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Abstract 
 

The deployment of future Internet and communication technologies (ICT) provide intelligent transportation 

systems (ITS) with huge volumes of real-time data (Big Data) that need to be managed, communicated, 
interpreted, aggregated and analysed. These technologies considerably enhance the effectiveness and user 

friendliness of ITS, providing considerable economic and social impact. Real-world application scenarios 

are needed to derive requirements for software architecture and novel features of ITS in the context of the 
Internet of Things (IoT) and cloud technologies. In this study, we contend that future service- and cloud-

based ITS can largely benefit from sophisticated data processing capabilities. Therefore, new Big Data 

processing and mining (BDPM) as well as optimization techniques need to be developed and applied to 
support decision-making capabilities. This study presents real-world scenarios of ITS applications, and 

demonstrates the need for next-generation Big Data analysis and optimization strategies. Decentralised 

cooperative BDPM methods are reviewed and their effectiveness is evaluated using real-world data models 
of the city of Hannover, Germany. We point out and discuss future work directions and opportunities in the 

area of the development of BDPM methods in ITS.  
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1.0  INTRODUCTION 

 

Increasing traffic and frequent congestion on today’s roads 

require innovative solutions for infrastructure and traffic 

management. As the components of traffic systems become more 

autonomous and smarter (e.g. new communication capabilities of 

vehicles and infrastructure), there is an increasing need for 

cooperation among intelligent transportation systems (ITS) for 

transportation management and environmental monitoring in 

order to improve traffic management strategies. Further, there is 

growing interest and increasing volume of investments to smarter 

transportation management systems. In these new-generation 

business management systems, the management of transportation 

networks is closely integrated with the business strategies and 

operational models of transport companies and individual 

customers, providing a considerable impact for companies in 

terms of business planning, service quality and adaption to 

customer needs as well as for individual users in terms of time 

and money saving, adaptive travel planning and support of 

mutually beneficial social behaviour.  

  All participants of ITS act as data generators and sources 

leading to a huge amount of available data with a short update 

rates. This growth in data production is being driven by: 

individuals and their increased use of media (social networks); 

novel types of sensors and communication capabilities in vehicle 

and the traffic infrastructure; application of modern information 

and communication technologies (ICT) (Cloud computing, 

Internet of Things (IoT), etc.) with the proliferation of internet 

connected devices and systems. Data sets grow in size because 

they are being gathered increasingly by ubiquitous information-

sensing mobile devices, aerial sensory technologies (remote 

sensing), software logs, cameras, microphones, radio-frequency 

identification readers, and wireless sensor networks [1]. There 

has also been acceleration in the proportion of machine-generated 

and unstructured data (photos, videos, social media feeds, etc.). 

Thus, there is an emerging Big Data problem in ITS. Big Data 

usually includes data sets with sizes beyond the ability of 

commonly used software tools to capture, curate, manage, and 

process the data within a tolerable elapsed time [2]. Big Data 

supplies more detailed information about the customers and their 

behaviour, but should be properly analysed in a decentralized 

(multi-agent) fashion while avoiding transmission of big 

information volumes. Therefore cloud and grid computing 

infrastructures are well-suited for storing, management and 

processing of Big Data. 
  By nature, Big Data is physically and logically 

decentralized, but virtually centralized. All information 

sources/storages are interconnected, and any piece of information 

can in principle be accessed by any component of the system. Big 

Data volumes are (very often) created and managed in a 
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decentralized fashion on the physical layer. This raises the 

information costs that should be taken into account while 

accessing the information. 

  To find an effective balance between decentralized 

information processing/decisions and costs of data 

transfer/decision coordination, Big Data processing and mining 

(BDPM) as well as corresponding decision-making methods are 

required. This creates a need to employ innovative BDPM and to 

develop corresponding decision-making algorithms to support 

ITS applications in finding, collecting, aggregating, processing, 

and analysing information that is necessary for optimal decision-

making and effective user behaviour strategies.  

  Modern ICT technologies are used to solve the problems of 

BDPM employment more effectively. Innovative cloud services 

can be created using the cloud capabilities of future ICT to access 

smart objects via IoT. This development can enable wide access 

to necessary information, which is available in-the-cloud. The 

cloud computing paradigm based on highly scalable, distributed 

computing resources provides BDPM with big storage and fast 

computing capabilities. However, implementing a traffic cloud is 

far from easy. From an end user’s point of view, the complexity 

of data and algorithms is hidden in the cloud. Users (ranging from 

traffic authorities to car drivers and automated components) 

expect to work with relatively simple applications and interfaces 

on the Internet via mobile or embedded devices. These devices 

are fully connected and can (theoretically) use all the information 

available from all other users and system elements. This creates 

great opportunities for coordinated near-optimal management of 

the infrastructure (e.g. in terms of load balancing).  

  The contribution of this study is fivefold: First, we analyse 

related cloud-based architectures and ITS application scenarios. 

Second, we consider architectures for implementing the 

corresponding BDPM and decision-making strategies for 

transportation operations. Third, we discuss the employment of 

appropriate mathematical methods for three considered scenarios. 

Fourth, we review decentralised cooperative BDPM methods 

based computational statistics, and evaluate their effectiveness on 

real-world transportation data. Fifth, we point out and discuss 

future work directions and opportunities in the area of the 

development of BDPM methods in ITS. 

  The remainder of this paper is organized as follows. Section 

2 presents the state of the art in future ICT for ITS architectures. 

In Section 3, we review BDPM methods and their application to 

ITS. In Section 4, we introduce a cloud-based data flow 

architecture for smart transportation networks. In Section 5, we 

propose and analyse three application scenarios of ITS and 

consider data analysis and optimization of participants’ behaviour 

strategies in traffic systems. Section 6 reviews cooperative 

regression and clustering techniques, which establish key tools in 

a BDMP framework. Section 7 shows experimental results with 

real-world data for the evaluation of the techniques proposed. 

Section 8 concludes and discusses future research opportunities. 
 

 
2.0  STATE OF THE ART 

 

2.1  Motivation and Applications 

 

A strong worldwide interest in opportunities in transportation and 

mobility has spurred the need for further analysing future ICT 

capabilities. In Europe, future ICT and IoT research has been a 

priority direction for the 7th European Framework Programme 

for Research and Innovation (FP7) and will continue to be so for 

the upcoming Horizon 2020 Programme (e.g. the objectives ’A 

reliable, smart and secure IoT for Smart Cities’ or ’Integrated 

personal mobility for smart cities’ in FP7 or ’Substantial 

improvements in the mobility of people and freight’ in Horizon 

2020). These research questions are motivated and co-funded by 

private companies and municipalities from the fields of transport, 

logistics, communication and traffic management (e.g. the FP7 

project Instant Mobility [3]). These stakeholders understand the 

possible enhancements to existing systems that new technologies 

provide to ITS. Research in this area is still largely at the stage of 

formulation of scenarios and coordination protocols.  

  Recently, Big Data has also become a major topic in the field 

of ICT worldwide. It is evident that Big Data means business 

opportunities, but also major research challenges. According to 

McKinsey & Co [2] and Gartner [4], Big Data is ‘the next frontier 

for innovation, competition and productivity’. While US-based 

companies are widely recognized for their activities in Big Data, 

very few research organizations are known for their activities and 

initiatives in this field in Europe. Analytical Big Data services for 

SME's within Europe are currently non-existing. According to 

EU White papers [1], there are currently a number of initiatives 

aimed at adjusting the research landscape to lodge the rapid 

changes taking place in the processing of data under FP7. There 

are a number of projects addressing a vast set of topics ranging 

from content creation and processing, Big Data analytics and 

real-time processing. In Horizon 2020, Big Data finds its place 

both in the Industrial Leadership, for example in the activity line 

‘Content technologies and information management’, and in the 

Societal Challenges, relating to the need for structuring data in all 

sectors of the economy (health, climate, transport, energy, etc.). 

Not surprisingly, Big Data is also important to the Excellent 

Science priority of Horizon 2020, especially on scientific 

infrastructures and development of innovative high value added 

services [1]. 

  ITS development is connected with Big Data processing, 

therefore it is an important application domain for BDPM 

methods. From the application point of view the following 

directions are important for ITS [3]. First of all it is personal 

travel companion, which intends to provide to travellers, surface 

vehicle drivers and transport operators the benefits of dynamic 

planning and follow-up of multimodal journeys. The second very 

important direction considered by many authors is smart city 

logistics operations, which intend to provide benefits to actors 

and stakeholders involved in, affected by or dependent on the 

transportation of goods in urban environments.  

 

2.2  Future ICT for ITS 

 

Future ICT can enhance ITS and provide large-scale 

infrastructures for high-performance computing that are ‘elastic’ 

in nature, by adapting to user and application needs [5]. 

  Modern mobile and communication technologies such as 

wireless transmission, mobile Internet, mobile sensors as well as 

mobile devices (e.g. smart phones) serve as a good basis to the 

ITS. Today, vehicles are equipped with mobile devices with 

relatively powerful communication and processing capabilities as 

well as with sensors that provide diverse information about the 

environment. Constant 3G or 4G mobile Internet connection is 

nowadays usual and is favourable from price and quality point of 

view. This means that many traffic participants are already online 

and interconnected with rapidly growing trend; the problem is 

how to use this connection in order to provide efficient and 

reliable on-demand services to traffic participants. 

  Ambient intelligence (AmI) is a concept of interconnection 

of sensors and computational resources and using of artificial 

intelligence methods in order to improve everyday life. AmI is 

defined as the ability of the environment to sense, adapt, and 

respond to actions of persons and objects that inhabit its vicinity. 
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Moreover, the multi-agent system paradigm makes AmI 

environments act autonomously and socially, featuring 

collaboration, cooperation, and even competitive abilities. It 

supports virtual control strategists and management policy 

makers in decision-making and is modelled using the metaphor 

of autonomous agents. An architecture of an AmI-enabled ITS is 

proposed in [63]. Other examples of AmI implementation are 

intelligent home or intelligent power grids. 

