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Abstract 
 

The integration of machine learning solutions is becoming more prominent in the 

industry. In industrial maintenance, new approaches categorized under 

predictive maintenance primarily use machine learning to identify patterns that 

could lead to machine failures. However, in most cases, implementing a 

machine learning approach is very expensive regarding resources and 

experienced personnel. Therefore, this approach is usually more costly in some 

machines than replacing these faulty machines instead. This paper proposes a 

low-cost machine-learning approach to detect anomalies in a rotary machine 

by monitoring its casing temperature using EdgeImpulse to Train the model and 

a Raspberry Pico as the microcontroller. The project is divided into two phases. 

Data is collected to be used to train and test the model. The model is then 

deployed to the microcontroller and is connected to a sensor attached to the 

motor. The model developed showed promising results with an accuracy of 91% 

and a ƒ1 score of 0.91. 
 

Keywords: Machine learning, maintenance, anomaly detection, rotary 

machine, microcontroller 

 

Abstrak 
 

Penyepaduan penyelesaian pembelajaran mesin menjadi lebih menonjol 

dalam industri. Dalam penyelenggaraan industri, pendekatan baharu yang 

dikategorikan di bawah penyelenggaraan ramalan terutamanya 

menggunakan pembelajaran mesin untuk mengenal pasti corak yang boleh 

membawa kepada kegagalan mesin. Walau bagaimanapun, dalam 

kebanyakan kes, melaksanakan pendekatan pembelajaran mesin adalah 

sangat mahal berkaitan sumber dan kakitangan yang berpengalaman. Oleh 

itu, pendekatan ini biasanya lebih mahal dalam sesetengah mesin daripada 

menggantikan mesin yang rosak ini. Kertas kerja ini mencadangkan 

pendekatan pembelajaran mesin kos rendah untuk mengesan anomali dalam 

mesin berputar dengan memantau suhu selongsongnya menggunakan 

EdgeImpulse untuk Melatih model dan Raspberry Pico sebagai mikropengawal. 

Projek ini dibahagikan kepada dua fasa. Data dikumpul untuk digunakan untuk 

melatih dan menguji model. Model itu kemudiannya digunakan pada 

mikropengawal dan akan disambungkan kepada penderia yang dipasang 

pada motor. Model yang dibangunkan menunjukkan hasil yang menjanjikan 

dengan ketepatan 91% dan skor ƒ1 0.91. 
 

Kata kunci: Pembelajaran mesin, penyelenggaraan, pengesanan anomali, 

mesin berputar, pengawal mikro 
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1.0 INTRODUCTION 
 

Maintenance strategies will need to be modified as 

the industry transitions toward Industry 4.0 [1]. Currently 

implemented maintenance procedures have 

different types of problems. One of the most common 

maintenance strategies is corrective maintenance. 

Curative maintenance is simply the repair or 

replacement of defective or damaged equipment 

[2]. Although it is a simple approach, it has several 

flaws. Financially speaking, unplanned downtime may 

result in tremendous losses, even for a few hours. 

Furthermore, regarding energy consumption, a worn-

but functional machine that is expected to 

malfunction or be damaged would consume more 

energy than a machine working normally [3]. 

Another type of maintenance strategy is 

preventive maintenance. Unlike corrective 

maintenance, this approach reduces unexpected 

downtimes of machines due to failures by using 

scheduled maintenance. By using statistical data, 

machine parts are replaced periodically. The 

advantage of using this approach is that the machine 

will have fewer unexpected breakdowns. However, 

the problem with this maintenance strategy is that it is 

not cost-effective. When parts are replaced after a 

specific period, the health of that part is not 

considered or assessed. Therefore, sometimes a 

perfectly working part may be replaced because of 

its scheduled maintenance due date, which wastes 

the remaining useful life of the part [4, 5]. 

The disadvantages of preventive maintenance 

mentioned above are why the industry is moving 

towards predictive maintenance [4]. Predictive 

maintenance revolves around the use of monitoring 

devices to observe system parameters related to the 

health status of the machine or parameters that, if 

changed, could negatively affect the machine's 

performance. The change in the data sent by 

monitoring devices can be called deviations or 

anomalies. A predictive maintenance system detects 

these anomalies before they cause machine failures. 

After that, maintenance can be performed to find the 

leading cause of the anomalies and fix them [6]. 

