
86:3 (2024) 187-194|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI: 

|https://doi.org/10.11113/jurnalteknologi.v86.19497|

Jurnal 

Teknologi 
Full Paper 

HUMAN DETECTION IN SEARCH AND RESCUE 

OPERATIONS USING EMBEDDED ARTIFICIAL 

INTELLIGENCE  

Ahmed Abdullah Hussein Al-azzani, Mohd Ridzuan Ahmad* 

Division of Control and Mechatronics Engineering, Faculty of 

Electrical Engineering, Universiti Teknologi Malaysia, 81310 UTM 

Johor Bahru, Johor, Malaysia 

Article history 

Received 

12 November 2022 

Received in revised form 

27 November 2023 

Accepted 

27 November 2023 

Published Online 

20 April 2024 

*Corresponding author

mdridzuan@utm.my 

Graphical abstract Abstract 

The paper discusses the use of unmanned aerial vehicles (drones) in search and 

rescue operations to detect humans in disaster areas where rescue teams cannot 

reach. The paper highlights the limitations of current methods, including high 

computational power, high cost, and dependence on internet connectivity. The 

paper proposes using transfer learning to develop a human detection model with a 

mean average precision (mAP@0.5) above 90% and compares two deep learning 

models, MobileNet v2 and EfficientDet. The study uses multi-datasets of aerial 

images of humans, namely SeaDronesee and SARD, and the TensorFlow version 2.8 

framework. MobileNet v2 required less GPU usage for training and yielded a 

relatively high accuracy of 95.5%, while EfficientDet achieved higher accuracy 

(97.3%). The trained MobileNet v2 model size is compressed using quantization from 

25.5 MB to 4.15 MB, making it suitable for deployment on an edge device for on-

chip inference. The paper concludes that the proposed method can improve the 

efficiency and effectiveness of search and rescue operations. 

Keywords: Unmanned aerial vehicles, deep learning, transfer learning, TensorFlow, 

quantization 

Abstrak 

Artikel ini membincangkan penggunaan kenderaan udara tanpa pemandu (dron) 

dalam operasi mencari dan menyelamat untuk mengesan manusia di kawasan 

bencana di mana pasukan penyelamat tidak dapat mencapai. Artikel ini 

menyoroti kelemahan kaedah semasa, termasuk penggunaan daya pemprosesan 

yang tinggi, kos yang tinggi, dan bergantung kepada sambungan internet. Artikel 

ini mencadangkan penggunaan pembelajaran pemindahan untuk 

membangunkan model pengesanan manusia dengan purata ketepatan min 90% 

(mAP@0.5) dan membandingkan dua model pembelajaran mendalam, iaitu 

MobileNet v2 dan EfficientDet. Kajian menggunakan beberapa dataset imej udara 

manusia, iaitu SeaDronesee dan SARD, serta rangka kerja TensorFlow versi 2.8. 

MobileNet v2 memerlukan penggunaan GPU yang lebih rendah untuk latihan dan 

menghasilkan ketepatan yang agak tinggi iaitu 95.5%, sementara EfficientDet 

mencapai ketepatan yang lebih tinggi (97.3%). Saiz model MobileNet v2 yang 

dilatih dipadatkan menggunakan quantization dari 25.5 MB kepada 4.15 MB, 

menjadikannya sesuai untuk diterapkan pada peranti tepi untuk inferens di dalam 

chip. Artikel ini menyimpulkan bahawa kaedah yang dicadangkan dapat 

meningkatkan kecekapan dan keberkesanan operasi mencari dan menyelamat. 

Kata kunci: Kenderaan udara tanpa pemandu, pembelajaran mendalam, 

pembelajaran pemindahan, TensorFlow, kuantisasi. 

© 2024 Penerbit UTM Press. All rights reserved 
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1.0 INTRODUCTION 
 

A search and rescue (SAR) operation is the process of 

finding and helping those who are in need or in 

immediate danger [1]. The frequent occurrence of 

floods in around the world caused by heavy rainfall, 

rapid snowmelt, or storm surges, has resulted in 

significant loss of life, property damage, and 

environmental impact. While conventional rescue 

plans involve the deployment of helicopters and 

inflatable boats, the technology of IoT and drones have 

been introduced as alternatives [2]. However, these 

techniques have many challenges, including the 

dependence on internet connectivity at all times, high 

latency, and the need to analyze footage using 

machine learning algorithms either on a high-

computational power or cloud computing.  

