ t_{k}\end{array}\right]=\left[\begin{array}{c}\bar{t}_{1} \\ \bar{t}_{2} \\ \vdots \\ \bar{t}_{k}\end{array}\right]+\boldsymbol{V}\left[\begin{array}{c}\tilde{u}_{1} \\ \tilde{u}_{2} \\ \vdots \\ \tilde{u}_{k}\end{array}\right]$

Abstract

The Jarque-Bera test is a test based on the coefficients of skewness (S) and kurtosis (K) for testing whether the given random sample is from a normal population. When the random sample of size n contains m outliers, we use the remaining n-m observations to compute two statistics S^{*} and K^{*} which mimic the statistics S and K . The statistics S^{*} and K^{*} are next transformed to z_{1} and z_{2} which are uncorrelated and having standard normal distributions when the original population is normal. We show that the acceptance region given by a circle in the $\left(z_{1}, z_{2}\right)$ plane is suitable for testing the normality assumption.

Keywords: Quadratic-normal distribution; nonlinear correlation; method based on moments; circular acceptance region; powers of tests

Abstract

Abstrak Ujian Jarque-Bera adalah satu ujian yang berdasarkan pekali kepencongan (S) dan kurtosis (K) untuk menguji samada sampel rawak yang diberi berasal dari suatu populasi normal. Bila sampel rawak dengan saiz n mengandungi m data terpencil, $\mathrm{n}-\mathrm{m}$ cerapan yang tertinggal digunakan untuk menghitung dua statistik S^{*} dan K^{*} yang meniru statistik S dan K . Statistik S^{*} dan K^{*} kemudian dijelmakan kepada z_{1} dan z_{2} yang tidak berkorelasi dan bertaburan normal piawai bila populasi asal adalah normal. Didapati bahawa kawasan penerimaan yang berdasarkan satu bulatan dalam satah $\left(z_{1}, z_{2}\right)$ adalah sesuai untuk menguji kenormalan data.

Kata kunci: Taburan kuadratik-normal; korelasi tak linear; kaedah berdasarkan momen; kawasan penerimaan yang berbentuk bulat; kuasa ujian

© 2013 Penerbit UTM Press. All rights reserved.

\square 1.0 INTRODUCTION

The validity of many statistical procedures depends on normality assumption of observations. Several methods have been introduced in the literature for assessing the assumption of normality. The more popular ones among them are the JargueBera test in [1], Shapiro-Wilk test in [2] and Anderson Darling test in [3]. The Jargue-Bera (JB) test for normality is based on the sample coefficients of skewness and kurtosis, the ShapiroWilk test relies on the correlation in the Q-Q plot, and the Anderson-Darling test makes use of the difference between empirical and theoretical distributions.

The JB test has been modified by a number of authors [46]. Gel and Gastwirth [4] replaced the denominators of skewness and kurtosis in the JB test statistics by the average absolute deviation from the median (MAAD) to obtain the Robust Jargue-Bera (RJB) test statistic. In regression analysis, the estimates of the coefficients of skewness and kurtosis based on the Ordinary Least Squares (OLS) residuals have been rescaled by Imon [5], and the resulting JB type test is called the Rescalled Moment (RM) test. By replacing the estimate of spread with MAAD, the RM test can be modified to yield yet
another test called the Robust Rescaled Moment (RRM) test in [6].

Presently we consider the problem of assessing normality given a random sample $y_{1}, y_{2}, \ldots, y_{n}$ of size n and containing m outliers. We assume that the outliers are not due to careless mistakes. Instead we assume that the outlies are due to deficiencies in the measuring system in measuring units of which the attributes to be measured have very large or small values. For example, a spring balance may stretch disproportionately when the object to be weighed is very heavy. We thus assume that the extremely large (or small) values which are classified as outliers in the given sample are originally very large (or small) values. However, due to deficiencies in the measuring system, they are distorted to some extremely large (or small) values which are clearly not concordant with the rest of the data. With this assumption, we define the k-th adjusted sample moment by