However, the conventional approach to 

predictive maintenance uses cloud computing to 

process the data. Nevertheless, using cloud 

computing servers and IoT devices in anomaly 

detection machine learning models causes large 

amounts of data transmission. This leads to high power 

consumption, bandwidth requirements, and low 

latency [4, 7]. Edge computing was introduced to 

solve many problems related to using cloud servers in 

data transmission. This is because computation at the 

edge has a better response time, less energy 

consumption, and is more secure in transferring data 

[8, 9]. Microcontrollers can be used to implement 

edge computation. Although there are few papers 

related to the performance of machine learning 

algorithms implemented on edge devices 

(microcontrollers), microcontrollers (µC) have shown 

promising results due to their fast response and energy 

efficiency [10-13]. 

The predictive maintenance that is focused upon 

is the one that uses a machine learning model to 

detect the anomalies of the machine. The first step is 

to collect data about the parameter that will be 

monitored. After collecting enough data, a feature 

selection process is performed to try and find patterns 

within the dataset gathered. After that, a machine 

learning algorithm is chosen based on the patterns 

found within the dataset, and then the model is 

trained using the dataset and then deployed to be 

ready to work. 

An ML model could be deployed on three types of 

platforms. Cloud, Mobile, and TinyML. Cloud ML is the 

conventional approach when it comes to predictive 

maintenance plans. However, in this project, the 

TinyML approach is used. It is essential to understand 

the difference between Cloud ML and TinyML. Cloud 

ML uses cloud computing, where the ML model is 

deployed to. Data is transmitted through the internet 

since the sensor is planted on the machine or the asset 

to be monitored. On the other hand, TinyML uses a µC 

for the ML model to be deployed. By connecting the 

sensor to µC, the data is sent locally within the µC itself 

[11]. 

TinyML was introduced in the first place because of 

the problems that the conventional ML -Cloud ML- 

platform faces. These problems were related to 

energy consumption, internet connectivity, and 

privacy. Since the ML model is deployed in the cloud, 

data are sent from the sensor to the model to filter, 

process, and consume significant amounts of energy. 

Furthermore, with the increase of industrial 

technologies that use Cloud computation and IoT 

devices, transmitting data in real-time from sensors to 

the cloud would require unnecessary bandwidth 

allocation. Moreover, latency could occur during the 

transmission of data. Finally, by sending the data to 

the cloud, there is a risk of having the data 

compromised or hacked [8, 11]. 

On the other hand, TinyML uses a µC where the ML 

model is deployed and connected to the sensor 

locally. Using µC eliminates the energy consumption 

problem since these devices tend to consume power 

within the range of milliwatts. It is well established that 

internet connectivity is not required by using µCs to 

host the ML model, thus eliminating the connectivity 

and privacy problems [11, 12]. 

Anomaly detection generally means identifying 

data that deviates or shows significant differences 

compared to standard data within a dataset. In 

machine learning, anomaly detection is the 

classification of data as “normal” or “abnormal”. 8 

Many algorithms can be used to train an ML model to 

identify anomalies. However, some algorithms could 

be extremely challenging to use in the TinyML platform 

because of the high computational operations of 

these algorithms, like neural networks [11]. 

Although some solutions show better results, it does 

not mean they should be implemented in all 

applications. For example, replacing a machine may 
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not be as costly as applying predictive maintenance 

for that machine [14]. For this reason, some rotary 

machines break down quite significantly due to 

outdated maintenance plans [15, 16]. 

In conventional machine learning approaches, it is 

common to utilize multiple parameters in a single 

model for anomaly detection. However, in the context 

of embedded machine learning, resource constraints 

often limit the usage to only one parameter. In this 

project, the temperature parameter has been chosen 

for anomaly detection due to its ability to accurately 

reflect the motor's operational state. Employing 

vibrations of the motor as a parameter for anomaly 

detection can pose challenges since it requires the 

motor to remain stationary. Even slight changes in 

displacement can result in inaccurate data 

collection, making temperature a more suitable and 

reliable parameter for this purpose. 

 

 

2.0 METHODOLOGY 
 

The project workflow is outlined and adhered to as 

depicted in Figure 1. The circuit schematic is designed 

to detect the motor’s casing temperature. After that, 

the components are connected by following the 

schematic that has been created. Following that, the 

code required to read the temperature data from the 

sensor is developed; although the full version of the 

code is available, the code could be modified to fill 

the need of this project. After that, the data collection 

process starts using the system discussed above.  

The data collected is uploaded to EdgeImpulse 

platform to process the data and find features to 

learn. After that, the machine learning model is 

trained and tested before downloading it to be further 

modified to directly receive the data from the sensor 

without manually feeding the model with data to 

make predictions. Finally, the full ML model is 

deployed into the µC to be tested. 

