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Graphical abstract 
 

 

Abstract 
 

In chemistry, the molecular structure can be represented as a graph. Based on the 

information from the graph, its characterization can be determined by computing the 

topological index. Topological index is a numerical value that can be computed by using 

some algorithms and properties of the graph. Meanwhile, the non-commuting graph is a 

graph, in which two distinct vertices are adjacent if and only if they do not commute, where 

it is made up of the non-central elements in a group as a vertex set. In this paper, the Szeged 

index of the non-commuting graph of some finite groups are computed. This paper focuses 

on three finite groups which are the quasidihedral groups, the dihedral groups, and the 

generalized quaternion groups. The construction of the graph is done by using Maple 

software. In finding the Szeged index, some of the previous results and properties of the 

graph for the quasidihedral groups, the dihedral groups, and the generalized quaternion 

groups are used. The generalisation of the Szeged index of the non-commuting graph is 

then established for the aforementioned groups. The results are then applied to find the 

Szeged index of the non-commuting graph of ammonia molecule. 
 

Keywords: Szeged index, non-commuting graph, dihedral groups, generalized quaternion 

groups, quasidihedral groups 

 

Abstrak 
 

Suatu nombor yang boleh dikira daripada graf yang boleh mewakili penciriannya dinamai 

indeks topologi. Sebuah graf mewakili struktur molekul dalam kimia dan pengiraan dalam 

mencari indeks topologi melibatkan beberapa maklumat yang diperoleh daripada graf. 

Sementara itu, graf kalis bertukar-tertib ialah suatu graf yang mana dua bucu berbeza 

bersebelahan jika dan hanya jika ia tidak bertukar-tertib, di mana ia terdiri daripada unsur-

unsur bukan pusat dalam kumpulan sebagai set bucu. Dalam makalah ini, indeks Szeged 

bagi graf kalis bertukar-tertib bagi beberapa kumpulan terhingga dikira. Kertas kerja ini 

memfokuskan kepada tiga kumpulan terhingga iaitu kumpulan kuasidihedral, kumpulan 

dihedral, dan kumpulan kuaternion teritlak. Pembinaan graf dilakukan dengan 

menggunakan perisian Maple. Dalam mencari indeks Szeged, beberapa hasil dan sifat 

graf sebelumnya untuk kumpulan kuasidihedral, kumpulan dihedral dan kumpulan 

kuaternion teritlak digunakan. Generalisasi indeks Szeged bagi graf kalis bertukar-tertib 

kemudiannya diwujudkan untuk kumpulan yang disebutkan di atas. Hasilnya kemudian 

digunakan untuk mencari indeks Szeged bagi graf kalis bertukar-tertib molekul ammonia. 
 

Kata kunci: Indeks Szeged, graf kalis bertukar-tertib, kumpulan kuaternion teritlak, kumpulan 

dihedral, kumpulan kuasidihedral 
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1.0 INTRODUCTION 
 

In molecular graph theory, specifically in chemistry, a 

graph made up of a collection of vertices and edges 

is used to illustrate the chemical structure of a 

covalent bond molecule. The atoms represent the 

vertices and the bond between the atoms represent 

the edges [1]. 

Topological indices have a wide application in 

chemistry especially in predicting the 

physicochemical properties such as the boiling point, 

the melting point, the density, and the polarisability. 

The topological indices have been applied in various 

model in chemistry such as the quantitative structure-

activity relationship (QSAR) to estimate the properties 

or activities of the molecule [2]. For instance, 

pharmaceutical QSAR is studied using the topological 

index in order to quantitatively compute their 

molecular features [3]. The majority of topological 

indices are determined by the degree of a vertex or 

the distance between two vertices. 

This paper focuses on the Szeged index of the non-

commuting graph for the quasidihedral groups, the 

dihedral groups, and the generalized quaternion 

groups, which are denoted as 
22

,n nQD D  and 
4 ,nQ

respectively. In [3], the presentation of the 

quasidihedral group, 
2nQD   that has order 2n

 is given 

in the following: 
1 22 2 2 1

2
, 1, ,

n n

nQD a b a b bab a
− − −= = = =  

where 4.n   

Meanwhile, Humphreys [4] also stated the 

presentation of the non-abelian dihedral group that 

has order 2n  is given in the following : 
2 1

2 , 1, ,n

nD a b a b bab a−= = = =  

where 3.n   

The presentation of the generaized quarternion group 

of order 4n as follows. 

