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Abstract 
 

This article introduces a system for real-time people counting. People counting systems are challenging in 

the surveillance domain. The proposed system is built from INT3-Horus, a multi-agent based framework 

for intelligent monitoring and activity interpretation. The system uses an indoor overhead video camera that 
detects people moving freely in a hall or room. The people counting system is flexible in detecting 

individuals as well as groups. Counting is independent of the trajectories and possible occlusions of the 

humans present in the scene. The initial results offered by the system are very promising in terms of 
specificity, sensitivity and F-score. 
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1.0  INTRODUCTION 

 

Recent developments in monitoring and activity interpretation 

systems present significant improvements in the fast and efficient 

transmission of data, voice and video. An important feature of 

these systems is the real-time processing of the sensory 

information to predict the actions of the moving objects along the 

monitored environment. 

  This is why monitoring systems have been widely used in a 

range of domains, and it is nowadays possible to find proposals 

for means of transportation such as airports [1], ports [2], train 

and metro stations [3] or traffic control [4]. Also, there are 

proposals for public places surveillance [5], human activity 

monitoring [6] as well as industrial deployments [7]. 

  Multisensory monitoring systems usually are composed by 

three main components: (1) sensors to acquire the information 

required for the detection, (2) processing algorithms combined 

with fusion techniques to identify the objects of interest in the 

scene, and, (3) software architectures to allow the easy integration 

of the algorithms as well as the scalability to process from several 

sensor sources.  

  The main goals of these systems can be summarized as 

follows: 

 

• Environment monitoring by taking advantage of the different 

sensor technologies (fixed and moving cameras, laser, 

microphones, and so on), as well as the cooperation / 

collaboration among the different processing entities. 

• Implementation and optimization of detection algorithms for 

a robust identification of the objects of interest along with 

their classification and tracking, dealing with real-time 

operation. 

• Activity detection to identify the relations and behaviors 

among the objects in the scene, taking into account the low 

level processing. 

• Smart actuation on the scenario through taking into account 

the special characteristics of the objects. This objective 

encompasses the development of human-machine interfaces 

to enhance the display of the information considering its 

nature. 

 

  Among the objectives related to the system proposed in this 

work, a key one is human detection. This process is also known 

as human segmentation and essentially consists on grouping 

image areas that contain significant information [8]. The 

algorithms are usually based on the decomposition of the images 

and the clustering of the selected pixels to generate more abstract 

entities. 

  Now, people counters have been widely addressed during 

the last few years, mainly for surveillance applications [9], [10]. 

This paper is focused on a system that calculates in real-time the 

number of people that are present in a given scenario, monitored 

by an indoor overhead video camera overlooking a scenario such 

as a hall or room [11], [12]. People move freely, as there is no 

clear entrance/exit at the monitored scene. Also, there is no initial 

limitation in the number of people to be detected; single humans 
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appear in the scenario and also groups of people are allowed. A 

non-calibrated overhead camera is used to avoid the majority of 

occlusions present in lateral video camera installations. 

  The people counting system described in this paper has been 

developed from INT3-Horus, a framework for intelligent 

monitoring and activity interpretation. The paper introduces a 

description of the INT3-Horus framework, its particularization to 

develop the people counting system, and some promising results 

of the setup of the indoor overhead camera application.  

 

 

2.0  FROM INT3-HORUS FRAMEWORK TO PEOPLE 

COUNTING SYSTEM 

 
This section starts with a general description of INT3-Horus. 

Then, the general structure of the people counting system is 

described. Finally, each level used for people counting from an 

indoor overhead camera is described extensively, with special 

focus in the algorithms developed to perform this specific task. 

 

2.1  The INT3-Horus Framework 

 

Most monitoring and activity interpretation systems define a set 

of processing levels to achieve specific goals such as people 

monitoring, trespassing detection or people counting. The 

problem arises from the lack of consensus among proposals, since 

different levels are usually proposed to carry out similar tasks. 

This problem complicates the integration of different algorithms 

to develop new monitoring systems without struggling with the 

hard task code integration 

  INT3-Horus is conceived as a framework to carry out 

monitoring and activity interpretation tasks (e.g. [13], [14], [15]). 