To address these challenges, embedded AI, a 

subfield of AI, has emerged, which uses machine 

learning and deep learning on devices such as 

microcontrollers, enabling the development of self-

reliant applications [3]. The use of TensorFlow and 

TinyML, which can compress deep learning networks 

into microcontrollers, has enabled the development of 

a self-reliance system to detect humans stranded in 

flooded areas without the need for internet 

connectivity or high-computational power, embedded 

AI devices come in various forms, such as 

microcontrollers, single-board computers, and system-

on-chip (SoC) devices. They are typically small in size, 

low in power consumption, and have limited resources 

such as memory and processing power. However, the 

recent advancements in technology have made it 

possible to run sophisticated machine learning models 

on these devices using techniques such as quantization 

and pruning, which enable the compression of large 

deep learning models into smaller sizes that can be 

deployed on these embedded devices [4]. Embedded 

AI refers to the use of artificial intelligence technology 

in IoT-edge devices that process data locally, rather 

than relying on cloud-based processing. Traditionally, 

machine learning models required complex hardware 

chips and graphics processing units (GPUs) to perform 

computations. However, a new type of machine 

learning called TinyML has emerged, which shifts the 

processing to the embedded device[5]. This is due to 

the increasing demand for low power and low latency 

processing, making it more efficient to perform 

computations locally instead of relying on cloud-based 

processing [6]. Embedded AI can be applied to 

devices such as microcontrollers via software without 

requiring huge computing ability, such as for disaster 

response drones. TinyML is a collection of architectures, 

frameworks, tools, and approaches that are used to 

analyze sensor data on devices while using milliwatt-

scale amounts of electricity, it requires a compressed 

type of framework to enable deep learning models to 

run on-chip [7]. The most popular framework is 

TensorFlow Lite (TFL) developed by Google[8]. The 

development of computer vision (CV) using deep 

learning (DL) techniques has faced challenges in the 

early stages due to restrictions in computer memory, 

CPU, and GPU. Therefore, many researchers are 

exploring the use of machine learning in CV. Various CV 

approaches have been proposed, such as K-means, K-

Nearest Neighbor (KNN), and Support Vector Machine 

(SVM) [9]. In terms of algorithms and architecture, the 

advancement of DL has been rapid over the past few 

decades, and it can be broadly categorized into 

groups, including Convolutional Neural Networks, Long 

Short-Term Memory Networks, and Autoencoder 

moreover, There has been an increase in the 

development of CV technology mainly on the 

conventional neural network’s architecture [10]–[12]. 

Object detection aims to locate a collection of 

target items in an image. The detection problem 

consists of two parts: classifying the target's category 

and determining its specific location using bounding 

boxes with labels [13]. Two main approaches are 

currently used: one-stage approaches such as SSD and 

YOLO, and two-stage approaches such as the R-CNN 

series. In two-stage approaches, a sparse set of 

bounding boxes is created in the first stage, and 

detection results are enhanced based on the bounding 

box region. In contrast, single-stage methods directly 

calculate the image and produce detection results. 

Although single-stage detection is faster, its accuracy is 

lower compared to two-stage approaches [14]. Single-

shot Detector (SSD) is an object detection method 

introduced by Liu in 2016. Unlike other methods that 

create bounding boxes, SSD processes six feature 

maps, where each map generates anchor boxes of 

different length on the input. SSD uses feature maps of 

different resolutions to handle objects of varying 

sizes[15]. 

In previous studies,[16] developed a classification 

model based on aerial images to yield if there is a 

person in the input image but without localizing the 

person in the image used HERIDAL dataset in their 

studies which contains aerial images of humans only in 

wild forest environment using Faster RCNN, their work 

result to overall precision of 34.8%-90.2% and 67.3%-

94.66% recall. However,[17] used EfficientDet deep 

neural network and achieved 93.29% mAP. The 

mentioned studies infer their models using ground-

based computing due to the high computational 

requirement.  

Thus, the problem statement is the need for a low-

power and cost-effective automated system that can 

efficiently analyze and plan disaster rescue operations, 

without the limitations of conventional rescue plans or 

IoT and high-power equipment technology. 

This paper aims to compare pre-trained models and 

utilize transfer learning and quantization to produce a 

reliable model to detect humans in search and rescue 

operations in various environments for an edge 

computing base. 
 

 

2.0 METHODOLOGY 
 

Recent advancements in Artificial Intelligence have 

made it possible to develop a self-reliant system that 



189                                                Ahmed et al. / Jurnal Teknologi (Sciences & Engineering) 86:3 (2024) 187-194 

 

 

can detect humans without relying on external 

connections for image processing using TinyML. The 

objective of the paper is to develop a deep learning 

model using transfer learning to detect humans in SAR 

operations from drone imagery and deploy it to an 

embedded AI device for on-chip inference while 

attached to a drone. The methodology for achieving 

this system includes data extraction, model 

development, parameter tuning, quantization, and 

validation. Based on the design specification stated in 

Table 1 The proposed methodology begins with 

extracting aerial images of humans from the Search 

and Rescue Detection (SARD) and SeaDroneSee 

datasets [18], [19] which are publicly available to 

overcome the limitation of a single-environment base 

system. Furthermore, the models are trained on the 

labeled data by using TensorFlow v2, with the use of 

Roboflow and The Google Colaboratory platforms for 

labelling and training respectfully due to their 

computational capacity[20]. After training and tuning 

the parameters, the model is quantized and ready for 

deployment to an edge device attached to a drone. 