2 2 1

4 , , 1, ,n n

nQ a b a b a bab a−= = = =  

where 2n  [5]. 

Next, the non-commuting graph of G, denoted as 

G  , is a graph with non-central vertex set where two 

distinct vertices are adjacent whenever they do not 

commute [5]. If all vertices of the graph are adjacent 

to each other, then it is called the complete graph, 

which is denoted as 
nK , where n  is the vertex number 

of the graph. 

Many types of topological indices have been 

introduced for the past decades and it started with 

the Wiener index of a graph, which is denoted as 

( )W  , introduced by Wiener [6] in 1947. The Wiener 

index takes into account the distance of two vertices. 

Then, the Zagreb index has been developed by 

Gutman and Trinajsti𝑐́ [7] in 1972 and the researches 

are still continuing up until today. In 2019, Yurtas et al. 

[8] determined that any positive even number, 

excluding 4 and 8, may be the first Zagreb index of a 

connected graph. Any positive integer is possible to 

be the second Zagreb index of connected graph 

other than 2, 3, 5, 6, 7, 10, 11, 13 and 17. Besides that, 

Xu et al. [9] studied on the distinction of the Zagreb 

indices of graphs and discovered a formula and its 

applications. Meanwhile, in 1993, Plav𝑠̌i𝑐́ et al. [10] 

invented the Harary index. Xu and Das [11] 

determined the upper and lower bounds for the 

graphs’ Harary index which involves the clique and 

chromatic numbers. 

Particularly, this paper focuses on finding the 

Szeged index of graph, which is denoted as ( )Sz  , 

has been introduced by Gutman and Dobrynin in [12]. 

The basic idea of developing the Szeged index came 

from the Wiener index since the Wiener index does not 

apply to graph containing cycles. If the graph is a tree 

which is not containing cycles, then the value of the 

Szeged and Wiener indices are the same. The 

research on the relation of the Wiener and Szeged 

indices on monocyclic molecules is done by Gutman 

et al. [13] in 1997. In 2011, Nadjafi-Arani et al. [14] also 

discovered a connection between a graph's Wiener 

and Szeged indices, and proved that ( ) ( )Sz W =  . 

Later, in 2017, Bonamy et al.[15] then proved this 

conjecture for the 2−connected non-complete n  

vertices graph and found that ( ) ( ) 2 6.Sz W n −   −  

Additionally, for n −vertex unicyclic graphs with a 

certain diameter, Wang et al. [16] identified their 

minimum edge-Szeged index in 2018. Pattabiraman 

and Kandan have introduced the weighted Szeged 

index of a splice graph and link graph [17]. 

Meanwhile, in 2022, Liu [18] discovered the smallest 

revised Szeged index among all conjugated unicyclic 

graphs. 

In this paper, there are four sections. The 

introduction is stated in the first section, followed by 

preliminaries that lay out some fundamental terms 

and notions related to the theory of groups and 

graphs. The third section explains on the relationship of 

the molecule in chemistry with group theory. The 

fourth section includes the main results and the 

conclusion is stated in the last section. 

 

 

2.0 PRELIMINARIES 
 

This section contains some fundamental ideas and 

prior findings in group and graph theories which are 

needed to develop the general form of the 

topological indices. 

Mahmoud et al. [19] generalized the types of the 

non-commuting graph for the quasidihedral groups, 

the dihedral groups, and the generalized quaternion 

groups are as complete multipartite graphs. The 

complete p-partite graph, 
1 2, , , pn n nK has vertices 

partitioned into p  subsets of 1 2, , , pn n n  elements 

each, and vertices are only considered to be 

contiguous if they belong to separate subsets of the 

partition [20]. 

Based on the given graph, some properties of the 

graph are considered in computing its topological 
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index. In calculating the index, two information are 

needed from the graph which are the vertex degree 

and the shortest path between the two vertices. In a 

chemical compound, the atoms represent the 

vertices of the graph while the bond between atoms 

represent the edge of the graph. The number of 

edges at a vertex in a graph is known as its vertex 

degree, while the distance between two vertices is 

the shortest path from a vertex to another vertex of the 

graph [21]. 

The following propositions are from previous results 

that are used in generalizing the topological index of 

the non-commuting graph for the quasidihedral 

groups, the dihedral groups, and the generalized 

quaternion groups. The number of conjugacy classes 

of dihedral groups and its center are stated as follows: 

 

Proposition 1. [22] Let G  be a dihedral group, 
2nD . 

