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PARTICLE SWARM OPTIMIZATION FOR NEURAL NETWORK
LEARNING ENHANCEMENT

HAZA NUZLY ABDULL HAMED1, SITI MARIYAM SHAMSUDDIN2 &
NAOMIE SALIM3

Abstract. Backpropagation (BP) algorithm is widely used to solve many real world problems
by using the concept of Multilayer Perceptron (MLP). However, major disadvantages of BP are its
convergence rate is relatively slow and always being trapped at the local minima. To overcome
this problem, Genetic Algorithm (GA) has been used to determine optimal value for BP parameters
such as learning and momentum rate and, also for weight optimization. Although GA has successfully
improved Backpropagation Neural Network (BPNN) learning, there are still some issues such as
longer training time to produce the output and usage of complex functions in selection, crossover
and mutation calculation. In this study, Particle Swarm Optimization (PSO) algorithm has been
chosen and applied in feedforward neural network to enhance the learning process in terms of
convergence rate and classification accuracy. Two experiments have been conducted; Particle
Swarm Optimization Feedforward Neural Network (PSONN) and Genetic Algorithm
Backpropagation Neural Network (GANN). The results show that PSONN give promising results
in terms of convergence rate and classification accuracy compared to GANN.
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Abstrak. Algoritma rambatan balik telah digunakan secara meluas dalam menyelesaikan
pelbagai masalah dengan menggunakan konsep perceptron multi aras. Namun begitu terdapat
banyak isu utama pada algoritma ini seperti kadar penumpuan yang lambat dan kekerapan
terperangkap di dalam minimum setempat. Bagi mengatasi masalah ini, Algoritma Genetik (AG)
digunakan untuk menentukan nilai yang optimal bagi mendapatkan parameter yang sesuai seperti
kadar pembelajaran dan kadar momentum serta pengoptimuman pemberat. Walaupun AG berjaya
meningkatkan keupayaan pembelajaran bagi Rangkaian Neural (RN) menggunakan rambatan
balik, masih terdapat beberapa masalah lain seperti latihan untuk mengeluarkan output mengambil
masa yang lama dan penggunaan fungsi yang rumit seperti perhitungan pilihan, silangan dan
mutasi. Kajian ini mengemukakan teknik pengoptimuman yang terkini, iaitu pengoptimuman partikel
secara berkumpulan yang dicerap di dalam proses pembelajaran RN, bagi meningkatkan masa
penumpuan dan ketepatan pengelasan. Dua uji kaji telah dilaksanakan, iaitu RN ke hadapan
menggunakan pengoptimuman partikel secara berkumpulan dan RN rambatan balik menggunakan
AG. Hasil kajian mendapati bahawa RN ke hadapan dengan pengoptimuman partikel secara
berkumpulan memberikan keputusan yang lebih baik dari aspek masa penumpuan dan ketepatan
pengelasan, berbanding dengan RN rambatan balik menggunakan AG.

Kata kunci: Partikel berkumpulan; rangkaian neural; algoritma genetik; rambatan balik; kepintaran
berkumpulan
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1.0 INTRODUCTION

Artificial Neural Network (ANN) or commonly referred as Neural Network (NN) is
an information processing paradigm that is inspired by the way biological nervous
systems process information. Processing power in ANN allows the network to learn
and adapt, in addition to making it particularly well suited to tasks such as classification,
pattern recognition, memory recall, prediction, optimization, and noise filtering [1].
The primary significance for a NN is the ability of the network to learn from its
environment and to improve its performance through learning [2]. Learning is a
process of modifying the weights and biases to the neurons and continued until a
preset condition is met such as using a pre-defined error function. The most familiar
technique in NN learning is called Backpropogation (BP) algorithm. However, the
major disadvantages of BP are its convergence rate is relatively slow [3] and the
solution being trapped at the local minima. There are many solutions proposed by
NN researchers to overcome the issues of slow convergence rate and trapping at the
local minima. Genetic Algorithm (GA) is one of the algorithms proposed to determine
the best BP parameters value and weight optimization. Although GA has successfully
improved BPNN learning as demonstrated by many researchers such as Zhang and
Ciesielski [4] and Randall and Naheel [5], there are still some issues such as longer
training time to produce the output and usage of complex functions in selection,
crossover and mutation calculation. According to Song and Gu [6], due to the
convenience of realization and promising optimization ability in various problems,
Particle Swarm Optimization algorithm has been paid more and more attention to
by researchers. Lee et al. [7] have used PSO and GA for excess return evaluation in
stock market. Based on their experiment, it is proven that PSO algorithm is better
compared to GA. Another study by Al-kazemi and Mohan [8] proposed Multi-
Phase Particle Swarm Optimization algorithm (MPPSO) to train feedforward neural
network. Zhang et al. [9] applied PSO in ANN to two real problems in medical
domain; breast cancer and heart disease. The result shows that PSO has better
accuracy in classifying these data.