$$
m_{k}^{*}=\frac{1}{n-m} \sum_{i=m_{1}+1}^{n-m_{2}}\left(y_{i}-M\right)^{k}, \quad k=1,2, \ldots
$$

where
m_{1} is the number of outliers at the lower end, m_{2} is the number of outliers at the upper end, $m=m_{1}+m_{2}$,
and M is the sample median based on the original sample of size n. Hence the adjusted coefficients of skewness and kurtosis can be defined respectively as

$$
S^{*}=\frac{m_{3}^{*}}{\left[m_{2}^{*}\right]^{3 / 2}} \quad \text { and } \quad K^{*}=\frac{m_{4}^{*}}{\left[m_{2}^{*}\right]^{2}}
$$

The statistics S^{*} and K^{*} are next expressed respectively as nonlinear functions of the uncorrelated random variables z_{1} and z_{2} which have standard normal distributions when the original population is normal. We show that the acceptance region given be a circle with centre zero in the $\left(z_{1}, z_{2}\right)$ plane is suitable for testing the normality assumption.

The layout of the paper is as follows. In Section 2, we state the Jargue-Bera test. In Section 3, we introduce a type of nonnormal distribution called the quadratic-normal distribution, introduces by [7]. In Section 4, we describe the method in [8] which transforms a set of nonlinearly correlated non-normal random variables to a set of uncorrelated standard normal random variables. In Section 5, the method in Section 4 will be used for transforming the statistics S^{*} and K^{*} which mimic the coefficients of skewness (S) and kurtosis (K) to the uncorrelated standard normal variables z_{1} and z_{2}. The power of the test based on a circle in the $\left(z_{1}, z_{2}\right)$ plane derived from $\left(S^{*}, K^{*}\right)$ when there are outliers is next compared with the power of the test based on a circle in the $\left(z_{1}, z_{2}\right)$ plane derived from (S, K) when there are no outliers, and also with the power of the JB test. In Section 6, we give some concluding remarks.

- 2.0 MATERIALS AND METHODS

2.1 Jarque-Bera Test

Given the random sample $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$, the sample coefficients of skewness and kurtosis are given respectively by

$$
S=\frac{m_{3}}{m_{2}^{3 / 2}} \quad \text { and } \quad K=\frac{m_{4}}{m_{2}^{2}}
$$

where $m_{k}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{k}$ and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$. The JB test statistic is given by

$$
\mathrm{JB}=\frac{S^{2}}{\sigma_{S}^{2}}+\frac{(K-3)^{2}}{\sigma_{K}^{2}}
$$

where $\sigma_{S}^{2}=6 / n \quad$ and $\quad \sigma_{K}^{2}=24 / n \quad$ are respectively the asymptotic variances of S and K. When the y_{i} are normally distribution, the JB statistic has approximately a chi square distribution with 2 degrees of freedom. The rejection region, based on the above chi square approximation, for the hypothesis of normality is given by

$$
\left\{\boldsymbol{y}: \mathrm{JB}>\chi_{2, \alpha}^{2}\right\}
$$

where $\chi_{2, \alpha}^{2}$ is the $100(1-\alpha) \%$ point of the chi square distribution with 2 degrees of freedom.

2.2 Quadratic-Normal Distribution

Let $\mu, \lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)^{T}$ be constants and consider the following nonlinear transformation

$$
= \begin{cases}\mu+\lambda_{1} z+\lambda_{2}\left(z^{2}-\frac{1+\lambda_{3}}{2}\right), & z \geq 0 \\ \mu+\lambda_{1} z+\lambda_{2}\left(\lambda_{3} z^{2}-\frac{1+\lambda_{3}}{2}\right), & z<0\end{cases}
$$

where z has the standard normal distribution and y is a one-toone function of z. The random variable y is then said to have the quadratic-normal distribution with parameters μ and λ, as indicated in [7]. We may write $y \sim \mathrm{QN}(\mu, \lambda)$.
2.3 Transforming Correlated Non-Normal Variables to Uncorrelated Standard Normal Variables

Let $\boldsymbol{t}=\left(t_{1}, t_{2}, \ldots, t_{k}\right)^{T}$ be a set of correlated non-normal random variables. Suppose we have a set of N_{s} observed values of \boldsymbol{t}. Let the n_{s}-th observed value be denoted by $\left(t_{1 n_{s}}, t_{2 n_{s}}, \ldots, t_{k n_{s}}\right)^{T}$.