Figure 1 demonstrates the workflow diagram of the 

proposed methodology. 

The flowchart of this work is demonstrated in Figure 2 

starting with acquiring the data from the mentioned 

dataset and clean them to simulate the quality and size 

of footage taken from Embedded device to train the 

model on the same data that it inferences after 

deployment, then in the processing stage the dataset is 

split into training and evaluation sets with a ratio of 

80:20. However, the training set is augmented. The 

TensorFlow API and the pre-trained models namely 

MobileNet v2 and EfficientDet are cloned from 

TensorFlow V2 model zoo repository in GitHub that 

belongs to Google [21]. Moreover, the models are 

configured based on the dataset. After that the training 

and evaluating stage comes in place to achieve the 

desired accuracy the hyperparameters are tuned after 

a few attempts to learning rate at 1e-6, batch size of 16 

and ‘adam’ as the optimizer. Lastly the validation 

followed by the quantization of the model.  

The deep learning models utilized in this paper are 

chosen for their small size, making them compatible 

with edge devices. Both models include a feature 

pyramid network, which is a feature extractor that 

generates a feature map of different scales of the 

object of interest, which in this case is human[22], [23]. 

In the pre-processing stage new annotation is made for 

all images as “human” and the dataset is cleaned 

because of the original images of the previously 

mentioned datasets were taken from different altitude 

of a drone therefore the humans size greatly differ in the 

images also the original annotation such as “seated”, 

“laying down”, “walking”, “swimmer” and “boats” also 

the images are resized to 640x640 to fit well with the pre-

trained models’ architectures design where their input 

as 640x640 input image also to fit the inference’s 

resolution of an embedded device  . Therefore, the 

dataset used in this study is made of 800 aerial images 

of humans in open sea water and wild forest then label 

the dataset using annotation tools and generating 

TensorFlow record files. Figure 3 shows a sample of 

annotated images used in this paper. Low-altitude 

aerial images of humans have significant limitations, 

and to overcome this issue and generate more training 

data, mosaic augmentation is applied to the training 

set as Figure 4 demonstrates a sample of the 

augmentation.     

 

 
Table 1 Design Specification 

 

No. Parameters Specification 

1 Accuracy (mAP@0.5) >90% 

2 Inference threshold (IoU) 0.5 

3 Programming language  Python 

4 Framework TensorFlow 

5 

6 

Model size (MB) 

Image size  

<5 

640x640 

   

  

 
 

Figure 1 Workflow of the proposed method 

 
Figure 2 Flowchart of this study  
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The evaluation stage is divided into four pats which 

are with and without augmentation to compare the 

models and the augmentation improvement, the 

most crucial metrics in object detection are mean 

average precision (mAP) and intersection over union 

(IoU) [24], therefore COCO evaluation metrics is used 

to evaluate the human detection models in this study. 

For the validation stage, new different images of 

various environments are chosen as shown in Figure 5 

to do the inference to validate the models. Lastly, the 

MobileNet v2 model is optimized and quantized using 

post-training full integer quantization to compress the 

size of the model to be suitable for microcontrollers, full 

integer quantization converts 32-bit floating-point 

numbers to 8-bit fixed-point numbers which results in 

smaller model size, this type of quantization requires 

representative dataset for the TensorFlow lite 

framework [25], [26]. Therefore, in this case 150 images 

are used to represent the total dataset. 

 

 

3.0 RESULTS AND DISCUSSION 
 

Evaluation for MobileNet v2 shows in Figure 6 that the 

classification error is still acceptable at around 0.45 

caused by the model not being 100% confident that 

the detected object is "human". The mean average 

precision at IoU threshold at 0.5 is around 95.5% and 

67.6% overall shown in Figure 7. 

Figure 7 shows the detection precision graphs for 

small, medium, and large humans in the images along 

the way with IoU@0.5 and IoU@0.75. it shows that the 

model is great at detecting humans when the 

bounding box is close, and the human is clear in the 

image however with small bounding boxes where 

humans are far from the camera is at around 50% 

detection precision. 