Then, the total conjugacy classes number of G , which 

denoted as ( )k G  is 

6
, if     is even,

2
( )

3
, if     is odd.

2

n
n

k G
n

n

+


= 
+



 

 

Proposition 2. [22] Let G  be a dihedral group, 
2nD  and 

( )Z G  is the center of G . Then, 

 

21, , if     is even,
( )

1 , if     is odd.

n

a n
Z G

n

 
 

=  



 

 

The center of generalized quaternion group and 

quasidihedral group are stated in the following 

propositions. 

 

Proposition 3. [23] Let G  be a generalized quaternion 

group, 
4nQ . Then, the center of G  is  ( ) 1, nZ G a= , 

where 𝑛 ≥ 2, 𝑛 ∈ . 
 

Proposition 4. [24] Let G  be a quasidihedral group, 

2nQD . Then, the center of G  is  
22( ) 1, ,

n

Z G a
−

=  where 

𝑛 ≥ 4, 𝑛 ∈ .  
 

Furthermore, the total edges numbers in the non-

commuting graph has been determined by Abdollahi 

et al. [22] as presented in the following proposition. 

 

Proposition 5. [25] Let G  be a finite group and the non-

commuting graph of G is denoted as G . Then, 

( )
2

( )
.

2
G

G k G G
E

−
 =  

 

Mahmoud et al. [19] have found the non-

commuting graph of the quasidihedral groups, the 

dihedral groups, and the generalized quaternion 

groups which are presented in the following three 

propositions. 

 

Proposition 6. [19] Let G  be the quasidihedral groups 

of order 2n
 where 𝑛 ≥ 4, 𝑛 ∈ . Then, the non-

commuting graph of G  is 

1

22  times

2,2, ,2,2 2
.n

n

G K −

−

−
 =  

 

Proposition 7. [19] Let G  be the dihedral group of order 

2n  where 𝑛 ≥ 3, 𝑛 ∈  and let 
G be the non-

commuting graph of G . Then, 

 times
2

 times

2,2, ,2, 2

1,1, ,1, 1

, if      is even,

, if      is odd.

n

n

n

G

n

K n

K n

−

−




 = 



 

 

Proposition 8. [19] Let G  be the generalized 

quaternion groups, 
4nQ . Then, the non-commuting 

graph of G  is 

 times

2,2, ,2,2 2 ,
n

G nK − =  

where 𝑛 ≥ 2, 𝑛 ∈ . 
 

The computation of the Szeged index involves the 

distance between all vertices in the graph, where the 

graph considered is a connected graph only. Let such 

graph be , then the Szeged index, ( )Sz  is given in 

the following: 

( ) ( )1 2

( )

( ) ,
e E

Sz n e n e
 

 =    

where the summation embraces all edges of ,  

( ) ( ) 1( ) ( ), , ,n e v v V d v x d v y =       

and 

( ) ( ) 2 ( ) ( ), , ,n e v v V d v x d v y =       

which means, ( )1n e  counts the vertices of  that 

are closer to one endpoint x of the edge than to its 

other endpoint y ,whereas ( )2n e   does the opposite 

[12]. 

 

 

3.0 RESULTS AND DISCUSSION 
 

The Szeged index of the non-commuting graph for the 

quasidihedral groups, dihedral groups, and 

generalised quaternion groups is established in this 

section as the primary results. The general formula of 

the Szeged index for  22
,n nQD D  and 

4 ,nQ  are stated in 

the following three theorems. 

 

Theorem 1. Let G  be the quasidihedral group and the 

non-commuting graph of G  is denoted as 
G . Then, 
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the Szeged index of the non-commuting graph for 

2nQD  is 

( )2 2 1( ) 2 2 3 2 2 ,n n n

GSz − −  = − +
 

 

where 4.n   

Proof  From Proposition 8, ( )1 12 2 2n n− − − edges have 

( )1 2n e  = since there are only two elements of 

vertices which are closer to a vertex of edge, namely 
x , than the other vertex of edge, namely .y Then, 

( ) 1

2 2 2nn e − = − since there are 2 2n− elements of 

vertices which are closer to y than to x . Meanwhile, 

the rest of the edges have ( ) ( )1 2 2.n e n e =  = Thus, 

according to the Szeged index definition, 

 