Based on the experiments conducted by several researchers, it shows that PSO
provides better result. In this study PSO is employed to investigate the convergence
speed and the classification accuracy of NN learning compared to GA-based NN.

2.0 ARTIFICIAL NEURAL NETWORK AND SWARM
INTELLIGENCE

Artificial Neural Network (ANN) consists of a parallel collection of simple processing
units (neurons/nodes) arranged and interconnected in a network topology [10] as
shown in Figure 1. Zhang et al. [9] addressed that the information processing
capability ANN is closely related to its architecture and weights. Figure 2 shows the
interconnection between nodes which is usually referred as a fully connected network
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or multilayer perceptron (MLP). MLP network can be used with great success to
solve both classification and function approximation problems [11]. There are two
types of learning networks which are supervised learning and unsupervised or self-
organizing learning. Supervised learning is when the input and desired output are
provided while for unsupervised learning, only input data is provided to the network.
Supervised learning has been chosen for this study.
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Figure 1 Artificial neural network
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Swarm Intelligence (SI) is the latest soft computing technique introduced in 1995
by Russell C. Eberhart and James Kennedy [12]. SI is defined as any attempt to
design algorithms or distributed problem-solving devices inspired by the collective
behaviour of the social insect colonies and other animal societies such as ant colonies
and bird flocking [13]. There are two major techniques in SI; Ant Colony Optimization
(ACO) and Particle Swarm Optimization (PSO). The ACO algorithm is a probabilistic
technique for solving computational problems, which can be reduced to finding
good paths through graphs. They are inspired by the behaviour of ants in finding
paths from the colony to food. On the other hand, PSO is a technique where several
particles (solutions) interacting between each other to find the best solutions. In this
study, PSO is chosen as learning algorithm in ANN.

3.0 PARTICLE SWARM OPTIMIZATION AND GENETIC
ALGORITHM

The original Particle Swarm Optimization (PSO) algorithm is discovered through
simplified social model simulation [14]. PSO is a simple concept adapted from nature
decentralized and self-organized systems such as choreography of a bird flock and
fish school. PSO is a population-based algorithm in which individual particles work
together to solve a given problem. The Population (or swarm) and the member
called particle is initialized by assigning random positions and velocities. The potential
solutions are then flown through the hyperspace. The particles learn over time in
response to their own experience and the experience of the other particles in their
group. According to Eberhart and Shi [15], each particle keeps track of its best
fitness position in hyperspace that has been achieved. This value is called personal
best or pbest. The best value obtained by any particle in the population is called
global best or gbest. During each epoch (or iteration), every particle is accelerated
towards its own personal best as well as in the direction of the global best position.
This is achieved by calculating a new velocity term for each particle based on the
distance from its personal best, as well as its distance from the global best position.
These two components (personal and global velocities) are randomly weighted to
produce a new velocity value for this particle, which will in turn affect the next
position of the particle during the next epoch [16]. Based on the velocities calculation,
all particles will move to the best solutions and this process is repeated until the stop
condition is met.

PSO is an optimization algorithm that using only primitive mathematical
calculations. The advantage of the PSO over many of the other optimization algorithms
is its relative simplicity [16]. According to Jones [17], there are only two equations in
PSO, the movement Equation (Equation (1)) and velocity update Equation (Equation
(2)). The movement equation provides for the actual movement of the particles
using their specific vector velocity value, while the velocity updates equation provides
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for velocity vector adjustment that guide every particle in order to move to the best
solution based on gbest and pbest values.