This is an ambitious goal given the huge variety of scenarios and 

activities that can be faced [16], [17], [18]. The framework 

establishes a set of operation levels where clearly defined 

input/output interfaces are defined. Inside each level, a developer 

places his/her code, encapsulated in a module in accordance with 

the operation performed. The purpose of this framework is easy 

and fast code integration and generation of real-world systems 

selecting the best combination to solve a problem from the 

available modules  

  Although a set of levels are proposed in INT3-Horus to 

cover all the steps of a generic multi-sensor and activity 

interpretation system [19], [20], [21], the philosophy underlying 

the framework allows a flexible set of levels to be adapted to a 

given final system [22], [23]. 

  The framework infrastructure as well as the modules layout 

is based on the Model-View-Controller (MVC) paradigm [24], 

which allows isolating the user interface from the logical domain 

for an independent development, testing and management. The 

MVC paradigm divides an application into three main entities, 

defining their main roles as well as the connections among them. 

Model manages the application data, initializes objects and 

provides information about the application status. In event-driven 

systems, the Model informs the View and the Controller about 

information changes. View provides a representation of the Model 

information (performing just simple operations) to fit user 

requirements. Finally, Controller receives the inputs to the 

application and interacts with the Model to update its objects, and 

with the View to represent the new information. 

  Despite of the many benefits provided by the MVC 

paradigm, the union of the business logic and the data model 

presents a drawback when it comes to add new functionalities to 

the framework. To solve this issue the traditional MVC is 

extended for INT3-Horus, creating a new component to house 

each module's specific operation (see Figure 1 on the right). This 

way, each framework user receives a template with a series of 

components which are already integrated into INT3-Horus. The 

main task for the integration is to introduce the code into the 

component named “Algorithm” and tune up the rest of 

components if needed (e.g. adding controls to the module's View 

or data structures to the local Model). The module's controller 

provides the connections to the framework and the access to the 

global data model as well as the signals to control the execution. 

  In this sense, the framework allows easy code integration, 

providing users with module templates to put their code into 

them. These templates already have the necessary connections to 

access the rest of INT3-Horus components, not only the data 

model or the user interface, but also the controller to trigger each 

module's execution. 

 

 

 
 

Figure 1  Model-View-Controller representation. The left image shows the traditional MVC layout. The right image shows the extended MVC 

 

 

  Together with the easy addition of new functionalities, a 

state of the art framework for monitoring and activity detection 

must take into account several information sources (sensors) and 

INT3-Horus is not an exception. These sources are mainly related 

to image sensors since they are the most widespread for 

monitoring tasks; but other sensor technologies, like commercial 

sensors and wireless sensor networks (WSNs), are also integrated 

to show the generic purpose of INT3-Horus. 
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Among the advantages provided by a formal architecture for 

monitoring and activity interpretation, three contributions are 

considered especially important: 

 

• Modularity to incorporate new features depending on the 

system requirements. This implies the easy addition of new 

processing modules and the arrangement of the components 

into a set of operation levels abstracted from the trends found 

in the literature. These levels have also to include data fusion 

to maximize the quality of the information sources. 

• Environment modeling is usually forgotten in most proposed 

architectures, but it is crucial to achieve the previous 

contribution. Several aspects can be modeled such as 

environment and sensors, as monitored areas usually are big 

and the cooperation among the sensors is essential to carry 

out tasks such as object tracking, regardless of the 

information source. 

• Execution model must be selected according to the system 

demands. In the case of monitoring systems, where different 

sensor information is processed in real time and fused to 

provide a unified view of the scenario status, the hybrid or 

hierarchical execution model seems a reasonable option. This 

model proposes the use of remote nodes in charge of the 

collection of the information in the first levels of the 

processing stack whilst a central node unifies the information 

and performs higher level operations such as activity 

detection. 

 

2.2  INT3-Horus Levels for People Counting 

 

The main goal of an efficient people counting system is to obtain 

the number of humans inside the field of view of a camera. In this 

particular case, we describe a system based on an indoor overhead 

camera with the highest possible accuracy when counting people. 

For this purpose, four processing levels are selected from INT3-

Horus framework. 

  The lower one is in charge of collecting data from an 

overhead camera acquisition. The next level, segmentation, uses 

an approach based on background subtraction to isolate the 

humans in the scene. Some filtering and heuristics are applied in 

the next level, blob detection, to enhance segmented humans, 

dealing with false positives and splitting groups of people into 

individuals. 