( ) ( )( ) ( )

( ) ( )( )  

( )( ) ( )

( )
( )  

( ) ( )

( )

( )

1 1 1

1 1

1 1 1

2 2

1 1

2
1 2 1 2 1 1 2

1

2
1 1 1

2

2 2 2 2 2 2

  2 2 2 2 2

2 2 2 2 2 2

2 2 2 3
  2 2 2 4

2

2 2 2 2 2 3 2 2

 2 2

2 2 2 2 2 2 2

2 2
2 2 2

4 2

n n n

G

n n

G

n n n

n n n

n n

n n n n n n

n

n n n n n

n n
n n

Sz

E

− − −

− −

− − −

−

− −

− + − +

+

− + −

  = − − +
 

  − − 
 

 = − − +
 

 − +
 − −
  

= − + − − −

+

 = − + − − −
  

 
= + − − 

 

( )2 2 12 2 3 2 2 ,n n n− − = − +
 

 

 

where 4.n   

 

Theorem 2. Let G  be the dihedral group and the non-

commuting graph of G  is denoted as 
G . Then, the 

Szeged index of the non-commuting graph for 
2nD  is 

( )

( )( )

1
1 , if     is odd,

2( )

2 2 1 , if     is even,

G

n n n n
Sz

n n n n

  
− −  

 =  
 − −

 

where 3.n   

 

Proof  Case 1: n is odd and 3:n   

Let  be the non-commuting graph of 2nD . Based on 

Proposition 6, ( )1n n−  edges have ( )1 1n e  = since 

there is only one element of vertices which is closer to 

a vertex x of the edge than the other vertex of the 

edge, namely .y Then, ( )2 1n e n = − since 1n−

elements of vertices which are closer to y than to x . 

Meanwhile, the rest of the edges have 

( ) ( )1 2 1.n e n e =  = Thus, by the Szeged index 

definition, 

( ) ( ) ( ) ( )  

( )

( )

( )

( )

2

2

2
2

( 1) 1 1 1 1 1

( )
( 1)( 1) 1

2

3
( 1)( 1) 2 1

2

1
2 2

1
1 .

2

G GSz n n n E n n

G k G G
n n n n n

n
n n n n n n n

n n
n n

n n n

  = −  − +  − −     

 −
= − − + − − 

  

 +  
= − − + − − −  

  

= − + −

 
= − − 

 

 

 

Case 2: n is even and 3:n   

Let  be the non-commuting graph of 
2nD . Based on 

Proposition 6, ( )2 2n n−  edges have ( )1 2n e  = since 

there are two elements of vertices which are closer to 

a vertex x of the edge than the other vertex of the 

edge, namely .y Then, ( )2 2n e n = − since 2n −  

elements of vertices which are closer to y than to x . 

Meanwhile, the rest of the edges have 

( ) ( )1 2 2.n e n e =  = Thus, by the definition of Szeged 

index, 

 

( ) ( ) ( ) ( )  

( )  

( )( )
( )  

( ) ( )

( ) ( )

( )( )

2

2

2

2 2

2

( 2) 2 2 2 2 2

( )
2 ( 2)( 2) 2 4

2

4 6
2 ( 2) 2 4

2

2 ( 2) 2 4 6 2 2

2 2 2 2

2 2 1 .

G GSz n n n E n n

G k G G
n n n n n

n n n
n n n n

n n n n n n n

n n n n

n n n

  = −  − +  − −     

 −
= − − + − − 

  

 − +
= − + − − 

  

 = − + − + − − 

= − + −

= − −

 

 

Therefore, 

𝑆𝑧(Γ𝐺) = {
𝑛(𝑛 − 1) (𝑛 −

1

2
) , if    𝑛 is odd,

2𝑛(𝑛 − 2)(𝑛 − 1), if    𝑛 is even.
 

 

Theorem 3. Let G  be the generalized quaternion 

group and the non-commuting graph of G  is denoted 

as G . Then, the Szeged index of the non-commuting 

graph for 
4nQ  is 

( ) ( )( )8 1 2 1 ,GSz n n n = − −  

where 2.n   

Proof  From Proposition 7, there are ( )4 1n n− edges 

that have ( )1 2n e  = since there are two elements of 
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vertices which are closer to a vertex of edge, namely 
x than the other vertex of edge, namely y . Then, 

( )2 2 2n e n = − since 2 2n−  elements of vertices 

which are closer to y than to x . Meanwhile, the rest 

of the edges have ( ) ( )1 2 2.n e n e =  = Thus, by the 

Szeged index definition, 

 

( ) ( ) ( ) ( )

 

( ) ( )  

( ) ( )( )
( )  

( ) ( )( )

( )( )

2

2

2

2

4 ( 1) 2 2 2 4 1

 2 2

( )
8 ( 1) 2 2 4 1 4

2

4 3 4
16 ( 1) 4 1 4

2

16 1 2 1 4

8 1 2 1 .