  Multi-agent systems (MASs) provide a model of networked, 

cooperative, autonomous systems and provide a suitable 

metaphor and tools for representing of ITS. MASs consist of 

multiple autonomous self-interested software entities, called 

agents. Agents perceive information from the environment, create 

their own local data models and then make decisions according 

to their goals and available information. Decisions are then 

converted to actions, which influence the environment. Agents 

interact and cooperate on the level of information models (data or 

model parameter exchange) or on the level of actions (action 

coordination, group formation) [6]. Multi-agent modelling has 

been extensively applied for solving transportation problems [7, 

8, 9].  

  Cloud computing systems are oriented towards a high level 

of interaction with their users, real-time execution of a large 

number of applications, and dynamic provisioning of on-demand 

services. In this study, we consider the layered architecture of 

cloud-based computing systems presented in [10]. It supports a 

class of specialized distributed systems that is characterized by a 

high level of scalability, service encapsulation, dynamic 

configuration, and delivery on demand. Beside that transport 

infrastructure can be considered as a service, which studies 

possibilities how to use cloud data storage, cloud computing 

virtualization or services-in-the-cloud. The complexity of cloud-

based systems is hidden from end users. 

  Agent-based cloud computing is a paradigm that identifies 

several common problems and provides several benefits by the 

synergy between MASs and cloud computing. Cloud computing 

is mainly focused on the efficient use of computing infrastructure 

through reduced cost, service delivery, data storage, scalable 

virtualization techniques, and energy efficiency. In contrast, 

MAS are focused on intelligent aspects of agent interaction and 

their use in developing complex applications. In particular, cloud 

computing can offer a very powerful, reliable, predictable and 

scalable computing infrastructure for the execution of MASs by 

implementing complex, agent-based applications for modelling 

and simulation. Also, software agents can be used as basic 

components for implementing intelligence in clouds, making 

them more adaptive, flexible, and autonomic in resource 

management, service provisioning and large-scale application 

executions [5]. 

  IoT provides a new approach for virtual representation of 

real-world entities in virtual environment (e.g. vehicles in the 

cloud-based ITS). It is a very important aspect for constructing of 

cloud-based systems [11]. IoT semantically means a world-wide 

network of interconnected objects (radio frequency identification, 

infrared sensor, global positioning system, laser scanner, etc.) 

uniquely addressable that ensure the exchange and sharing of 

information in ITS. The basic idea of this concept is the pervasive 

presence around us of a variety of things or objects (radio 

frequency identification tags, sensors, actuators, mobile vehicles, 

etc.), which, through unique addressing schemes, are able to 

interact with each other and cooperate with their neighbours to 

reach common goals. IoT provides for ITS two main things: 1) its 

data acquisition function provides more comprehensive traffic 

data; 2) provides a good channel for traffic data transmission. 

Therefore, ITS based on IoT has broad prospects of development 

and expansion space [11]. 

2.3  ITS Architectures 

 

A ‘V-cloud’ architecture was proposed in [12], which considers 

cloud computing in ITS from device, communication and service 

level the points of view. It facilitates the interaction between 

vehicle drivers and outside car world, taking into account vehicle-

to-vehicle (V2V) and vehicle-to-infrastructure (V2I) interactions 

to share and utilize external resources in a more effective way 

(Figure 1). 

 

 
Figure 1  V-cloud’ ITS architecture 

 

 
Figure 2  Cloud-based ITS architecture 

 
 

  A layered ITS architecture based on cloud computing 

paradigm is considered in [13] (Figure 2). The layers of this 

architecture are listed below. 

  The fabric layer includes all computing, storage, data, and 

network resources available in the cloud. The resources are 

accessible through the resource services, are used for cloud 

computations, management, and as test beds.  

  The unified source layer provides infrastructure-as-a-

service by defining unified access to the raw computational 

resources of the fabric layer using a virtual machine.  

  The platform layer provides platform-as-a-service, 

including a collection of specialized tools, middleware, and 

services on the top of unified resources to create a deployment 

platform (e.g. scheduling create service and artificial test beds). 

  The application layer contains all applications that are run 

in the cloud. Application execution in the cloud is distributed: 

applications can be partly executed on the client, partly in the 

cloud.  

  The application of cloud-based architectures for ITS is 

demonstrated in [13]. In order to provide an acceptable level of 

service, a cloud-based ITS consists of two main components: an 

application component, which provides dynamic services and 
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runs all the cloud applications; and a digital (simulated) traffic 

network component, which performs constant information 

collection and processing in order to provide in-time data. A 

cloud-based ITS adapts its decisions by using available 

information and by interacting with human as well as automated 

traffic participants. 

  The logical architecture of ICT-enabled ITS was considered 

in [14], where data and computations can use traffic clouds. This 

research centres on the ACP (artificial, computational, parallel) 

approach. It involves modelling by artificial systems, analysis by 

computational experiments, and operation through parallel 

execution for control and management of complex systems with 

social and behavioural dimensions. ACP-based framework is 

presented, which is a generalization of the feedback control 

mechanism in the control theory. The actual system and its 

artificial counterparts can be connected in various modes 

(learning and training, experimentation and evaluation, control 

and management) for different purposes (Figure 3). Artificial 

transportation system is developed to create a dynamic or ‘living’ 

ontology to present and organize transportation knowledge, such 

as methods, algorithms, regulations, and case studies in a way 

that’s effective for search and ready for computing and 

implementation. By comparing and analysing of real and 

simulated behaviours, systems’ future actions can be learned and 

predicted; control and management strategies for their operations 

can be accordingly planed and modified. The most interesting 

mode for our study is the Learning and Training mode. In this 

mode, the artificial systems serve mainly as a data centre for 

learning operational procedures and for training operators and 

administrators (Figure 4).  

 

 
Figure 3  ACP-based ITS architecture 

 

 

 
 

Figure 4  Architecture of the Learning and Training block 

 

 

  A cloud-based traffic network, which employs ambient 

intelligence (AmI) [63] or IoT components, is described in [10].  

  In our previous works, we investigated MAS architectures 

and decision-making methods [15, 16] as well as data processing 

stages for a typical cloud-based ITS [17], distributed data 

processing, mining including methods of computational statistics 

[18, 19] for existing transportation problems. In the following 

sections we give an overview of core BDPM methods and 

technologies used in ITS as well as consider sample ITS 

architecture [17] with corresponding data flows and their 

processing stages.  

3.0  BDPM for ITS 

 

3.1  BDPM Methods 

 

Classical methods of data processing and mining are centralized: 

this means that in order to apply them, data must be available here 

and now. In opposite, Big Data is constantly updated and 

collected in physically distributed storages, and data 

centralisation is not possible.  

  Using the centralized approach the system cannot adapt 

quickly to situations in real time, and it is very difficult or simply 

impossible to transmit Big Data over the network and to store, 

manage and process large data sets in one location [20, 16]. In 

addition some nodes of the distributed system prefer to relay 

mostly of their own experience in the prediction process. 

Therefore there is an inherent need to develop effective BDPM 

algorithms using decentralised architecture that takes into 

account space and time distribution of data.  

  Analysing and processing Big Data is now feasible both 

from a technical and cost perspective. Many Big Data 

frameworks are built around an understanding of business 

mechanics, analysis of the business strategy, identifying value 

and correlation in unstructured and structured data, data mining, 

predictive analysis and cost effective data [1]. BDPM methods 

help to store Big Data in a compact way (clustering) by dimension 

reduction finding rules in data behaviour by predictive modelling, 

filtering and detecting outliners by change point analysis. The 

focal BDPM methods are briefly characterized below: 

  Regression analysis is the most widely used statistical tool 

for discovering the relationships among variables that is often 

used for forecasting or prediction. This group of statistical 

techniques determines, how the value of the dependent variable 

changes when the values of one or more independent variables 

are modified [21].  

  Time series analysis is a set of statistical techniques to model 

and explain time-dependent series of data points. Time series 

forecasting uses a model to generate predictions (forecasts) for 

future events based on known past events. Time series data has a 

natural temporal ordering - this differs from typical data 

mining/machine learning applications, where each data point is 

an independent realisation of the concept to be learned, and the 

ordering of data points within a data set does not matter [22]. 

  Cluster analysis is a set of statistical methods for classifying 

objects that splits a diverse group into smaller groups of similar 

objects, whose characteristics of similarity are not known in 

advance. This is a type of unsupervised learning because training 

data are not used [2, 23].  

  Classification is a set of techniques to identify the categories 

in which new data points belong, based on a training set 

containing data points that have already been categorized. These 

techniques are often considered as supervised learning because of 

the existence of a training set [24].  

  Change-point analysis is a powerful, robust and flexible 

tool, which well characterises changes, determining whether a 

change has taken place. It is capable of detecting subtle changes; 

it characterizes the changes detected by providing confidence 

levels and confidence intervals. It suits also well for outliner 

detection. Change-point analysis suites well for processing 

historical data, especially when dealing with Big Data [25].  

 

3.2  MAS for BDPM 

 

Usually MAS represents a complex system, which consists of a 

large number of autonomous interacting components. Such 

systems are usually characterized by Big Data, represented by 

huge volumes of distributed data from various sources. One of 
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the key challenges in MASs is the capability of agents to process 

and mine such distributed data in order to provide sufficient 

information for optimal decisions. 

  BDPM provides algorithmic solutions for data analysis in a 

distributed manner to detect hidden patterns in data and extract 

the knowledge necessary for decentralised decision-making [26, 

27]. BDPM methods improve agent intelligence and MAS 

performance [28], involving pro-active and autonomous agents 

that perceive their environment, dynamically reason out actions 

on the basis of the environment, and interact with each other. 

Furthermore, the coupling of MAS with BDPM may be described 

in terms of ubiquitous intelligence [29], with the aim of fully 

embedding information processing into everyday life. Klusch at 

al. [30] conclude that autonomous data mining agents, as a special 

type of information agents, may perform various kinds of mining 

operations on behalf of their user(s) or in collaboration with other 

agents. Systems of cooperative information agents for BDPM in 

distributed, heterogeneous, or homogeneous, and Big Data 

environments appear to be quite a natural progression for the 

current systems to be realised in the near future.  