The following is a procedure modified from the method given in Pooi (2006) for fitting a non-normal distribution to the observed values of \boldsymbol{t} :
(1) Find the average value of $t i$:

$$
\begin{equation*}
\overline{t_{i}}=\frac{1}{N_{s}} \sum_{n_{s}=1}^{N_{s}} t_{i n_{s}}, 1 \leq i \leq k \tag{2}
\end{equation*}
$$

Estimate the moment $E\left\{\left[t_{i}-E\left(t_{i}\right)\right]^{k_{1}}\left[t_{j}-E\left(t_{j}\right)\right]^{k_{2}}\right\}$ using $\hat{M}_{i j}^{(t)\left(k_{1}, k_{2}\right)}=\frac{1}{N_{s}} \sum_{n_{s}=1}^{N_{s}}\left(t_{i n_{s}}^{*_{k_{1}}} t_{j n_{s}}^{* k_{2}}\right)$,

$$
\begin{equation*}
k_{1} \geq 0, k_{2} \geq 0, k_{1}+k_{2}=2 \text {, where } t_{i j}^{*}=t_{i j}-\bar{t}_{i} \tag{3}
\end{equation*}
$$

Compute the variance-covariance matrix, $\boldsymbol{M}=\left\{\hat{M}_{i j}^{(t)(1,1)}\right\}$ and find the matrix \boldsymbol{V} formed by the eigenvectors of \boldsymbol{M}.
Find $\left[\begin{array}{c}\tilde{u}_{1 n_{s}} \\ \tilde{u}_{2 n_{s}} \\ \vdots \\ \tilde{u}_{k n_{s}}\end{array}\right]=\boldsymbol{V}^{T}\left[\begin{array}{c}t_{1 n_{s}}^{*} \\ t_{2 n_{s}}^{*} \\ \vdots \\ t_{k n_{s}}^{*}\end{array}\right]$.
Compute the moment $\hat{M}_{i j}^{(\tilde{u})\left(k_{1}, k_{2}\right)}=\frac{1}{N_{s}} \sum_{n_{s}=1}^{N_{s}}\left(\tilde{u}_{i n_{s}}^{k_{1}} \tilde{u}_{j n_{s}}^{k_{2}}\right)$,
$k_{1} \geq 0, k_{2} \geq 0,1 \leq k_{1}+k_{2} \leq 4$.
(6) Find $\quad u_{i n_{s}}=\tilde{u}_{i n_{s}} / \sqrt{\operatorname{Var}\left(\tilde{u}_{i}\right)} \quad$ where $\operatorname{Var}\left(\tilde{u}_{i}\right)=\hat{M}_{i i}^{(\tilde{(})(1,1)}$.
(7) Compute the moment $\hat{M}_{i j}^{(u)\left(k_{1}, k_{2}\right)}=\frac{1}{N_{s}} \sum_{n_{s}=1}^{N_{s}} u_{i n_{s}}^{k_{1}} u_{j n_{s}}^{k_{2}}$, $k_{1} \geq 0, k_{2} \geq 0,1 \leq k_{1}+k_{2} \leq 4$.
(8) From the moment $\hat{M}_{i i}^{(u)\left(k_{1}, 0\right)}$, find $\lambda^{(i)}$ such that the $k_{1^{-}}$ th moment of a random variable ε_{i} with the
$\mathrm{QN}\left(0, \lambda^{(i)}\right)$ distribution is equal to $\hat{M}_{i i}^{(u)\left(k_{1}, 0\right)}$, $2 \leq k_{1} \leq 4,1 \leq i \leq k$.
(9) Find h_{i} and $h_{i j l}, 1 \leq i, j, l \leq k$, of which $h_{i j l}=h_{i l j}$, such that the theoretical moment $E\left(u_{i}^{k_{1}} u_{j}^{k_{2}}\right)$ of $u_{i}=h_{i} u_{i}^{*}+\sum_{j=1}^{k} \sum_{l=1}^{k} h_{i j l} u_{j}^{*} u_{l}^{*}-\sum_{j=1}^{k} h_{i j j}, 1 \leq i \leq k$, computed by restricting the variance of u_{i}^{*} to one and using the approximate distribution $\mathrm{QN}\left(0, \lambda^{(i)}\right)$ for u_{i}^{*}, is approximately equal to $\hat{M}_{i j}^{(u)\left(k_{1}, k_{2}\right)}, 1 \leq i, j \leq k$, $k_{1} \geq 0, k_{2} \geq 0,2 \leq k_{1}+k_{2} \leq 4$.
(10) We may describe the distribution of t via the equation