The movement equation is given as:

ν= + ∆*n n nx x t (1)

where
xn is the current position value,
νn is the current velocity value,
∆t is the time interval.

The velocity updating equation is given as:

( ) ( )ν ν= + − + −1 , 2 ,* ()* * ()*n n best n n best n nc rand g x c rand p x (2)

where,
νn is the current velocity value,
gbest,n is the current gbest value,
pbest,n is the current pbest value,
rand () is the random number between 0 –1,
c1 is the first constant,
c2 is the second constant,
xn is the current position value.

Equation (1) is performed for each element of the position (x) and velocity (ν )
vector. The ∆t parameter defines the discrete time interval over which the particle
will move. The result is a new position for the particle. In equation (2), it subtracts
the dimensional element from the dimension from the best vector and multiplies by
a random number (between 0.0 and 1.0) and acceleration constant (C1 and C2). The
sum of these products is then added to the velocity for the given dimension of the
vector. This process is performed for each element of the velocity vector. The random
numbers provide an amount of randomness in the path to help the particle move
throughout the solution space. The C1 and C2 acceleration constant provide some
controls to the equation to define which should be given more emphasis on the path
(global or personal best).

On the other hand, Genetic Algorithm (GA) introduced by John Holland [18] is
a probabilistic optimization algorithm. The original idea came from biological
evolution process in chromosomes. GA exploits the idea of the survival of fittest
where best solutions are recombined with each other to form new better solutions.
There are three processes in GA; selection, crossover and mutation. In standard
GA, the population is a set of individual number. Each individual represents the
chromosome of a life form. There is a function that determines the fitness of each
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individual from the population to reproduce. The two selected chromosomes are
combined in crossover process and split into two new individuals, and this is known
as mutation. The process is repeated until the stopping condition is met.

4.0 A FRAMEWORK OF PARTICLE SWARM OPTIMIZATION
FEEDFORWARD NEURAL NETWORK AND GENETIC
ALGORITHM BACKPROPAGATION NEURAL NETWORK

This study is conducted to see the performance of convergence rate and classification
accuracy between Particle Swarm Optimization Feedforward Neural Network
(PSONN) and Genetic Algorithm Backpropagation Neural Network (GANN) using
UCI machine dataset; XOR, Cancer and Iris dataset [19]. Figure 3 is a proposed
framework of the study.
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Determine training pattern

Define NN architecture

Determine NN and PSO parameters

Start training

Weight adjustment using PSO

NN enhancement using GA

Determine training pattern

Define NN architecture

Run GA

Implement GA output to BPNN

Start training

Figure 3 A framework of the study
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In this study, both algorithms use the same NN architecture as described below:

(a) 3 Layer of ANN as shown in Table 1.

                Table 1 ANN architecture

Type of dataset Data pattern Input Hidden Output

XOR 4 2 5 1
Cancer 150 9 19 1
Iris 120 4 9 3

(b) There are many suggestions by researcher to determine the suitable number
of hidden nodes. In this study, number of hidden nodes are determined
using Kolmogorov Theorem as shown in Equation (3):

hidden = 2n + 1, where n = number of input. (3)

(c) A common activation function in ANN, Sigmoid Activation/Transfer
Function has been used as shown in Equation (4).

( ) ( )
1

1 x
f x

e−
=

+
, where x is an input. (4)

In this study, PSO is applied to feedforward neural network based on Al-kazemi
and Mohan [8], where the position of each particle in swarm represents a set of
weight for the current epoch or iteration. The dimensionality of each particle is the
number of weights associated with the network. The particle moves within the weight
space attempting to minimize learning error. Changing the position means updating
the weight of the network in order to reduce the error of the current epoch. In each
epoch, the particles update their position by calculating the new velocity, and move
to the new position. The new position is a set of new weights used to obtain the new
error. This process is repeated and the particle with the lowest learning error is
considered as the global best particle. The training process continues until satisfactory
error is achieved by the best particle or computational limits (maximum iteration)
are exceeded. When the training ends, the weights are used to calculate the
classification error for the training patterns. The same set of weights is used to test
the network using new patterns.