  In many complex domains, the knowledge of agents is a 

result of the outcome of empirical data analysis in addition to the 

pre-existing domain knowledge. BDPM of agents often involves 

detecting hidden patterns, constructing predictive and clustering 

models, identifying outliers, etc. This collective ’intelligence’ of 

MAS must be developed by distributed domain knowledge and 

analysis of the distributed data observed by different agents. They 

collaborate to exchange knowledge that is extracted from data at 

different geographically distributed network nodes, creating as a 

result a distributed model of the environment – collective 

knowledge of the agents [28]. 

  Usually, in MASs communication is expensive and not 

possible between all nodes. So usually BDPM for MAS suppose 

computations with minimum network communication and 

maximum local computations, if possible. Local computation is 

carried out on each node, and either a central node communicates 

with each distributed node to compute the global models or a 

peer-to-peer architecture is used. In case of the peer-to-peer 

architecture, individual nodes might communicate with a 

resource-rich centralised node, but they perform most tasks by 

communicating with neighbouring nodes through message 

passing over an asynchronous network [28]. In our works we 

demonstrated that properly established distributed BDPM may 

provide almost the same quality of the models as centralized 

traditional methods [8]. 

  Following [31], the benefits of using MASs for BDPM are 

the following: 1) retaining the autonomy of data sources; 2) 

facilitating interactive BDPM; 3) improving dynamic selection of 

sources and data gathering; 4) providing high scalability to 

massive distributed data; 5) stimulating multi-strategy BDPM; 6) 

enabling collaborative BDPM. 

 

3.3  Cloud Computing Infrastructure and BDPM 

 

Architectures for cloud computing are characterized by close 

integration of its users to the system and creation of their virtual 

representations in terms of IoT. As there is Big Data associated 

with each user, and data is stored in the cloud, cloud computing 

systems automatically get distributed user Big Data. However, in 

contrast to the ‘pure’ MASs, the virtual users are fully connected 

and each piece of data can be accessed from other parts of the 

system. 

  The users of the cloud system usually have limited 

computational capacity because they are often connected to the 

cloud using mobile devices. So BDPM is performed partially 

locally, partially by other agents, which collect information from 

the users and store it in the cloud. Therefore the major issues of 

the BDPM are the workload and the communication costs. The 

implementation of the cloud computing handles a lot of this 

workload due to of the high connectivity of data agents/centres 

[32]. 

  The main difference between BDPM for ‘pure’ MASs and 

BDPM for cloud computing is dealing with communication. In 

the first case communication is a bottleneck. In the second case 

communication is broadly available, the bottleneck is 

computation, because usually more information is available that 

can be processed. The BDPM methods with cloud computing 

infrastructure should know which information should be 

processed and where it is available. Here information quality 

should be taken into account as an important criterion.  

  BDPM remain distributed when applied in cloud computing 

infrastructure. However the question of the information 

availability is replaced by a question of the information cost, 

which takes such factors into account as the information location, 

speed of its extraction, quality, reliability, etc. BDPM methods in 

cloud computing deal with information, which is physically 

distributed, but is available subject to costs. 

  There are large numbers of users, which have similar but not 

equal requests to the cloud computing system. Therefore BDPM 

should be applied for the estimation of similar characteristics (e.g. 

travel time) based on the similar data in cloud computing system, 

however taking into account individual data and characteristics 

of a user (e.g. its vehicle type and current route information). For 

this purpose, different levels of data processing should be 

established as well as characteristics pre-calculated and then 

efficiently combined with actual user data. 

  The big challenge of the BDPM is parallelism, using 

computing power to gain precious time. The use of the cloud 

computing brings the ability of use many powerful 

interconnected servers with multi core processors without 

needing to implement it physically in every user’s environment. 

  We see the following benefits of using BDPM in cloud 

environments: 1) virtual integration of data sources into system 

without physical integration; 2) facilitation of cost-based 

selective BDPM; 3) stimulation of multi-objective BDPM; 4) 

support for multi-stage BDPM and different levels of data 

processing. 

  Agent-based cloud computing paradigm combines the 

benefits of using MAS with cloud computing environment. 

BDPM obtains in this case all the advantages provided by each 

paradigm. 

 

3.4  BDPM Trend: Computational Statistics 

 

  Cloud computing platform facilitates data collection and 

provides the necessary resources for the operation of the 

computationally intensive methods of computational statistics. 

  Computational statistics is the interface between statistics 

and computer science. It is the area of computational science 

specific to the mathematical science of statistics. It is aiming at 

the design of algorithms for implementing statistical methods on 

computers, including the ones unthinkable before the computer 

age (e.g. bootstrap, simulation), as well as to cope with 

analytically intractable problems [33]. 

  Computational statistics supposes an application of iterative 

calculations instead of complex analytical models by using 

available data in different combinations. The resulting solution of 

the problem is approximate; however in many practical situations 

(big amount of available information, complex and hierarchical 

structure of analysed system, and dependency of data) this may 

give more robust and precise results as classical methods or even 

work in the situations where classical methods are not feasible 
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(e.g. Big Data). On the other hand, computational statistics 

application is simple and does not require complex analytical or 

symbolic procedures. 

  The term ‘computational statistics’ may also be used to refer 

to computationally intensive statistical methods including 

resampling methods, Markov chain Monte Carlo methods, local 

regression, kernel density estimation, generalized additive 

models as well as computational intelligence methods: artificial 

neural networks and genetic algorithms.  

  The methods of computational statistics are broadly applied 

for the mentioned in Section 3.1 statistical models. Resampling 

approach to regression parameter estimation within centralised 

architecture was considered in [34, 35, 36]. Genetic algorithms 

and classifier systems within centralised architecture were 

successfully applied for classification task solving (e.g., [37, 38].  

  In our BDPM methods we broadly apply methods of 

computational statistics such as resampling, bootstrap and kernel 

density for regression analysis and clustering within decentralised 

architecture [39, 40, 41]. 

 

3.5  Core Methods and Problems of BDPM in Transportation 

Networks 

 

In contemporary ITS, modelling and forecasting of traffic flows 

is one of the important techniques that need to be developed [42]. 

It is an example of a complex stochastic system, in which many 

different factors should be estimated.  

  Due to the limitations of centralised approaches discussed 

above, decentralised MASs with autonomous agents allow 

vehicles to make decisions autonomously, which is 

fundamentally important for the representation of these networks 

[42]. 

  We focus on the following problems of BDPM and 

demonstrate the advantages of decentralized architecture.  

 

Travel time forecasting: Predictive models 

  Travel times play an important role in transportation and 

logistics. From travellers’ viewpoints, the knowledge about 

travelling time helps to reduce delays and improves reliability 

through better selection of routes. In logistics, accurate travelling 

time estimation could help to reduce transport delivery costs and 

to increase the service quality of commercial delivery by bringing 

goods within the required time window. For traffic managers, 

travelling time is an important index for traffic system operation 

efficiency [43].  

  There are several studies in which a centralised approach is 

used to predict travel times. The approach was used in various 

ITS, such as in-vehicle route guidance and advanced traffic 

management systems. A good overview is given in [43]. To make 

the approach effective, agents should cooperate with each other 

to achieve their common goal via so-called gossiping scenarios. 

The estimation of the actual travelling time using vehicle-to-

vehicle communication without MAS architecture was described 

in [44].  

  A combination of centralized and decentralized agent-based 

approaches to the traffic control was presented in [45]. In this 

approach, the agents maintain and share the ‘local weights’ for 

each link and turn, exchanging this information with a centralized 

traffic information centre. The decentralised MAS approach for 

urban traffic network was considered also in [46], where the 

authors forecast the traversal time for each link of the network 

separately. Two types of agents were used for vehicles and links, 

and a neural network was used as the forecasting model.  

  A promising approach to agent-based parameter estimation 

for partially heterogeneous data in sensor networks was 

suggested in [47]. Another decentralised approach for 

homogeneous data was suggested in [48] to estimate the 

parameters of a wireless network by using a parametric linear 

model and stochastic approximations. 

  A problem of decentralised travel time forecasting was 

considered in [19, 18, 8]. An MAS-based architecture with 

autonomous agents was implemented for this purpose. A 

decentralised linear [19, 8] and kernel density (KD) based [18, 8] 

multivariate regression models were developed to forecast the 

travelling time. The iterative least square estimation method was 

used for regression parameter estimation, which is suitable for 

streaming data processing. The resampling-based consensus 

method was suggested for coordinated adjustment of estimates 

between neighbouring agents. The efficiency of the suggested 

approach using simulation with data from the southern part of 

Hanover was illustrated. The experiments showed the efficiency 

of the proposed approach. The prediction technique in tutorial 

style was described in terms of distributed network intelligence 

in [8]. The comparison of parametric and non-parametric 

approaches for traffic-flow forecasting made in [49], 

demonstrates the efficiency of the non-parametric KD regression 

[20, 16]. 

 

Clustering traffic states 

   The most popular clustering and classification problems in 

traffic research are traffic state clustering [50] and participant 

behaviour clustering for group formation [51]. Clustering of 

travel-time information tried to discover homogeneous traffic 

patterns to be used with the common forecasting model. A KD 

clustering, which is a promising non-parametric method of 

computational statistics tool, allows arbitrary shaped clusters to 

be discovered. Fast clustering, which is based on KD, was 

described by Hinnenburg and Gabriel [52]. The distributed (with 

a central authority) version of KD-based clustering (KDEC 

scheme) was considered in [30]. Another decentralised graph-

oriented not KD clustering approach was presented in [53]. 

  A clustering problem with the application of the KD-based 

methods within a MAS architecture was considered in [54, 55]. 

The resampling-based consensus method was suggested for 

coordinated adjustment of estimates between neighbouring 

agents. The simulation experiments with real-world data were 

demonstrated.  