$$
\boldsymbol{t}=\left[\begin{array}{c}
t_{1} \\
t_{2} \\
\vdots \\
t_{k}
\end{array}\right]=\left[\begin{array}{c}
\bar{t}_{1} \\
\bar{t}_{2} \\
\vdots \\
\bar{t}_{k}
\end{array}\right]+\boldsymbol{V}\left[\begin{array}{c}
\tilde{u}_{1} \\
\tilde{u}_{2} \\
\vdots \\
\tilde{u}_{k}
\end{array}\right],
$$

where $\tilde{u}_{i}=\sqrt{\operatorname{Var}\left(\tilde{u}_{i}\right)} u_{i}$, and u_{i}, as given in Step (9), is a quadratic function of

$$
\begin{gathered}
u_{i}^{*} \\
=
\end{gathered}\left\{\begin{array}{cl}
\lambda_{1}^{(i)} z_{i}+\lambda_{2}^{(i)}\left(z_{i}^{2}-\frac{1+\lambda_{3}^{(i)}}{2}\right), & z \geq 0 \\
\lambda_{1}^{(i)} z_{i}+\lambda_{2}^{(i)}\left(\lambda_{3}^{(i)} z_{i}^{2}-\frac{1+\lambda_{3}^{(i)}}{2}\right) \cdot & z<0
\end{array}\right.
$$

Thus the equations in Step (10) provide a method for transforming t to $\left(z_{1}, z_{2}, \ldots, z_{k}\right)$ which is a set of uncorrelated standard normal random variables.

3.0 RESULTS AND DISCUSSION

Consider the case when the sample size is $n=30$ and there are no outliers. A total of $N_{s}=10,000$ values of \boldsymbol{y} are generated from a normal distribution. For each generated value of \boldsymbol{y}, we use the formulas in Section 2 to compute (S, K). Let the value of (S, K) based on the n_{s}-th generated of \boldsymbol{y} be denoted by $\left(t_{1 n_{s}}, t_{2 n_{s}}\right)$. By applying the method in Section 4, we can transform $\left(t_{1}, t_{2}\right)$ to $\left(z_{1}, z_{2}\right)$ which is a set of two uncorrelated standard normal variables.

We may denote the case with m_{1} outliers at the lower end and m_{2} outliers at the upper end by " $m_{1} \mathrm{~L} m_{2} \mathrm{U}$ ". When (m_{1}, m_{2}) $=(0,1),(0,2)$ or $(1,1)$, we can likewise generate $N_{s}=10,000$ values of \boldsymbol{y} from a normal distribution, compute $\left(t_{1 n_{s}}, t_{2 n_{s}}\right)=\left(S^{*}, K^{*}\right)$ and transform $\left(t_{1}, t_{2}\right)$ to $\left(z_{1}, z_{2}\right)$. The values of the parameters of the distribution of $\left(S^{*}, K^{*}\right)$ are shown in Table 5.1.