There is no backpropagation concept in PSONN where the feedforward NN
produced the learning error (particle fitness) based on set of weight and bias (PSO
positions). The pbest value (each particle’s lowest learning error ) and gbest value
(lowest learning error found in entire learning process) are applied to Equation (2)
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to produce a value for positions adjustment to the best solution or targeted learning
error. The velocity value obtained from equation (2) is added to current position to
produce the new set of particle positions using equation (1). This is the concept of
particle movement or ‘fly’ in PSO, where all particles move to new location based
on the new particle position. These new sets of positions are used for producing new
learning error in feedforward NN. This process is repeated until the stop conditions
are met (minimum learning error or maximum number of iteration). Learning errors
are calculated in feedforward NN starting from input nodes to hidden nodes and
output nodes, and NN make a backward pass from output nodes to hidden nodes
and input nodes to produce new set of weights. Figure 4 shows PSONN learning
process.

PSO with well-selected parameter set can have good performance [14]. Jones [17]
gave four basic parameters in PSO, and this includes:

(a) acceleration constants for gbest (C1),
(b) acceleration constants for pbest (C2),
(c) time interval (∆t),
(d) number of particle.

Figure 4 PSONN learning process
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The acceleration constants are used to define how particles swarm in the simulation.
According to Eberhart and Shi [15], the acceleration constant C1 and C2 represent
the stochastic acceleration that pulls each particle toward pbest and gbest position.
The ∆t parameter defines the time interval over which movement takes place in the
solution space. For the number of particles in the simulation or swarm, the more
particles that are presented, the greater the amount of space that is covered in the
problem, thus optimization becomes slower. Besides these basic parameters, there
are also some other parameters that depend on the problems such as particle
dimension, number of particles and stopping condition. Table 2 shows the parameters
that have been used in this study, which are based on Eberhart and Shi [15] and
Jones [17].

Table 2 PSONN parameters

Parameter Value Notes

C1 2.0 Suggested by Eberhart and Shi [15]

C2 2.0 Suggested by Eberhart and Shi [15]

∆t 0.1 Suggested by Jones [17]

Number of particles 20 Must balance between variety (more
particles) and speed (fewer particles) [16]

Problem dimension XOR : 21 Dimension=(input*hidden)+(hidden*
Cancer : 210 output)+hiddenbias + outputbias
Iris : 75

Range of particles Not specified Particle free to move anywhere

Stop condition NN minimum error or
max number of iteration

Initial position Random Suggested by Eberhart and Shi [15]

Initial velocity Random Suggested by Eberhart and Shi [15]

GA is usually applied in ANN to optimize the network because of its efficiency in
giving the best parameters such as learning rate and momentum rate to avoid from
being trapped in a local minima and making the convergence speed faster. GA also
has been used to produce best NN architecture and for NN weight optimization.
According to Randall and Naheel [5], GA starts at multiple random points (initial
population) when searching for a solution. Each solution is then evaluated based on
the objective function. These solutions are selected for the second generation based
on their performance. This operation keeps all the weights that are included in the
previous generation but allows them to be rearranged. If the weights are good, they
still exist in the population. The next operation is mutation, which can randomly
replace the weights in the population, for a solution to escape from local minima.
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Upon completion, the generation is ready for evaluation and the process continues
until the best solution is found. Figure 5 shows the encoding process from ANN
weights to GA chromosome.

Figure 5 Encoding a set of weights in a chromosome

Weights in BP are replaced with weights from GA, while η  and α (learning and
momentum rate) value in BP are replaced with value from GA process. GA algorithm
is proven to be effective to guide the ANN learning, thus, it is widely used in many
real world applications. As a result, PSO technique is proposed to see the performance
and the results are compared with GANN learning performance. Table 3 shows the
GA parameters that have been used in this study. The parameters value that has
been chosen is the optimal value in order to generate result in NN learning.