G GSz n n n E n n

G k G G
n n n n n

n n n
n n n n

n n n n

n n n

  = −  − +  − −    



 −
= − − + − − 

  

 − +
= − + − − 

  

= − + −

= − −

 

 

Next, the main theorem will be used to compute 

the Szeged index of the ammonia molecule via its 

point group and isomorphism with a particular group 

in group theory. 

 

 
 

Figure 1 Ammonia molecule 

 

 

In group theory, there are a few operations 

involved to develop a group. Particularly, dihedral 

group is created from the operation of rotation and 

reflection. In this section, the relationship between the 

ammonia molecule, 3NH and the dihedral group of 

order six, 
6D  is shown. In consequence, the Szeged 

index of 3NH  can be determined from the main result. 

The dihedral group of order six can be represented 

as a triangle with three vertices. The elements of 
6D  

are denoted as 
0 1 2 1 2, , , ,     ,and 

3 which can be 

written by  6 0 1 2 1 2 3, , , , ,D      = . 

Meanwhile, the ammonia molecule has four atoms 

which are a nitrogen(N) atom and three hydrogen(H) 

atoms, as shown in Figure 1. The molecule can be 

classified into symmetry group based on symmetry 

element and symmetry operation. Symmetry 

operation is an action such that the molecule is 

transformed into a state indistinguishable from the 

starting state [26]. 

The symmetry elements are the identity ( )E , 

inversion center ( )i , symmetry plane ( ) , rotation 

( )nC , and improper axis ( )nS . These combinations of 

elements are called the point group [27]. In other 

word, point groups can be defined when there is at 

least a point in a molecule that remains unchanged 

and not affected by any symmetry operation from the 

group [28]. Molecule of ammonia is a non-linear 

molecule which has elements of 2

3 3 ( ) '( ), , , ,v xy v yzE C C    

and 
''( )v xz  where the , ,x y z  axis is at nitrogen atom. 

Hence, it has a point group, 
3vC  where its Cayley table 

is presented in Figure 2. 

 

 
 

Figure 2 Cayley table of 
3vC  

 

 

Next, the isomorphism of 
6D  and 

 2

3 3 3 ( ) '( ) ''( ), , , , ,v v xy v yz v yzC E C C   = is shown in the 

following. First, the elements from each set are 

mapped to those of the same order. Let  be the 

mapping from 
6D to 

3vC , then let 

( ) ( ) ( ) ( ) ( )2

0 1 3 2 3 1 ( ) 2, , , ,v xyE C C          = = = =  

'( ) ,v yz= and ( )3 ''( ).v xz  = Thus,  is one-to-one and 

onto. Next,   can be shown to be homomorphism i.e. 

( ) ( ) ( )gh g h  = for all 
6, .g h D Thus,  is an 

isomorphism and 
6D is isomorphic to 

3vC , 
6 3vD C and 

the main theorem can be used to determine the 

Szeged index of the molecular structure. 

Since 
6 3vD C , then the Szeged index of the non-

commuting graph for the ammonia molecule can be 

calculated from the general formula of the Szeged 

index of the non-commuting graph for dihedral group 

of order six, 
6D . From Theorem 1, the Szeged index is 

( )( )1 0.5n n n− −  when n  is odd. Hence, 

( )
3

3(2)(2.5) 15.NHSz  = =  
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4.0 CONCLUSION 
 

In this article, the general formula of the Szeged index 

of the non-commuting graph associated to the 

quasidihedral, the dihedral, and the generalized 

quaternion groups in terms of n are determined. These 

formulas can help the scientists especially chemists to 

compute the physicochemical properties in a faster 

way. An example is presented to illustrate the 

application and calculation of any topological index 

for molecular structure of chemical compound. In 

future, other types of topological indices for various 

type of graphs associated to the semidirect product 

of two groups can be investigated. 
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