 

Change point analysis 

  Change point analysis for detection of outliers in city traffic 

was investigated in [15, 56]. MAS architecture and implemented 

and two computational statistics-based resampling tests for 

change point detection were proposed at the BPMP layer of agent 

logics. The efficiency of the suggested approach was evaluated 

[56] for two different scenarios based on real traffic data [15]. In 

the first scenario, vehicles planed their routes based on the 

received information about the travel times. If a change point in 

travel times was detected, only the data after it was taken into 

account. In the second scenario, traffic light received the 

information about vehicle flows arriving to the intersection and 

applied one of the regulation strategies. If a change point in 

vehicle flow was detected, only the data after it was taken into 

account. 

 

Traffic routing problem 

  A traffic routing problem with decentralized decision 

making of vehicle agents in urban traffic system was investigated, 

where the planning process for a vehicle agent is separated into 

two stages: strategic planning for selection of the optimal route 

and tactical planning for passing the current street in the optimal 

manner. A MAS architecture and the necessary computational 

statistics-based algorithms for comparing two routes in a 
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stochastic graph [20, 16], and the shortest path search were 

developed [57] which are carried out at strategic planning stage. 

The models were implemented to real data and integrated into a 

traffic domain application use case, where efficiency of the 

algorithms was evaluated. Distributed optimization approach for 

traffic flow routing was considered in [58]. 

 

 

4.0 REFERENCE ARCHITECTURE FOR TRAFFIC 

BDPM 

 

In the previous Section we demonstrated technologies and BDPM 

methods used in cloud-based ITS. Now we consider sample 

architecture of a cloud-based ITS and explain the main data flows 

that appear there. We show as well how the data flows can be 

processed using BDPM and provide sufficient information for 

fulfilling the user requests. 

  The applications executed in the cloud are data-intensive. 

Services provided through the cloud require large amounts of data 

to be processed, aggregated, and analysed. Then, the processed 

data is used for calculating optimal strategies for traffic 

participants.  

 

 
 

Figure 5  Data flow interconnections 

 

 

  As we already mentioned, computation is a bottleneck in 

cloud computing. So a very important challenge of BDPM is a 

reasonable processing balance between local data sources 

(clients) and a cloud. If a client has sufficient computational 

power, it can pre-process data locally and provide already 

processed data to the cloud, reducing cloud computations and 

network traffic. If however the computational power of a client 

does not allow information processing, the raw data are provided 

to the cloud and should be processed there. This is illustrated in 

Figure 5. 

  Now we consider reference architecture for BDPM and 

decision-making stages in ITS, which is described in our previous 

works [17] and based on [13]. In this architecture, we concentrate 

on illustrating data flows and their processing as well as using 

results for optimization of participant strategies and fulfilling 

their requests. A principal architecture of BDPM and decision-

making stages in ITS is illustrated in Figure 6.  

 

 
 

Figure 6  Reference architecture of BDPM and decision-making stages 
in ITS  

 

 

  It should be noted that usually many clouds from different 

providers are available. Some of the problems can be similar for 

them, and cooperation between them is possible. 

  The users of the ITS (traffic participants such as vehicles or 

pedestrians, business users such as logistic providers, public 

transports or taxis, data providers such as cameras or detectors, 

as well as traffic managers such as traffic management centres or 

traffic control elements) are connected with the cloud using stable 

and permanent Internet connection. This allows creating a virtual 

representation of each user in terms of IoT and having in the cloud 

dynamic sensor data, associated with them (pre-processed or 

raw). This creates a network of virtual users, which in fact is a 

mirror of reality in the cloud. This virtual reality contains 

distributed user data (partly stored in user devices, partly in the 

virtual storages provided by the cloud, but still associated with 

users). Note that disconnection of a user from the cloud does not 

mean elimination of its virtual representation; this only means 

that the locally stored data become unavailable in the cloud.  

  On the first stage data should be pre-processed. Raw sensor 

data requires very much storage space and cannot be stored for a 

long time. This data can be processed locally or upload to the 

cloud and pre-processed there. The results of the pre-processing 

are stored in the user profile and can be uploaded to the cloud at 

this stage.  

  The next stage is organizing of the virtual cloud information 

storages. This is made by cloud data mining agents, which collect 

the information, partially copying it to the storages in the cloud, 

partially making references to the user profiles, if they are 

available in the cloud. These agents put special attention to cost 

of the information, which includes its availability, reliability and 

precision. These virtual storages are subject of further BDPM. 

  Cloud-based systems have a big number of users, and should 

fast react to their requests. For this purpose artificial ad-hoc 

networks are created, which are oriented to concrete problems, 

solved by the cloud system. For example, the networks oriented 

to shortest path calculation, traffic light regulation or passenger 

transit can be created.  

  There are two important problems solved in the artificial 

network: estimation of its parameters and pre-calculation of user 

strategies.  
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Estimation of the ad-hoc network parameters is the main stage of 

BDPM. It consists in the estimation of the network parameters in 

order to obtain actual state of the network. Based on the 

information in the virtual storages estimation of the parameters is 

performed, taking costs of data into account and receiving data 

from physical storages if necessary. These parameters can be 

travel times on the network nodes, queues on the intersections or 

travel times between stops for public transport. A very important 

aspect is taking dynamic changes of the information into account, 

which is constantly provided by data mining agents. 

  Pre-calculation of the estimated parameters includes the 

following stages of data processing and network optimization: 

  Stage 1: Mining data from the IoT and its pre-processing. 

All the participants of the cloud-based system have virtual 

representations as active IoT components (agents). These virtual 

agents are associated with data (mostly real-time) and act as data 

sources for the cloud-based system. The cloud system locates and 

collects the necessary data from different agents, and provides 

usual data mining operations (changes and outliers are detected, 

preliminary aggregation and dimensionality reduction are 

performed). The collected data are stored as historical 

information in the cloud and are used later as input data for ad-

hoc network models (Stage 2). Stream-based methods of semi-

decentralized change-point detection, outlier detection, clustering 

and classification, and factor analysis occur regularly in this 

stage. 

  Stage 2: Ad-hoc network models. The application-specific 

digital networks of virtual traffic participants (e.g. regional, 

social) are created, and the corresponding data models are used 

in order to estimate the important characteristics and parameters 

of these networks using the information collected in Stage 1 and 

for strategy optimization at Stage 3. The future behaviour of 

traffic participants is forecasted as well. Semi-decentralized, 

flows forecasting (possibly with incomplete information) 

methods such as (multiple-response) regression models, 

Bayesian networks, time series, simulation, are also applied at 

this stage. Many pre-defined data models can run concurrently in 

the digital network. The corresponding data storages are located 

in the cloud and are semi-centralized, so the methods should take 

costs of different pieces of information into account.  

  Stage 3: Static decisions and initial strategy optimization. 

Cloud applications use pre-calculated results of the ad-hoc 

network models from Stage 2 and the available historical 

information (including private information) about the traffic 

network to perform their pre-planning tasks. Initial optimization 

of the strategies is resource expensive, and can be partially pre-

calculated in ad-hoc network models and then instantiated 

according to the application’s goals and preferences. These 

models are also checked in the digital traffic network. This stage 

can require aggregation of different data models and existing 

strategies. Methods of self-learning stochastic (multi-criteria) 

optimization such as neural networks, decision trees, Markov 

decision processes, choice models, graph optimization algorithms 

are used. 

  Stage 4: Dynamic decisions and strategy update. The pre-

planned tasks from Stage 3 are executed, and updates are made 

according to the dynamic real-time situation extracted from the 

virtual agents. The aggregation of the pre-planned data and 

strategies with the dynamic ones is the most important problem 

at this stage. An additional difficulty here is the requirement of 

fast real-time execution. (Automatic) cooperation between users 

in their decisions is possible; therefore, stream-based methods of 

data models and strategy updates such as reinforcement learning, 

Bayesian networks, dynamic decision trees, stream regression, 

and distributed constraint satisfaction/optimization can be 

applied.  

5.0  BDPM AND DECISION-MAKING STAGES IN in ITS 

SCENARIOS  

 

We consider three ITS application scenarios: 1) A cooperative 

intersection control, which optimizes vehicle flows in traffic 

networks by regulating the intersection controllers. 2) A personal 

travel companion, which provides dynamic planning and 

monitoring of multimodal journeys to travellers, surface vehicle 

drivers, and transports operators. 3) A logistics services 

companion, which provides benefits to clients and stakeholders 

involved in, affected by, or dependent on the transportation of 

goods in urban environments. We demonstrate the most 

important stages of BDPM and optimization in order to derive 

requirements for a general architecture described in the previous 

section.  
 

5.1  Virtualized Cooperative Intersection Control 

 

This scenario uses adaptive, semi-distributed traffic management 

strategies hosted in the cloud for the regulation of intersection 

controllers, and creates ad-hoc networks in the cloud between 

clusters of vehicles and the traffic management infrastructure. It 

recommends the optimal speed to drivers to keep the traffic flow 

smooth, and assists adapting traffic controllers (e.g. traffic lights, 

signs) based on the real time traffic situation. This service uses 

real-time traffic information and a route-data collection service to 

formulate strategies for the optimization of network operation. 

  Stage 1: Processing the following data streams (historical 

and real-time): 1) floating-car data (speeds, positions, etc.); 2) 

sensor data from the infrastructure (loops, traffic lights, etc.); 3) 

information about routes and actual locations of collective 

transport (public transport, taxi, shared cars, etc.) 4) data from 

distribution vehicles (logistic transport); 5) weather conditions; 

6) accidents, car breakdowns, road-works; 7) organizational 

activities (sport events, conferences, etc.) 

  Stage 2: Creating ad-hoc networks, which are virtual 

abstract networks for solving specific problems (intersection and 

regional traffic models, green wave models, public transport 

priority, jam avoidance, etc.). Estimating network parameters 

(traffic flux, density, and speed, travel time estimation, etc.). 