Table 3 GA parameters
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5.0 EXPERIMENTAL RESULT

Experiments are conducted using three dataset; XOR, Cancer and Iris on both
algorithms with pre-defined error is 0.005 as stopping condition. The results for each
dataset are compared and analysed based on the convergence rate and classification
performance.

Result for XOR is shown in Table 4 and Figure 6. The result shows that PSONN
convergence time is 12 seconds at iteration 51 compared to GANN, where it takes
37 seconds for overall learning process. Both algorithms are converged using the
minimum error criteria. For the correct classification percentage, it shows that PSONN
result is better than GANN with 95.17% compared to 85.66% in GANN. Figure 6
shows the learning process where both algorithms attempt to reach the learning stop
condition. In PSONN, 20 particles work together to find the lowest error (gbest) at
each iteration and consistently reduce the error at each iteration. While in GANN, it
seems that the error starts to decrease at iteration 37, and stop at a specified condition
in a short time.

Table 4 XOR learning result

PSONN GANN

Learning iteration 51 61

Error convergence 0.00473763 0.04125

Convergence time 12 Sec 37 Sec

Correct classification 95.17% 85.66%

In Cancer dataset, PSONN takes 110 seconds compared to 273 second in GANN
to converge as shown in Table 5. In this experiment, PSONN manages to converge
using minimum error at iteration 196, while GANN converge at a maximum iteration
of 10000. For the correct classification percentage, it shows that PSONN result is
better than GANN with 99.75% compared to 99.28% in GANN. Figure 7 shows
PSONN significantly reduce the error at small number of iteration compared to
GANN.

Figure 6 Convergence rates of XOR dataset
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For Iris learning, both algorithms converge using the maximum number of pre-
specified iteration. PSONN takes 173 second to converge at minimum error of 4.18404
while minimum error for GANN is 1.88831 at 10000 iterations. Table 6 shows that
GANN is better in classification than PSONN with 97.72% compared to 92.11% in
GANN. However, PSONN convergence is faster compared to GANN (Figure 8).

Figure 7 Convergence rates of Cancer dataset

Figure 8 Convergence rates of Iris dataset
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Error Convergence 0.00495528 0.50049
Convergence Time 110 Sec 273 Sec
Correct Classification 99.75% 99.28%

Table 6 Iris learning result

PSONN GANN
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Error Convergence 4.18404 1.88831
Convergence Time 173 Sec 256 Sec
Correct Classification 92.11% 97.72%
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reduced. This is due to the implementation of PSONN program with several text
files for checking and verification purposes such as text file for checking gbest error
in every iteration and text file to record every particle with current fitness function
for graph drawing. This process causes slow convergence time compared to PSONN
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parameters for the dataset influence the convergence and the performance of network
learning. By reducing the hidden nodes, it minimizes the number of weight (position)
and also reduces the problem dimension. In this study, several times that PSONN is
generated with reduced number of hidden nodes, and the results have proven that
the learning becomes faster. However, to have fair comparison, Kolmogorov theorem
is chosen, and both algorithms should have similar network architecture. Choosing
PSONN parameters also depend on the problem and dataset to be optimized. This
parameter can be adjusted to achieve better optimization. For GANN, learning rate
and momentum rate which are critical for standard BP learning is provided by GA
algorithm with a set of weights. This is to ensure that the convergence time is faster
with better results. However, the process including parameters selection in GA takes
longer time compared to overall process in PSONN.

7.0 CONCLUSION

In this study, PSO and GA are successfully applied in neural network and has been
tested using XOR, Cancer and Iris datasets. The analysis is done by comparing
classification results for each dataset produced by PSONN and GANN. Most
important finding in this study is PSO is a simple optimization algorithm with less
mathematical equation that can be effectively applied in neural network with faster
convergence rate and promising classification accuracy compared to GANN. This
study also shows that implementation of GA as parameter tuning to BP algorithm
does not give better improvement to the convergence rate. For future works, PSO
can be enhance by using multiple group of particle as suggested by Al-kazemi and
Mohan [8] or modify the velocity update Equation (2) by using the inertia weight as
suggested by Eberhart and Shi [15].
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