Table 5.1 Parameters of the Distribution of $\left(S^{*}, K^{*}\right)$

Parameter	0L0U	0L1U	0L2U	1L1U
$\overline{t_{1}}$	-4.51E-04	-0.18787	-0.29245	-5.64E-05
$\overline{t_{2}}$	2.809204	2.662833	2.648848	2.410794
V_{11}	-1	-0.943200	-0.933380	0.999960
V_{12}	$9.82 \mathrm{E}-04$	-0.332220	-0.358890	0.008961
V_{21}	$9.82 \mathrm{E}-04$	-0.332220	-0.358890	0.008961
V_{22}	1	0.943202	0.933380	0.999960
h_{1}	0.998284	0.998474	0.990946	0.997411
h_{2}	0.760661	0.989107	0.995806	0.797483
$\left[\operatorname{Var}\left(\tilde{u}_{1}\right)\right]^{1 / 2}$	0.405923	0.323826	0.282934	0.345384
$\left[\operatorname{Var}\left(\tilde{u}_{2}\right)\right]^{1 / 2}$	0.694285	0.704974	0.802194	0.485362
h_{111}	0	0	0	0
h_{112}	0.01	-3.47E-18	-0.02	-3.47E-18
h_{122}	-0.02	-0.02	-0.04	-0.03
h_{211}	0.41	0.05	0.02	0.4
h_{212}	$3.47 \mathrm{E}-18$	0.05	0.04	-0.01
h_{222}	0	0	0	0
$\lambda_{1}^{(1)}$	0.885831	0.684336	0.691940	0.935871
$\lambda_{2}^{(1)}$	0.071763	0.014542	0.014289	0.044736
$\lambda_{3}^{(1)}$	0.964280	20.726100	22.204300	0.776450
$\lambda_{1}^{(2)}$	0.540055	0.656084	0.449040	0.697030
$\lambda_{2}^{(2)}$	0.454883	0.424341	0.548370	0.353401
$\lambda_{3}^{(2)}$	0.105370	0.209001	-0.048130	0.083958

We may use the rejection region

$$
\left\{\left(S^{*}, K^{*}\right): z_{1}^{2}+z_{2}^{2}>\chi_{2,0.05}^{2}=5.99\right\}
$$

for testing the hypothesis of normality at the 0.05 level.
The power of the JB test with rejection region $\{(S, K)$: JB > 4.1797\}, and those of the test based on a circle in the $\left(z_{1}, z_{2}\right)$ plane derived from $\left(S^{*}, K^{*}\right)$ are shown in Table 5.2. The columns labeled by \bar{m}_{3} and \bar{m}_{4} give respectively the coefficients of skewness and kurtosis of the variable y_{i}.

Table 5.2 Powers of JB test and test based on a circle in the $\left(z_{1}, z_{2}\right)$ plane ($n=30, \alpha=0.05, N_{s}=10,000$)

No.	\bar{m}_{3}	\bar{m}_{4}	JB	0L0U	0L1U	0L2U	1L1U
1	0	2.2	0.002750	0.013950	0.011100	0.019700	0.026500
2	0	2.8	0.030800	0.042050	0.034900	0.041000	0.048400
3	0	3	0.053850	0.068800	0.058600	0.055700	0.063800
4	-0.1	3.2	0.079400	0.098200	0.080900	0.073000	0.084000
5	0.1	3.2	0.080250	0.095850	0.077300	0.072000	0.076900
6	0	4	0.187050	0.220900	0.184200	0.151300	0.172100
7	0.3	4	0.188750	0.216100	0.178300	0.143800	0.163800
8	-0.3	4	0.194000	0.219400	0.185100	0.175900	0.169400
9	-0.1	5	0.311500	0.361850	0.294500	0.270800	0.288900
10	0.5	5	0.312100	0.349800	0.284800	0.236900	0.284500
11	0.1	5	0.314700	0.369550	0.297100	0.264000	0.295200
12	-0.5	5	0.316100	0.349700	0.304500	0.282200	0.282500
13	0	6	0.426450	0.490500	0.405000	0.370500	0.410600
14	1	10	0.685700	0.749050	0.679600	0.615700	0.698100
15	-1	10	0.687350	0.746850	0.671300	0.665000	0.710400
16	0.1	10	0.699250	0.770750	0.706600	0.656100	0.738000
17	0	10	0.701400	0.772700	0.703300	0.656100	0.743200
18	-0.1	10	0.704100	0.773550	0.705500	0.662200	0.747600
19	-1.5	11	0.717050	0.765100	0.709300	0.701100	0.720400
20	1.5	11	0.718150	0.762350	0.714600	0.646200	0.725800
21	2	15	0.834400	0.875700	0.852300	0.800300	0.873400
22	-2	15	0.838350	0.875800	0.835800	0.832000	0.869100
23	-2.5	14	0.856050	0.868300	0.801000	0.800900	0.832300
24	2.5	14	0.856750	0.869400	0.839800	0.781400	0.828600