Table 2 provides a comparison of MobileNet v2 

with and without mosaic augmentation, it is noticed 

that the mosaic augmentation has improved the 

model overall accuracy by 17%. Figure 8 and Figure 9 

show evaluation sample of MobileNet v2 for different 

environments and different altitudes and compare 

them to the ground truth where the ground-truth label 

is on the (right), and the model detection is on the 

(left).  a low altitude image, however the higher the 

 
 

Figure 3 Annotation sample of SARD dataset (top) and 

SeaDronesee (bottom) 
 

 
 

Figure 4 A sample of mosaic augmented image 

 

 
 

Figure 5 Validation images 

 

 

 
 

Figure 6 MobileNet Loss graph of training (blue) verse 

evaluation (orange) 
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The model classifies and detects very well with altitude 

the less accuracy the model detects. This is due to the 

model being unable to create a feature map of the 

object, but it is still detecting most the human even at 

high altitude. 

The evaluation of EfficientDet demonstrated in 

Figure 10 shows the graph of losses, where the total loss 

is the combination of classification loss and detection 

loss, where the orange color represents the training 

loss, and the blue color represents the evaluation loss. 

The classification loss has decreased to 0.3 compared 

to MobileNet V2 and the detection loss stays at 0.1 

which are resulting in a lower total loss of 0.6. 

EfficientDet shows greater performance but longer 

training time. 

Figure 11 shows that the mean average has 

improved significantly, most importantly mAP for small 

bounding boxes at around 0.56 compared to 

MobileNet v2 which is 0.52. Overall, the precision has 

increased by 3% to 70% compared to MobileNet v2 

and the mAP@0.5 at 97.3%. 

Table 3 shows a comparison between without 

augmentation and augmented dataset using 

EfficientDet, a huge increase in the mean average 

precision when using mosaic augmentation to around 

97.3% at IoU threshold 0.5.  

The model is more confident in classifying the 

detected human, however, struggles to detect some 

far humans in the images due to the object or the 

human in this case is very far from the sensor (camera). 

Figures 12 and 13 are result examples of two different 

environments and altitudes. At this stage, both models 

were validated using four aerial images of humans. 

Figure 14 shows a comparison between both models 

where the left side is using MobileNet V2 and the right 

side using EfficientDet, it is summed up the EfficientDet 

Table 2 MobileNet v2 Evaluation 

 

Metric Non-Augmented Mosaic-Augmented  

AP IoU@0.5:0.95  50.1% 67.6% 

AP IoU@0.5 86.5% 95.5% 

AP IoU@0.75 49.2% 74.5% 

AR IoU@0.5:0.95 60.8% 73.9% 

 

 
 

Figure 7 Mean average precision of MobileNet v2 

 

 
 

Figure 8 A sample evaluation of high altitude for MobileNet 

v2 

 

 
 

Figure 9 A sample evaluation of low altitude for 

MobileNet v2 

 

 
 

Figure 10 EfficientDet Loss graph of training (blue) verse 

evaluation (orange) 
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shows better performance however it takes a longer 

time to train with the same dataset and the same 

number of epochs. 

In Table 4, MobileNet and EfficientDet is compared, 

the later clearly yields a higher accuracy however 

taking GPU usage and training time into 

consideration, MobileNet is more suitable for this study 

therefore the model is further optimized and 

quantized then converted to TensorFlow lite format. 

To fit the model into an edge device it needs to be 

quantized which means optimizing and compressing 

Table 3 EfficientDet Evaluation 

 

Metric Non-Augmented Mosaic-Augmented  

AP IoU@0.5:0.95  53.3% 70% 

AP IoU@0.5 87.5% 97.3% 

AP IoU@0.75 56.1% 79.5% 

AR IoU@0.5:0.95 62.3% 75.9% 

 

 
 

Figure 11 Mean average precision of EfficientDet 

 

 
 

Figure 12 A sample evaluation of high altitude for EfficientDet 

 

 

Table 4 Models Comparison 

 

Metric MobileNet v2 EfficientDet 

Size (MB) 25.5 (4.15 Quantized) 26.5 

GPU usage (GB) 4.62 9.3 

mAP 67.6% 70% 

mAP@0.5 95.5% 97.3% 

 

 
 

Figure 13 A sample evaluation of low altitude for EfficientDet 

 

 
 

Figure 14 Validation comparison between MobileNet v2 (left) 

and EfficientDet (right) 
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the model to fit into microcontroller devices such as 

ESP32-CAM, ESP-EYE, and OpenMV.  

 

 

4.0 CONCLUSION 
 

There were some difficulties in gathering the data 

given that not all the necessary imagery were readily 

available in the public domain. Additionally, 

EfficientDet displays superior performance but uses a 

lot of processing resources when training. Finally, 

MobileNet v2 has been quantized, which has 

decreased the size of the model with a minimum loss 

in accuracy. Both models generate great accuracy 

when using mosaic augmentation, achieving more 

than 95% mAP@0.5. Both models were compared and 

validated using transfer learning. A potential use for 

creating AI-enabled drones for human search and 

rescue operations has been made possible by this 

study. 
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