While collecting the data to train the model, the 

Circuit will consist of the µC, the breakout board, and 

the sensor. However, after deploying the model into 

the µC, the circuit will consist of the components 

mentioned above and extra components that will 

work as an indicator for the model's output. Table 1 

provides a comprehensive list of all parts, their 

respective functions, and their corresponding prices. 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1 Flow of the project 

 

At the beginning of the project, the Arduino IDE 

program will connect the µC to the computer and 

modify and update the code required to read the 

temperature from the sensor using the breakout 

board. Once the code preparation is complete, it is 

uploaded to the µC and subsequently evaluated. 

Following this process, the probe of the sensor is 

placed on the motor’s casing, and the data collection 

process is started. The motor will operate until it 

reaches its maximum temperature level, which 

typically takes approximately 20 minutes. Therefore, 

the collected data is categorized into four distinct 

datasets based on the motor's operational conditions. 

Table 2 shows the four dataset labels and their 

explanation. Figure 2 illustrates the expected 

graphical representation of the data collected for the 

four labels.  
 

Table 1 Summary of components used and their functions 
 

Name Picture Function 

Raspberry PI 

Pico 
 

Connects the 

ML model to 

the sensor 

MAX 31855 

Breakout 

Board 
 

ADC 

K-Type 

Thermocouple 

Sensor 
 

Analog 

temperature 

sensor 

LED Lights x3 

 

Will indicate the 

stress level of 

the motor by 

turning on or 

blinking 

Active Buzzer 

 

Will make noise 

when an 

anomaly is 

detected 

Liquid Crystal 

Display 
 

Will display the 

motor’s casing 

temperature  

 

 

The data is collected and uploaded to the edge 

impulse platform using the command prompt and the 

edge impulse CLI tool. After uploading the data to the 

edge impulse platform, the data is processed, and 

features are extracted from the data to train the ML 

model. The model will mainly be trained on detecting 
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anomalies. However, a classifier function will also be 

added to the model to give users more clarity on 

which stage the motor is running at. 
 

Table 1 Explanation of dataset labels 
 

Label 

Name 
Description Duration 

Temperatur

e Range 

(Celsius) 

Idle 

When the 

Motor is not 

running 

- 30 - 33 

Minimum 

When the 

motor is 

running in 

minimum 

temperatur

e range 

5 minutes 

(After 

Running 

with one 

load 

connected

) 

33 – 40 

Medium 

When the 

motor is 

running in 

medium 

temperatur

e range 

10 minutes 

(with one 

load 

connected

) 

40 – 56 

Maximu

m 

When the 

motor is 

running in 

maximum 

temperatur

e range 

5 minutes 

(with one 

load 

connected

) 

56 - 65 

 

 
 

Figure 2 Expected graphical representation of different 

labels 

 

 

The primary objective of the model training is to 

detect anomalies within the motor's operation. 

Simultaneously, the classifier component of the model 

will enable classification of the motor's state. An 

embedded ML approach is introduced in [7], 

incorporates the TEDA algorithm to detect anomalies; 

However, this algorithm can learn independently; it 

requires strict prior knowledge of multidimensional 

variables [17, 18]. The model is trained on anomaly 

detection using a K-means clustering approach. 

Model accuracy can be defined as the ratio of 

correctly predicted classifications by the model to the 

overall number of predictions made. Furthermore, the 

f1 score provides a balanced evaluation of a model’s 

performance by combining precision and recall into a 

single metric in classification tasks. Equation 1 shows 

the formula for calculating the f1 score. 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑟𝑒𝑐𝑎𝑙𝑙×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                 (1) 

 
 

3.0 RESULTS AND DISCUSSION 
 

In this section, the results of the experiment are going 

to be discussed. Also, the detailed design of the circuit 

and the codes used to monitor the temperature and 

connect the model with the sensor. The results of the 

model training process using the Edge Impulse 

platform will also be mentioned. 

To collect the temperature data, a circuit that 

contains the µC, the sensor, and the breakout board -

which works as a bridge between the µC and the 

sensor- is built. Figure 3 shows the schematic for the 

circuit. As shown, the sensor is connected to the 

breakout board, and the board is connected to the 

µC. The sensor probe is placed on the motor’s casing 

Figure 4.  

 

 
 

Figure 3 Circuit schematic for the data collection circuit 

 

 
 
Figure 4 Data collection circuit with the probe attached to 

the motor 
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Figure 5 Full circuit schematic 

 

 
 

Figure 6 Full circuit connection with the sensor probe 

attached to the motor 

 
 

After the deployment of the model, a new circuit is 

required to make the system more independent. 

Although the data collection circuit can be used to 

detect anomalies, it is necessary to connect it to a 

serial monitor (i.e., ARDUINO IDE Serial Monitor) to be 

able to observe the output of the ML model. Figure 5 

shows the complete circuit schematic. Three LED lights 

are used to show the prediction output of the model. 