25	3	19	0.926700	0.935500	0.920600	0.887800	0.922200
26	-3	17	0.956100	0.971300	0.901000	0.898200	0.955300
27	3.5	22	0.977450	0.982350	0.979400	0.970900	0.984600
28	-3.5	22	0.978100	0.983950	0.965400	0.964000	0.984500
29	3.8	24.514	0.997500	0.999000	0.997700	0.996900	0.998000
30	-3.8	24.4	0.998550	0.999450	0.990400	0.987100	0.999700

When $\left(\bar{m}_{3}, \bar{m}_{4}\right)=(0,3)$ in which case the y_{i} are normally distributed, Table 5.2 shows that the powers of the JB test and the test based on a circle in the $\left(z_{1}, z_{2}\right)$ plane are all not too far from the target value 0.05 .

The columns labeled by JB and 0L0U in Table 5.2 show that in rows $6-22$, the powers in the 0 L 0 U column are larger than those in the JB column by more than 2%. Thus in the case when there are no outliers, the test based on a circle in the (z_{1}, z_{2}) plane is a strong competitor to the JB test.

The columns labeled by 0L0U and 0L1U in Table 5.2 show that when there is an outlier at the upper end, the test based on a circle in the $\left(z_{1}, z_{2}\right)$ plane suffers a slight loss in the power of the test. The columns labeled by 0L1U and 0L2U show that when the number of outliers at the upper end increases by one, the power of the test tends to decrease further. The columns labeled by 0L0U and 1L1U also show that there is a slight loss in the power of the test when there are outliers on both ends.

-4.0 CONCLUSION

The test based on a circle with centre zero in the $\left(z_{1}, z_{2}\right)$ plane tends to have good power. This is not surprising because the circle with centre zero is the smallest region in the $\left(z_{1}, z_{2}\right)$ plane with the given probability. When the number of outliers is small, there is a slight loss in the power of the test. When the number of outliers is large, it is likely that the loss in power would be large.

References

[1] Jargue, C. M. and Bera, A. K. 1980. Efficient Tests for Normality, Homoscedasticity and Serial Dependence of Regression Residuals. Econ. Lett. 6: 255-259.
[2] Shapiro, S. S. and Wilk, M. B. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika. 52(3-4): 591-611.
[3] Anderson, T. W. and Darling, D. A., 1952. Asymptotic Theory of Certain "Goodness-Of-Fit" Criteria Based on Stochastic Processes. Annals of Mathematical Statistics. 23: 193-212.
[4] Gel, Y. R. and Gastwirth, J. L. 2007. A Robust Modification of the Jargue-Bera Test of Normality. Econ. Lett. 99: 30-32.
[5] Imon, A. H. M. R. 2003. Regression Residuals, Moments and Their Use in Tests for Normality. Commun. Stat. Theor. Methods. 32: 1021-1034.
[6] Rana, M.S., Midi, H. and Imon, A. H. M. R. 2009. A Robust Rescaled Moment Test for Normality in Regression. Journal of Math and Stat. 5(1): 54-62.
[7] Pooi, A. H., 2003. Effects of Non-normality on Confidence Intervals in Linear Models. Technical Report No.6/2003. Institute of Mathematical Sciences, University of Malaya.
[8] Pooi, A. H. 2006. Non-normally Distributed Variates with a Nonlinear Dependence Structure. Technical Report No.13/2006. Institute of Mathematical Sciences, University of Malaya.
[9] Baum, L. E., Petrie T., Soules G. and Weiss N., 1970. A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The Annals of Mathematical Statistics. 41(1): 164-171.