 

2.2.1  The Data Acquisition Level 

 

At acquisition level, a specific module is in charge of capturing 

images from Axis cameras. This module uses VAPIX 

(http://www.axis.com/techsup/cam_servers/dev/index.htm), an 

HTTP-based application programming interface that provides 

functionality for requesting images, controlling network camera 

functions (pan-tilt-zoom, relays, etc.) and setting/retrieving 

internal parameter values. The proposed people counting system 

only needs images obtained from a networked camera. 

 

2.2.2  The Segmentation Level 

 

Image segmentation can be defined as the process by which an 

image is divided into parts or objects that constitute it [8]. The 

objective is the location of significant areas of the image, such as 

imperfections in a tool, urban areas in case working on a map, 

humans, etc. This process involves two major tasks. On the one 

hand it is necessary to perform the decomposition of the images 

for further analysis and, second, the pixels of the images should 

be organized in higher-level units that acquire meaning for further 

analysis. 

 

 
 

Figure 2  Images generated by the segmentation level. (a) Current frame. (b) Background model. (c) Foreground. (d) Segmented image 

 

 

  Statistical and probabilistic techniques use temporal 

consistency of the sequences [25], [26]. Region growing 

techniques partition images into different regions with common 

features [27]. Graph-based techniques interpret the images as a 

set of vertices and nodes [28]. Finally, learning-based techniques 

select a set of pixels as prior knowledge (supervised learning) or 

estimate the optimal number of regions in the images 

(unsupervised learning) [29], [30]. 

  The main objective of the segmentation level is to perform 

the initial detection of the humans present in the scene. An 
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adaptive Gaussian background subtraction is performed on input 

image IZ obtained from the indoor overhead camera, as shown in 

Figure 2a. The subtraction is based on the OpenCV 

implementation of a well-known algorithm [9]. The algorithm 

builds an adaptive model of the scene background based on the 

probabilities of a pixel to have a given color level. An example of 

this model is shown in Figure 2b. A shadow detection algorithm, 

based on the computational color space used in the background 

model, is also used. After the background segmentation is 

performed, an initial background segmentation image IB is 

obtained as shown in Figure 2c. 

  However, the resulting image contains some noise which 

must be eliminated. For this, an initial threshold 0 

(experimentally fixed as a 16th of the number of possible gray 

levels in the image) is applied, as shown in equation (1): 

 

𝐼𝑡ℎ(𝑥, 𝑦) = {
𝑚𝑖𝑛, 𝑖𝑓 𝐼𝐵 ≤ 𝜃0

𝑚𝑎𝑥, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(1) 

 

and 

𝜃0 =
𝑚𝑎𝑥

16
 

 

where min is fixed to 0 (since we are obtaining binary images) 

and max is the maximum gray level value that a pixel can have in 

IB (e.g. 255 for an 8-bit image). 

  After this operation, two morphological operations, namely 

opening and closing, are performed to eliminate the remaining 

noise of the image, obtaining IS as shown in Figure 2d. After the 

first noise reduction, the number of white pixels (corresponding 

to possible humans) is counted in the image. If this value is 

greater than a 50% of the area of the image during a predefined 

amount of time ∆t (usually one second), it is estimated that a big 

lighting change has occurred in the scene (e.g. a light switch 

turned on/off or a door was opened/closed). In this case, the 

algorithm is reinitialized to build a new background based on the 

new lighting conditions of the scene. 

 

2.2.3  The Blob Detection Level 

 
Now, human candidates must be extracted from binary image IS, 

paying special attention to the existence of groups of people. For 

this purpose, the concept of region of interest (ROI) is explained. 

A ROI is defined as the minimum rectangle containing a human. 

It can be characterized by a pair of coordinates 

{(xmin,ymin),(xmax,ymax)}, corresponding to the upper-left and 

lower-right limits of the ROI, respectively. All detected ROIs are 

used to annotate the humans detected in the scene in a list LB. A 

summary of the stages of the blob detection level can be seen in 

Figure 3. 

  In first place, human candidates are extracted from the 

scene. With this objective, connected components (blobs) are 

extracted from IS. Next, blobs with a ROI area lower than Amin 

(with a value experimentally fixed according to scene features 

such as the scene area or the height where the camera is placed) 

are discarded. A new area threshold AG is also established based 

on similar factors. 