The buzzer will alert users if an anomaly is detected. 

Finally, the LCD will show the current temperature of 

the motor’s casing.  

After preparing the circuit, a code is uploaded to 

the µC to read the temperature data from the sensor. 

Figure 6 shows the experimental setup. The rate of 

data read is one per second or 1 Hz. Hence the delay 

is 1000 ms. 

The data is collected using the command prompt 

and Edge Impulse CLI tools. Using the “edge-impulse-

data-forwarder” command line, the µC is connected 

directly to the edge impulse platform. The length of 

each dataset is set in the Edge Impulse platform. 

Figure 7 shows the graphical representation of the 

collected data for the four labels. 

The data is divided into 80% and 20% for training 

and testing, respectively. The training dataset is used 

to train the model, whereas the testing dataset is used 

to test the model after training. Figure 8 shows the 

confusion matrix for the training result of the classifier. 

The model’s accuracy is about 95%, and its average 

ƒ1 0.94. after training the classifier. 

In Figure 9, the blue circled shapes represent the 

training data, whereas the purple oval shapes are 

called clusters. In K-means clustering, the data is 

placed into groups or clusters; when new data is 

detected, the anomaly detection model will 

calculate the distance between the new data point 

and the edge of the closest cluster to that data point. 

This distance is the anomaly score. 

Sometimes, the anomaly score is calculated in a 

negative value because sometimes the data is within 

the cluster. Thus, the distance is calculated in 

negative. Following the training phase, the testing 

data is used to test the model accuracy and ƒ1 score.  

 

 
 

Figure 7 Graphical representation of actual collected data 

for the four labels 

 

 
 

Figure 8 Resultant confusion matrix after the NN classifier 

training process 

 

 
 

Figure 9 Anomaly detection explorer window 

 

 
Figure 10 Resultant confusion matrix after testing the ML 

model 
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Figure 10 shows the confusion matrix of the model 

after using the test data, the model accuracy is about 

90%, and its average ƒ1 score is 0.91. 

After testing the model, it is downloaded as an 

Arduino IDE library. After adding it to the Arduino IDE 

program, the library is added along with the breakout 

board library, and the code is modified so that the 

sensor can directly send the data to the model. The 

model is trained to collect data for up to 15 seconds; 

after that, it will process the data to extract features 

like average, RMS, and maximum temperature values. 

Figure 11 shows the output of the circuit at different 

stages; Table 3 explains each step and its 

corresponding output. After deploying the model on 

the µC, it was noticed that most misclassified data are 

usually when the motor is running at maximum 

temperature. This is because when the motor 

approaches its maximum temperature, the increase in 

temperature starts to reduce, and the temperature 

change in time almost equals zero. Therefore, the 

model sometimes misclassifies maximum stress level as 

idle, Figure 12. 

Moreover, anomaly usually occurs after the motor 

reaches its maximum stress level. However, the model 

detected an anomaly when the motor was not 

running (in idle condition) because of a temperature 

reading lower than usual, Figure 13. 

 

 

 

4.0 CONCLUSION 
 

The developed ML model returned an accuracy of 

approximately 90% and an average ƒ1 of 0.91. Also, 

some outputs were added to the circuit to increase 

the project’s independence. 

To increase the accuracy and reliability of the 

project, another ML model could be developed to 

detect anomalies in other parameters, like the motor’s 

vibrations, similar to [19]. Furthermore, a control circuit 

could be designed to make the project fully 

unmanned so that when an abnormality is detected, 

the control circuit will automatically shut down the 

motor and rerun it when an anomaly is no longer 

occurring, as in [20].  

Finally, the project can be applied to many 

industrial machines due to its low cost, allowing the 

industry to use predictive maintenance plans without 

spending tremendous amounts of resources to 

implement them. 
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Figure 12 Percentage of incorrect classification for all 

outputs 

 

 
 

Figure 13 State of Motor at which anomaly occurs 

 

Table 2 Circuit output for each predicted output 
 

Predict 

Label 

Corresponding 

Output 

Temperature Range 

(Celsius) 

Idle No output 30 - 33 

Minimum 
Green LED 

Constant Light 
33 – 40 

Medium 
Orange LED 

Constant Light 
40 – 56 

Maximum 
Red LED 

Constant Light 
56 - 65 

Anomaly 
Red LED Blink 

Buzzer Turns On 

Anything outside of 

the Normal Data 

 

 
 

Figure 11 Different stages of the output of the circuit based 

on the temperature 
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