  Stage 3: Developing static strategies of intersection control 

and cooperation (such as increase of flows, changed weather 

conditions, organizational activities); cooperation plans of 

clusters of vehicles, etc.). 

  Stage 4: Combining dynamic real-time information with 

static strategies in order to receive up-to-date controlling 

decisions (correction of signal plans according to current 

conditions, cooperation of signal controllers to resolve problems 

such as jams, accidents, etc.) based on historical information, 

previous experience, and data models from the previous stage 

(traffic light signal plan optimization; signal plans for expected 

events. 

 

5.2  Dynamic Multi-modal Journey Planning 

 

This scenario helps travellers plan and adjust a multi-modal, 

door-to-door journey in real-time. It provides improved (i.e., 

quicker, more comfortable, cheaper, and greener) mobility to 

daily commuters and other travellers by identifying optimal 

transportation means and a strong real-time orientation. This 

planning proposal for a multi-modal journey takes into account 

the current means of transportation, the traveller’s context and 

preferences, city traffic rules, and the current requirements and 

constraints. The journey plan needs to obtain an overall indication 

of the trip duration as well as accommodate early reservation of 

resources (train or plane ticket). 
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  Stage 1: Processing of the following data streams (historical 

and dynamic) in addition to the previous application: 1) floating 

passenger data; 2) travellers’ preferences; 3) timetables and 

availability of collective transport (tickets, shared cars 

availability, etc.); 4) changes in time-tables. 

  Stage 2: Creation of ad-hoc networks (transit stations, 

public transport coordination, passenger choice of transport, etc.) 

and estimation of network parameters (travel time for different 

transport modes depending on various factors, waiting times, 

passenger arrival at stops, price models, etc.). 

  Stage 3: Multi-modal route pre-planning based on historical 

data and estimated network parameters for expected conditions 

(pre-planning for popular routes, preplanning for pre-booked 

routes, pre-planning for expected events) as well as optimal time-

table calculation for public transport based on the expected 

conditions. 

  Stage 4: Dynamic update of pre-planned routes for the 

actual multi-modal journey (actual travel-time estimation, re-

planning in the case of delays in previous trips in the multi-modal 

chain, re-planning for additional travel possibilities, or cancelling 

a part of the multi-modal journey), as well as dynamic update of 

public transport time-tables (on-demand changes, co-ordination 

of different transport means). 

 

5.3  Itinerary Booking and Real-time Optimized Route 

navigation 

 

This scenario helps a logistics provider (1) to guarantee quick 

(especially on-time) deliveries at a low cost based on up-to-date 

information and (2) to maximize the efficiency of each vehicle 

and the fleet. It is fundamental to optimize the movements of the 

logistics vehicles, to help them avoid traffic jams and take the 

shortest routes when possible. 

  Stage 1: Processing of the following data streams (historical 

and dynamic) in addition to the first application: 1) order data 

(transportation demand); 2) available logistic vehicles (possible 

load, speed, etc.); 3) timetables (if necessary) and actual positions 

of the vehicles; 4) client data (drop-off preferences, actual 

location, etc.). 

  Stage 2: Creation of ad-hoc networks (delivery models, 

logistic provider-client interaction models, etc.), and estimation 

of the network parameters (travel times for different route 

segments, delay probability, drop-off process time distribution, 

probability of accidents, probability of problems with vehicles, 

etc.). 

  Stage 3: Pre-planning of the delivery process (preliminary 

good distribution by vehicles, preliminary order of clients for 

each vehicle, preliminary route for each vehicle, preliminary time 

window for each client, etc.). Note that the itineraries of large 

logistic operators can be used to provide better predictions of the 

traffic situation using virtualized cooperative intersection 

intelligence application as well as by applying priority rules for 

logistic vehicles during booking. 

  Stage 4: Dynamic update of pre-planned delivery routes 

depending on up-to-date information (re-planning of routes 

depending on current traffic situation, re-planning in the case of 

accidents or traffic jams, re-planning in the case of vehicle 

problems, estimation of actual delivery time, etc.). Cooperation 

between logistic vehicles (exchange or orders, adoption of other 

vehicle’s orders in the case of problems, etc.). Dynamic 

agreement with clients (agreement about drop-off place 

depending on current position of the vehicle and client, 

agreement about change of drop-off time, reaction to the 

new/changed customer requests, etc.). 

 

 

6.0  DECENTRALISED BDPM METHODS 

 

We provide an overview of two very important groups of BDPM 

methods, which can be applied for complex stochastic systems 

represented with MAS architecture using the power of cloud-

based environment. Decentralised clustering groups together 

similar data, reducing Big Data dimensions [54, 55]. 

Decentralized data clustering and the corresponding 

classification can be considered as a prerequisite step to 

implementation of forecasting and decision-making models. 

  Decentralised regression provides estimation of some 

characteristics depending on given values of factors [19, 18, 8]. 

Both methods are distributed, which allows combination of local 

and global computations, which provides a very good basis for 

their application in cloud context. 

  Decentralized clustering is usually applied at early stages of 

data processing (e.g. at Stage 1 and early Stage 2 of the 

architectures described in Section 4). It can be used, e.g., to group 

together: 1) travel-time data or similar travel segments in the 

dynamic journey planning scenario; 2) travellers’ behaviour and 

traffic flows under similar conditions in the virtualized 

intersection control; 3) similar orders and client locations in the 

itinerary booking scenario. Different regression models are then 

applied for different clusters. 

  Decentralized regression is mostly used in ad-hoc data 

models, which correspond to Stage 2 of the architecture from 

Section 4. Regression models can be used for travel time 

prediction in the dynamic journey planning scenario, traffic flows 

prediction in the virtualized intersection control or order 

appearance prediction in the itinerary booking scenario. 

 

6.1  Decentralised Regression  

 

Regression analysis models the dependency between the 

dependent variable (usually denoted by 𝐘) and independent 

variables (factors, usually denoted by 𝐗). It describes the 

dependence of conditional expectation 𝐸[𝒀|𝑿] on the values of 

several independent variables (factors) 𝐗. 

  A linear regression model supposes that the dependent 

variable 𝐘 is a linear combination of the factors 𝐗. The linear 

regression model [21] in the matrix form can be expressed as 

 

𝐘 = 𝐗 + , (6.1) 

 𝑤here 𝑛 is a number of observations, 𝑑 is a number of factors, 𝐘 

is an 𝑛 × 1 vector of dependent variables; 𝐗 is an 𝑛 × 𝑑 matrix of 

explanatory (dependent) variables;  is an 𝑑 × 1  vector of 

unknown coefficients, which are parameters of the system to be 

estimated; is an 𝑛 × 1 vector of random errors. The rows of the 

matrix 𝐗 correspond to observations and the columns correspond 

to factors. 

  The well-known least square estimator 𝐛 of  is [21]: 

 

𝐛 = (𝐗𝑇𝐗)−1𝐗𝑇𝐘. (6.2) 

 

  We can make a forecast for a certain 𝑛 + 1-th future values 

of the factors 𝐱𝑛+1 as follows: 

 

𝐸[𝑌𝑛+1] = 𝐱𝑛+1𝐛. (6.3) 

 

  A KD regression model does not make certain assumptions 

about the form of dependence of dependent variable 𝐘 on factors 

𝐗. It can predict observations without reference to a fixed 

parametric model. In contrast, it uses kernel as a weighting 

function in the estimation process. 

  A general form of a non-parametric regression model is [59]: 
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𝐘 = 𝑚(𝐱) + , (6.4) 

 
 

where  is a random error such that E[ | 𝐗 =  𝐱]  =  𝟎 and 

Var[ | 𝐗 =  𝐱]  =  σ2(𝐱); and 𝑚(𝐱)  =  E[𝐘 |𝐗 =  𝐱].  
  The Nadaraya-Watson KD estimator [59] is 

 

𝑚̂𝑛(𝐱) =
∑ 𝐻−1𝐾(𝐱 − 𝐗𝑖)𝑛

𝑖=1 𝑌𝑖

∑ 𝐻−1𝐾(𝐱 − 𝐗𝑖)𝑛
𝑖=1

=
∑ 𝜔𝑖(𝐱)𝑛

𝑖=1 𝑌𝑖

∑ 𝜔𝑖
𝑛
𝑖=1

== ∑ 𝜔̂𝑖(𝐱)𝑌𝑖

𝑛

𝑖=1

, 

(6.5) 

 

where 𝐾(•) is the kernel function of 𝑅𝑑 , 𝐇 is the bandwidth 

matrix, 𝜔𝑖(𝐱) = 𝐻−1𝐾(𝐱 − 𝐗𝑖) are the weights of the historical 

observations in the forecast of x and , 𝜔̂𝑖(𝐱) =
𝜔𝑖(𝐱)

∑ 𝜔𝑖
𝑛
𝑖=1

 are the 

corresponding normalised weights. If there is no additional 

information about factor dependence 𝐇 = 𝑑𝑖𝑎𝑔(ℎ1, ℎ2, . . . , ℎ𝑑). 

Kernel function is a symmetric density function, for example, a 

standard multivariate normal distribution ℕ(0, 𝐼), called the 

multivariate Gaussian kernel. 

  Using the Nadaraya-Watson estimator, a forecast for any 

future factors values 𝐱𝑛+1 is: 

 

𝐸[𝑌𝑛+1] = 𝑚̂𝑛(𝐱𝑛+1). (6.6) 

 

  Now we consider distributed versions of the above-

mentioned linear [19, 8] and KD [18, 8] regressions. We use MAS 

architecture, where each agent makes estimations of its models 

locally based on its observations. If an agent experience 

difficulties with any new prediction, it makes help-request to 

other agents and receives responses as the model parameters in 

the case of linear regression or as raw data in the case of KD 

regression. These responses are used to improve initial model of 

the requested agent. 

  Suppose we have a MAS consisting of 𝑠 autonomous agents 

𝑨𝒈 = {𝐴𝑔(1), 𝐴𝑔(2), … , 𝐴𝑔(𝑠)}, and each of them contains a local 

regression model, which is estimated on the basis of its 

experience.  