  Blobs with a ROI area lower than AG are considered to 

contain a single human and the ROI containing it is enlisted in LB. 

Otherwise, blobs BG with a ROI area greater than AG are analyzed 

separately, since they are considered to possibly contain a group 

of humans. Now, each human belonging to these groups is 

extracted individually. To do so, a new sub-image IG is created 

containing the ROI delimiting BG, as shown in Figure 4a. Then, a 

new series of morphological openings are performed, since 

occlusions are less frequent in an overhead view than in a lateral 

view, obtaining a new image IG. An example of the result of these 

operations is offered in Figure 4b. Next, blobs are searched in this 

new image. Now, blobs with an area greater than Amin are 

annotated in a list of group blobs LBG, whilst the others are 

discarded. If, at the end of the search, LBG is empty, the original 

ROI with the blob BG is enlisted as a single human; but, it will be 

marked as a possible group that could not be separated. Finally, 

the blobs from LBG are enlisted in LB, where the number of 

humans in the scene (people counting) is the number of blobs 

contained in LB. The detected humans in the scene are shown in 

Figure 4c for this running example. 

 
 

Figure 3  Stages of the blob detection level 



21                                             J. Serrano-Cuerda et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 17–22 

 

 

 
 

Figure 4  Results of the blob detection level. (a) Original ROI. (b) Separated ROIs. (c) Final Result 

 

 

 
 

Figure 5  Qualitative results for the three recorded sequences. (a) Video 1. (b) Video 2. (c) Video 3 

 

 

 

3.0  DATA AND RESULTS 

 

Three different video sequences were recorded from an Axis 

camera to test our proposal. The first sequence shows different 

people walking along a hallway (individually or in groups of two 

or three individuals). Generally, the people do not stop and do not 

cross their paths, except for the final frames of the video, where 

two people meet and talk for a while in the center of the scene 

and another person approaches them (see Figure 5a). The second 

sequence is similar to the first one, although more occlusions 

appear as different people intersect their paths. Another meeting 

takes place in this second video; this time, there are three people 

remaining still in the scene for a minute without being added to 

the background model. An example of the group separation in this 

sequence is shown in Figure 5b.  

  The final sequence is the most complex one. In this video, 

up to five people appear in the scene, crossing and intersecting 

their paths, which results in a greater amount of occlusions than 

in the previous sequences. They also meet for two minutes 

without being added to the background and partially occluding 

themselves. Nevertheless, they are detected most of the time as 

shown in Figure 5c. 

  Table 1 shows some quantitative results extracted from the 

three sequences. In order to evaluate the performance, we have 

used measures of specificity, sensitivity and F-score. These are 

usual statistics in image processing, calculated as shown in 

equations (2), (3) and (4) respectively. 

 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∙ 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ∙ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (4) 

 

  TP (true positives) is the number of correct detections in the 

scene, FP (false positives) is the number of humans detected but 

actually not present, and FN (false negatives) is the number of 

humans present in the scene that  have not been detected by our 

algorithm. 

  Notice that the results are really outstanding. The first 

sequence shows worse results since several small lighting 

changes took place during the recording. Also small 

misdetections have greater impact in the final statistics as fewer 

humans appear in this sequence than in the later ones. It is also 

important to highlight that the results of the final sequence show 

the difficulty of the video, since a lot of humans appear and they 

are occluding themselves most of the time. 
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Table 1 Results of people counting in different video sequences  

 

Sequence Humans in 

the sequence 

Humans 

detected 

TP FP FN Specificity Sensitivity F-score 

1 1060 1024 1001 23 59 0.944 0.978 0.960 

2 1698 1702 1656 46 42 0.975 0.973 0.974 

3 3199 3274 3128 146 71 0.978 0.955 0.966 

Total 5957 6000 5785 215 172 0.971 0.964 0.967 

 

 

4.0  CONCLUSIONS 

 

This paper has introduced an efficient people counting system. 

The system based on an indoor overhead camera counts the 

number of people that are present in a given scenario in real-time. 

There is no restriction in the motion of the people. Even, there is 

no limitation in the number of people to be detected. The people 

counting system accepts individual as well as groups of people. 

  The people counting system described in this paper has been 

developed from INT3-Horus, a framework for intelligent 

monitoring and activity interpretation. The paper has 

demonstrated the usefulness of the framework and the accuracy 

of the developed system. 
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