  Let us describe two versions (linear and KD regression) of 

parameter adjustment algorithms, which allow the agents to 

exchange the information in order to improve the forecasts. 

  Consider an agent 𝐴𝑔(𝑖) which makes a forecasting for some 

factors 𝐱𝑛+1
(𝑖)

 using one of the regression models. After 

forecasting, 𝐴𝑔(𝑖) checks whether a forecast 𝐸 [𝑌𝑛+1
(𝑖)

] is not 

reliable and it needs help from other agents.  

  For the linear model, an approach to check a reliability of a 

forecast is to compare the width of the confidence interval of the 

forecast with a forecast value. The forecast 𝐸 [𝑌𝑛+1
(𝑖)

] is considered 

to be not reliable if its value is sufficiently smaller than its 

confidence interval width: 

 

Δ(𝑖)(𝐱𝑛+1
(𝑖)

)

𝐱𝑛+1
(𝑖)

𝐛(𝑖)
> 𝑝, 

 

where 𝑝 is an agent’s parameter representing the maximal ratio 

of the confidence interval width to the forecast, after which a 

coordination takes place; Δ(𝑖)(𝐱𝑛+1
(𝑖)

) is the confidence interval for 

factors 𝐱𝑛+1
(𝑖)

 based on the agent’s data. 

For the KD model, we consider a forecast for 𝐱𝑛+1
(𝑖)

 as not reliable 

if only one of the observations is taken with a significant weight 

in this forecast:  

 

max (𝜔̂𝑐
(𝑖)

(𝐱𝑛+1
(𝑖)

)) > 𝑏𝑝, 

 

where 𝑏𝑝 is an agent’s parameter representing the maximal 

weight, after which a coordination takes place. 

  The parameter adjustment procedure is the following. First, 

agent 𝐴𝑔(𝑖) sends a request, containing a set of factors 𝐱𝑛+1
(𝑖)

 as 

well as a threshold 𝑇𝑟(𝑖) (𝐱𝑛+1
(𝑖)

) to other agents within its 

transmission radius.  

  For the linear model, this threshold is set equal to the 

confidence interval width: 𝑇𝑟(𝑖) (𝐱𝑛+1
(𝑖)

) = Δ(𝑖) (𝐱𝑛+1
(𝑖)

).  

  For the KD model, this threshold is set as the weight of the 

second best observation: 𝑇𝑟(𝑖) (𝐱𝑛+1
(𝑖)

) = 𝜔(𝑛−1)
(𝑖)

(𝐱𝑛+1
(𝑖)

), where 

an ordered sequence of weights in the forecast for 𝐱𝑡+1
(𝑖)

 is 

represented by 𝜔(1)
(𝑖)

(𝐱𝑛+1
(𝑖)

) , 𝜔(2)
(𝑖)

(𝐱𝑛+1
(𝑖)

) , … , 𝜔(𝑛)
(𝑖)

(𝐱𝑛+1
(𝑖)

). 

  Each agent 𝐴𝑔(𝑗) in the transmission radius makes the 

following after the receiving of data.  

  For the linear model, it calculates the confidence interval 

Δ(𝑗)(𝐱𝑛+1
(𝑖)

) for the requested values of factors 𝐱𝑛+1
(𝑖)

 on the basis 

of its data and compares it with the threshold. If this value is less 

than the threshold, Δ(𝑗) (𝐱𝑡+1
(𝑖)

 ) < 𝑇𝑟(𝑖) (𝐱𝑡+1
(𝑖)

 ) ,  𝐴𝑔(𝑗) replies to 

𝐴𝑔(𝑖) by sending its parameters 𝐛(𝑖).  

  For the KD model, it calculates the weights 𝜔𝑐
(𝑗)

(𝐱𝑛+1
(𝑖)

) on 

the basis of its own data. If there are observations with weights 

𝜔𝑐
(𝑗)

(𝐱𝑛+1
(𝑖)

) > 𝑇𝑟(𝑖) (𝐱𝑛+1
(𝑖)

) it forms a reply 𝐷̂(𝑗,𝑖) from these 

observations (maximum 2) and sends it to 𝐴𝑔(𝑖). 
  Let 𝑮(𝑖) ⊂ 𝑨𝒈 be a group of agents, who are able to reply to 

𝐴𝑔(𝑖) by sending the requested data. 

  For the linear model, each 𝐴𝑔(𝑗) ∈ 𝑮(𝑖) sends its parameters 

𝐛(𝑗). 𝐴𝑔(𝑖) receives replies from the group 𝐺(𝑖). It assigns weights 

to each 𝐴𝑔(𝑗) (including itself) 𝑐(𝑖)={𝑐𝑗
(𝑖)

}. These weights are 

time-varying and represent the reliability level of each  𝐴𝑔(𝑗), 
including reliability of own experience. In our case, the agents’ 

weights depend on the forecasting experience. We assume that 

𝑐(𝑖) is a stochastic vector for all n , i.e. the sum of its elements is 

equal to 1. Then an updated estimate is  

𝐛̃(𝑖) = ∑ 𝑐𝑗
(𝑖)

𝐴𝑔(𝑗)∈𝐺(𝑖)

𝐛(𝑗). (6.7) 

  For the KD model, the agents 𝐴𝑔(𝑗) send their data, which 

are closest to the requested point. All the data 𝐷̂(𝑗,𝑖), 𝐴𝑔(𝑗) ∈ 𝑮(𝑖) 

received by 𝐴𝑔(𝑖) are verified and duplicated data are discarded. 

These new observations are added to the dataset of 𝐴𝑔(𝑖): 𝐷(𝑗) ←

⋃ 𝐷̂(𝑗,𝑖) ∪ 𝐷(𝑗)
𝐴𝑔(𝑗)∈𝐺(𝑖) . Suppose that 𝐴𝑔(𝑖) received r 

observations. Then, the new KD function of 𝐴𝑔(𝑖) is updated by 

considering the additive nature of this function: 

𝑚̃𝑛+𝑟
(𝑖) (𝐱) =

𝑝𝑛
(𝑖)(𝐱) + ∑ 𝑝(𝑖,𝑗)(𝐱)𝐴𝑔(𝑗)∈𝑮(𝑖)

𝑞𝑛
(𝑖)(𝐱) + ∑ 𝑞(𝑖,𝑗)(𝐱)𝐴𝑔(𝑗)∈𝑮(𝑖)

, (6.8)  

where 𝑝(𝑖,𝑗)(𝐱) and 𝑞(𝑖,𝑗)(𝐱) are the nominator and denominator 

of (6.5), respectively, calculated by 𝐷̂(𝑗,𝑖). Finally, 𝐴𝑔(𝑖) can 

autonomously make its forecast for 𝐱𝑛+1
(𝑖)

 as 𝑚̃𝑛+𝑟
(𝑖)

(𝐱𝑛+1
(𝑖)

). 
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6.2  Decentralised Clustering  

 

We formulate first the clustering problem and describe the KD 

clustering algorithm [54, 55]. Let 𝑿 = {𝒙1, 𝒙2, … , 𝒙𝑁}, 𝒙𝑖 ∈ 𝑅𝑑 

be a dataset to be clustered into k non-overlapping subsets 

{𝑆1, 𝑆2, … , 𝑆𝑘 }. 

  Non-parametric clustering methods [30] are well suited for 

exploring clusters without building a generative model of the 

data. KD clustering consists of a two-step procedure: estimation 

and optimisation. During the estimation step, the probability 

density of the data space is directly estimated from data instances. 

During the optimisation step, a search is performed for densely 

populated regions in the estimated probability density function. 

  Estimation step. The density function is estimated by 

defining the density at any data object as being proportional to a 

weighted sum of all objects in the data-set, where the weights are 

defined by an appropriately chosen kernel function [30]. 

  A KD estimator is  

𝜓̂[𝑿](𝐱) =
1

𝑁
∑ 𝐾𝐇(‖𝐱 − 𝐱𝑖‖)

𝐱𝑖∈𝐗

, (6.8) 

where ‖𝐱 − 𝐱𝑖‖ is a distance between 𝐱𝑖  and  𝐱, 𝐾𝐻(•) =
|𝐇|−1𝐾(𝐇−1 •)[42]. We use the multivariate Gaussian kernel 

function in our study: 𝐾(𝐱) = (2𝜋)−𝑑 2⁄ exp (−
1

2
𝐱𝑇𝐱).  

  Optimisation step. Maxima of KD are detected and groups 

all of the data objects in their neighbourhood are grouped into 

corresponding clusters. We use a hill climbing method for KD 

maxima estimation with Gaussian kernels (DENCLUE) [52] and 

modify the technique for the multivariate case. This method 

converges towards a local maximum and adjusts the step size 

automatically at no additional costs. Other optimization methods 

[52] require more steps and additional computations for step size 

detection. Each KD maximum can be considered as the centre of 

a point cluster. With centre-defined clusters, every local 

maximum of 𝜓̂(•) corresponds to a cluster that includes all data 

objects that can be connected to the maximum by a continuous, 

uphill path in the function of 𝜓̂(•). Such centre-defined clusters 

allows for arbitrary-shaped clusters to be detected, including non-

linear clusters. An arbitrary-shape cluster is the union of centre-

defined clusters that have maxima that can be connected by a 

continuous, uphill path. The goal of the hill climbing procedure 

is to maximize the KD 𝜓̂[𝑿](𝐱). By setting the gradient ∇𝜓̂[𝑿](𝐱) 

of KD to zero and solving the equation ∇𝜓̂[𝑿](𝐱) = 𝟎 for 𝐱, we 

get:  

𝐱(𝑙+1) =
∑ 𝐾𝐇(‖𝐱(𝑙) − 𝐱𝑖‖)𝐱𝑖𝐱𝑖∈𝐗

∑ 𝐾𝐇(‖𝐱(𝑙) − 𝐱𝑖‖)𝐱𝑖∈𝑿

, (6.9) 

  The formula (6.9) can be interpreted as a normalized and 

weighted average of the data points. The weights for each data 

point depend on the influence of the corresponding kernels on 

𝐱(𝑙). Hill climbing is initiated at each data point 𝐱𝑖 ∈ 𝐗 and is 

iterated until the density does not change, i.e. 

[𝜓̂[𝑿] (𝐱𝑖
(𝑙)

) − 𝜓̂[𝑿] (𝐱𝑖
(𝑙−1)

)] 𝜓̂[𝑿] (𝐱𝑖
(𝑙)

) ≤ 𝝐⁄ , where 𝝐 is a small 

constant. The end point of the hill climbing algorithm is denoted 

by 𝐱𝑖
∗ = 𝐱𝑖

(𝑙)
, corresponding to a local maximum of KD. 

  Now we should determine a cluster for 𝐱𝑖 . Let 𝐗𝑐 =
{𝐱1

𝑐 , 𝐱2
𝑐 , … } be an ordered set of already identified cluster centres 

(initially, we suppose 𝐗𝑐 ≠ ∅). We find an index of the nearest 

cluster centre from 𝐱𝑖
∗ in the set 𝐗𝑐: 

𝑛𝑐(𝐱𝑖
∗) = arg 𝑚𝑖𝑛

𝐱𝑗
𝑐∈𝐗𝑐

‖𝐱𝑗
𝑐 − 𝐱𝑖

∗‖.  

  We describe now the cooperation for sharing the clustering 

experience among the agents in a network. We introduce the 

following definitions. Let 𝑨𝒈 = {𝐴𝑔(1), 𝐴𝑔(2), … , 𝐴𝑔(𝑠)}, be a 

group of s agents. Each 𝐴𝑔(𝑗) has a local dataset 𝐷(𝑗) =

{𝐱𝑛
(𝑗)

|𝑛 = 1, … , 𝑁𝑗}, where 𝒙𝑛
(𝑗)

∈ 𝑅𝑑. In order to underline the 

dependence of the KD function (6.8) on the local dataset of 𝐴𝑔(𝑗), 

we denote the KD function by 𝜓̂[𝑫(𝑗)](𝐱). 

  Consider a case when some agent 𝐴𝑔(𝑖) is unable to classify 

(after optimization has formed a new or small cluster) some future 

data point 𝐱𝑛+1
(𝑖)

 because it does not have sufficient data in the 

neighbourhood of this point. Our model uses a two-phase 

protocol for performing communication between agents. First, 

𝐴𝑔(𝑖) sends the data point 𝐱𝑛+1
(𝑖)

 to the other neighbouring agents.  

  We consider two different helping procedures: non-

parametric, in which some data is transmitted without any 

parameter estimation and semi-parametric, where the 

observations are approximated with the mixture of multi-

dimensional Gaussian distributions and their parameters are 

transmitted. Let 𝑮(𝑖) ⊂ 𝑨𝒈 be a group of agents, who are able to 

reply to 𝐴𝑔(𝑖) as it was described in section 6.1 

  In the non-parametric procedure, considered in [55], each 

𝐴𝑔(𝑗) classifies 𝐱𝑛+1
(𝑖)

 using its own KD function 𝜓̂[𝑫𝑗](𝐱𝑛+1
𝑖 ) and 

performs the optimization step to identify the cluster for this 

point. Let 𝑛𝑗,𝑖 be a number of points in the cluster of 𝐱𝑛+1
(𝑖)

, not 

including 𝐱𝑛+1
(𝑖)

 itself. In the case of successful clustering (𝑛𝑗,𝑖 >

0), 𝐴𝑔(𝑗) ∈ 𝑮(𝑖) forms an answer 𝑫(𝑗,𝑖) with c nearest points to 

the requested data point from the same cluster as 𝐱𝑛+1
(𝑖)

, (or all 

points from the cluster, if 𝑛𝑗,𝑖 ≤ c). Let 𝑐𝑗,𝑖 be a number of points 

in the response 𝑫(𝑗,𝑖). Each agent 𝐴𝑔(𝑗) ∈ 𝑮(𝑖) sends 𝑫(𝑗,𝑖) 

together with 𝑐𝑗,𝑖 and 𝑛𝑗,𝑖 to 𝐴𝑔(𝑖). After receiving all the answers, 

𝐴𝑔(𝑖) forms a new dataset 𝑫̂(𝑗,𝑖).  

  In the semi-parametric procedure [54], in response to the 

help-request, 𝐴𝑔(𝑗) send parameters from their estimated KD 

functions. Since the KD function is non-parametric and estimated 

directly from observations, we approximate the function with a 

mixture of multi-dimensional Gaussian distributions. Each 𝐴𝑔(𝑗) 

identifies cluster associated with point 𝐱𝑛+1
(𝑖)

 and performs the 

approximation of clusters with a mixture of normal distributions. 

Next, 𝐴𝑔(𝑗) transmits the cluster parameters (weight, mean and 

covariance matrix). The agent 𝐴𝑔(𝑖) adds this information to its 

KD and updates its clusters. Since parameter transmission 

requires less data, this approach requires less transmission, 

however, the approximation reduces the cluster shapes to a union 

of ellipsoids. 

  Let us consider an approximation step that approximates KD 

function with a mixture of distributions. This can be achieved 

with the expectation maximisation (EM) algorithm proposed by 

Dempster [60]. The approach is widely used for calculation of the 

maximum likelihood estimate of mixture models. In a mixture 

model, the probability density function is 

𝑓(𝐱; Θ) = ∑ 𝜋𝑏𝑓𝑏(𝐱; Θ𝑏)𝐵
𝑏=1 ,  

where 𝜋𝑏 are positive mixing weights that sum to one, 𝑓𝑏  are 

component density functions parameterized by Θ𝑏, and Θ =
{𝜋𝑏 , Θ𝑏} are the model parameters. Each observation is assumed 

to be from one of the B components. A common choice for 
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component density is a multivariate normal distribution with 

parameters Θ𝑏 = (𝜇𝑏 , Σ𝑏), where 𝜇𝑏 is a mean and Σ𝑏 is a 

covariance matrix.  

  In the EM procedure, the expected likelihood of a given 

data-set is iteratively maximized. The algorithm [60] alternates 

between the E and the M steps until convergence is achieved. 

  We assume that each helping-agent 𝐴𝑔(𝑗) ∈ 𝑮(𝑖) receives 

data point 𝐱𝑛+1
(𝑖)

, and tries to classify it. If it is successful, of 𝐴𝑔(𝑗) 

determines that 𝐱𝑛+1
(𝑖)

, belongs to a specific cluster and executes 

the EM-algorithm with this cluster. This algorithm approximates 

the cluster using a mixture of 𝐵𝑗 multidimensional normal 

distributions with parameters Θ𝑗 = {μ𝑗 , Σ𝑗 , π𝑗}, where μ𝑗 =

{𝜇1
𝑗
, … , 𝜇

𝐵𝑗
𝑗

}, Σ𝑗 = {Σ1
𝑗
, … , Σ

𝐵𝑗
𝑗

}, and π𝑗 = {π1
𝑗
, … , π

𝐵𝑗
𝑗

}, which 

are then returned to 𝐴𝑔(𝑖). After receiving all answers, the agent 

𝐴𝑔(𝑖) has a vector of the parameters {Θ𝑗}. The answers {Θ𝑗} can 

be interpreted by the agent 𝐴𝑔(𝑖) as data points μ𝑗 with the only 

difference being that the additional weights π𝑗 and bandwidths 

from Σ𝑗  should now be taken into account. 

  The next problem is the updating of the KD function of 

𝐴𝑔(𝑖).   Denote 𝑫̂(𝑖)as a dataset of the agent of 𝐴𝑔(𝑖) that includes 

the received answers. We take into account that density estimates 

(6.8) of each agent are additive, i.e. the aggregated density 

estimate 𝜓̂[𝑫(𝒋)](𝐱) can be decomposed into the sum of the local 

density estimates. 

  For the non-parametric approach, 𝜓̂[𝑫(𝑗)](𝐱) is updated with 

respect to the new knowledge 𝑫(𝑗,𝑖) with one estimate for every 

dataset 𝑫(𝑗,𝑖): 

𝜓̂[𝑫̂(𝑖)](𝐱) = 𝑤𝑖𝜓̂[𝑫(𝑖)](𝐱) + 

+
(1 − 𝑤𝑖)

∑ 𝑛𝑗,𝑖𝐴𝑔(𝑗)∈𝑮(𝑖)
∑ 𝑛𝑗,𝑖

𝐴𝑔(𝑗)∈𝑮(𝑖)

𝜓̂[𝑫(𝑗,𝑖)](𝐱), (6.10) 

where 𝑤𝑖 is a weight used for the agent’s own local observations.  

  For the semi-parametric procedure, it uses the estimated 

parameters 

 

𝜓̂[𝑫̂(𝑖)](𝐱)=𝑤𝑖𝜓̂[𝑫(𝑖)](𝐱) +

+
(1−𝑤𝑖)

∑ 𝜋𝑏
𝑗

𝐴𝑔(𝑗)∈𝑮(𝑖)

𝑏∈𝐵𝑗

∑ 𝐵𝑗
𝐴𝑔(𝑗)∈𝑮(𝑖)

∑ 𝜋𝑏
𝑗

𝐴𝑔(𝑗)∈𝑮(𝑖)

𝑏∈𝐵𝑗

𝐾
Σ𝑏

𝑗
(‖𝐱−𝜇𝑏

𝑗
‖)

. (6.11) 

  After updating its KD function, 𝐴𝑔(𝑖) performs a hill-

climbing optimization procedure to identify clusters in its local 

data space.  

  To measure the clustering similarity [61] among the agents 

𝐴𝑔(𝑖) ∈ 𝑨𝒈 we use the following representation of a class 

labelling by a matrix C with components:  

𝐂𝑖,𝑗 = {
1 if 𝐱𝑖  and 𝐱𝑗  belong to the same cluster and 𝑖 ≠ 𝑗,

0 otherwise
 

  Let two labelling have matrix representations 𝐂(1) and 𝐂(2), 

respectively. We define a dot product that computes the number 

of pairs clustered together 〈𝐂(1), 𝐂(2)〉 = ∑ 𝐂𝑖,𝑗
(1)

𝐂𝑖,𝑗
(2)

𝑖,𝑗 . The 

Jaccard’s similarity measure can be expressed as  

𝐽(𝐂(1), 𝐂(2)) =
〈𝐂(1),𝐂(2)〉

〈𝐂(1),𝐂(1)〉+〈𝐂(2),𝐂(2)〉−〈𝐂(1),𝐂(2)〉
.  

 

 

 

 

7.0  EXPERIMENTAL RESULTS 

 

In this section, we evaluate the efficiency of the above described 

decentralized regression and decentralized clustering using 

transportation application domain. Some numerical experiments 

illustrate quality of considered BDPM methods. 

  We consider transportation network data from the southern 

part of Hanover (Germany). The network (Figure 7) contained 

three parallel and five perpendicular streets, which formed 15 

intersections with a flow of approximately 5000 vehicles per 

hour.  

 

 
 

Figure 7  Road network in the southern part of Hanover, Germany 

 

Table 1  Available factors of transportation data 

 

Variable Description 

𝑌 travelling time (min); 

X〈1〉 route length (km) 

X〈2〉 average speed in system (km/h) 

X〈3〉 average number of stops(units/min) 

X〈4〉 congestion level (vehicles/h) 

X〈5〉 number of the traffic lights in the route (units) 

X〈6〉 number of the left turns in the route (units) 

 

 

  Available data (Table 1) consists of a dependent variable  

𝑌 (travelling time) and six factors 𝐗〈1〉 - 𝐗〈6〉.  

 
7.1  Decentralised Regression  

 

We considered travelling time forecasting using linear and KD 

regression models [8]. We compared the following four 

estimates:  

 

1) Linear estimate was produced by linear regression 

model. 

2) Kernel density (KD) estimate was produced by KD 

regression model. 

3) ‘Oracle’ estimate, which is a combination of linear and 

KD estimates. This estimate presented the optimum and 

helped to select the best forecast (with a low forecasting 

error) for every forecast. It is the best forecast that could 

be achieved using the linear and KD regressions. 

4) ‘Average’ estimate was the average of the KD and 

linear estimates. 

 
  We compared the results by analysing the average 

forecasting errors, the relative forecasting errors and coefficients 

of determination 𝑅2. These characteristics are well-known 

measures of the effectiveness in predicting the future outcomes 
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using regression models and they can be used with parametric and 

non-parametric models. 

  We showed first the travel time prediction results (Figure 8) 

by average forecasting errors using different models (Figure 8). 

The KD model was c. 5% better than the linear model. There was 

a strong positive correlation between the linear and KD estimates 

(about 0.8), but we demonstrated that the ‘average’ estimate was 

often slightly better (2%) than the KD estimate.  
The ‘oracle’ estimate is considerably better than the other 

estimates (c. 40% better than the KD model). 

 

 
 

Figure 8  Average forecasting errors using the kernel, linear and 
combined approaches 

 

 
Figure 9  System dynamics of single agent using kernel model 

 
 
  We analysed the system dynamics over time for one 

randomly selected agent (Figure 9) by considering relative 

forecasting errors and a number of communication events. Large 

errors disappeared over time and the number of communication 

events also decreased. 

  We compare decentralized coordinated architecture with 

centralized architecture (data central aggregation) and with 

decentralized uncoordinated architecture without information 

exchange between agents. Table 2 summarises the results of the 

average forecasting errors and goodness-of-fit criterion 𝑅2 

values, using various forecasting models (linear, kernel, 

‘average’, and ‘oracle’). 

  The linear regression model used all the data points for 

forecasting. This meant that the straight regression line was being 

adjusted continuously via coordination and new data points, so it 

could not be fitted well for all data points. The centralized 

architecture was worse because a single line could not make good 

forecasts for a big number of data points. The linear model within 

the uncoordinated architecture was worse due to the convergence 

of the parameters of several agents to local optima instead of 

global optima. 

The KD regression model used only neighbouring points for 

forecasting. Coordination greatly improved the quality of 

forecasting because new neighbouring data points were provided. 

The centralised architecture made the best forecasts because there 

were many nearby points for most requested point. However, 

absence of experience (uncoordinated architecture) produced bad 

forecasts. Coordination sufficiently improved the 𝑅2 value.  

  Analysis of the relative forecasting errors showed that the 

average estimator in coordinated and uncoordinated architectures 

for relatively small amounts of data produced relatively better 

results than KD or linear estimators. The KD model was more 

accurate on average, but it sometimes yielded highly inaccurate 

forecasts. The linear model was less accurate, but it did not 

produce such big outliers. The average method avoided big 

outliers of the KD model and it provided more accurate forecasts.  

 
Table 2  Average forecasting errors and goodness-of-fit criterion 𝑅2 

values for the different forecasting models and architectures 

Model 
Average 

forecasting errors 

𝑅2 (After cross-

validation) 

Linear  

Centralised  
Uncoordinated 

Coordinated  

 

0.051 
0.054 

0.050 

 

0.829 
0.811 

0.819 

KD 

Centralised 

Uncoordinated  

Coordinated  

 
0.045 

0.053 

0.047 

 
0.913 

0.814 

0.859 

‘Average’ 

Centralised  

Uncoordinated  

Coordinated  

 
0.046 

0.049 

0.046 

 
--- 

--- 

--- 

‘Oracle’ 

Centralised  

Uncoordinated  
Coordinated  

 

0.034 

0.037 
0.034 

 

--- 

--- 
--- 

 

 

  The ‘oracle’ estimator provided a possible lower bound for 

the average forecasting error. This algorithm could improve 

forecasts by c. 25%. However, it is still unclear, how to choose 

between KD and linear estimates.  
 

7.2  Decentralised clustering 

 

Second, we considered decentralized clustering of data listed in 

Table 1. The autonomous KD clustering and the decentralized 

cooperative clustering algorithm was used in our experiments 

[54, 55]. 

  We illustrate a data synchronization step. The help-

requesting agent asked for help for point A. In Figure 10, one can 

see how the helping agent clustered the point using its own data, 

detected the corresponding cluster, and approximated it with the 

mixture of three normal distributions (shown as ellipses for two-

dimensional case with centres in B, C, D). Then the helping agent 

sent the corresponding parameters to the help-requesting agent. 

The help-requesting agent added the obtained parameters as data 

points to its data and made new clustering. This allowed 

improving clustering similarity of these two agents from 0.011 to 

0.037. 
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Figure  10  An approximation of a cluster containing A by three ellipsoids 

with centres in B, C and D 

 
Figure 11  Similarity of agents’ clusters over time depending on 𝐵 

components in a mixture of multidimensional normal distributions 

 
Figure 12  A number of communication events over time depending on 

𝐵 components in a mixture of multidimensional normal distributions 

 
 
  We analysed a system dynamics for a different number of 

transmitted points. Clustering similarity (Figure 11) increased 

faster for a bigger number of the estimated and transmitted 

components of normal distributions 𝐵𝑗 for cluster 

approximations, but the number of communication events (Figure 

12) decreased faster. 

Note, however, that one communication event was more 

expensive for a bigger number of transmitted points, but supplied 

more information. 

 

 

8.0  FUTURE WORK AND CONCLUSIONS 

 

The main contributions of this study are the following: 

 

 The analysis of related cloud-based architectures and ITS 

scenarios.  

 The definition of the conceptual architecture for 

implementation of the corresponding BDPM and decision-

making strategies for transportation operations.  

 The discussion of the employment of appropriate 

mathematical methods for three ITS scenarios.  

 The review of decentralised cooperative computational 

statistics based BDPM methods and the evaluation of their 

effectiveness on real-world transportation data.  

 

  We envisage this to be an important step towards the next 

generation of ITS requirements, which were elicited from 

transportation scenarios. This reflects needs and potential impact 

of ITS for business and society; the corresponding problems that 

should be solved for effective cloud system operation were 

illustrated.  

  We are planning in our future research to focus on such 

decentralised BDPM methods as predictive models (regression 

models of different types, time series, etc.), clustering and 

classification models, filtering with change point analysis models 

and BDPM methods for vehicle routing problem.  

  The near future objectives of our research are: 

 

 To consider new mathematical models and problems. 

Taking into account the success of linear multivariate 

regression, kernel-based regression, kernel based clustering 

or resampling tests for change point analysis, resampling 

travel time estimation for route comparing in traffic routing 

problem, etc., as referred in the state of the art section, we 

are planning to implement our decentralised or semi-

decentralised approach for other important for the traffic 

domain and Big data analytics problems (different time 

series models, logistic regression, multiple regression, etc.).  

 To investigate computational statistics methods for the 

models described above. We will use existing and develop 

new computation intensive methods as a technique for 

solving the above mentioned problems. 

 To research new agent cooperation techniques. We are 

planning to enhance cooperation schemas in the 

decentralised estimation models involving new reputation 

computing schemas, new data transmission rules, etc. 

 To implement the described architectures, models, methods 

and techniques for new ITS applications: Taking the needs 

of further transportation scenarios into account, we are 

planning to apply the developed models, methods and 

architectures to prediction, clustering, classification and 

estimation of other stochastic traffic factors. 
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Nomenclature 

 

ICT   - Internet and communication technologies 

IoT  - Internet of Things 

BDPM   - Big Data processing and mining 

ITS  - Intelligent transportation system 

FP7   - 7th European Framework Programme for  

  Research and Innovation 

EU   - European Union  

KD   - Kernel-density  

MAS  - Multi-agent system  

AmI   - Ambient intelligence  

V2V   - Vehicle-to-vehicle 

V2I  - vehicle-to-infrastructure 

US   - United States of America  

ACP   - Artificial, computational, parallel  
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