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ESTIMATION OF THE WHEEL-RAIL CONTACT PARAMETERS
FOR A CONICAL SOLID-AXLE RAILWAY WHEELSET USING

LINEAR INTEGRAL FILTER METHOD

HAZLINA SELAMAT1, RUBIYAH YUSOF2 & ROGER M. GOODALL3

Abstract. This paper addresses the specific problem of estimating the ‘conicity’ and ‘creep
coefficients’ values of a conical railway wheelset, which vary significantly as the vehicle runs along
straight tracks with lateral irregularities. The performances of the continuous-time (C-T) least-squares
error (LSE), least-absolute error (LAE) and least-absolute error with variable forgetting factor
(LAE+VFF) estimators that employ the linear integral filter (LIF) method are compared. Each
estimator was designed based on the fifth order model of a single solid-axle wheelset suspended to
ground via lateral springs and dampers connected in parallel. For each simulation, the LAE + VFF
estimator performed the best because the algorithm combines the least-absolute error identification
that has an instrumental variable element to overcome estimation bias problem and the variable
forgetting factor for fast tracking and smooth steady-state estimation. The estimator was then directly
applied to a 14th-order two-axle railway vehicle system where two separate fifth order wheelset
model estimators were used to estimate the front and rear wheelsets parameters independently.
Since the vehicle body of the two-axle vehicle was effectively decoupled from its wheelsets, the
LAE + VFF estimator produced similar estimated front and rear wheelset parameters values, and
hence simplifying the estimation process of the more complex 2-axle railway vehicle model.

Keywords: Solid-axle; conical wheelset; continuous-time estimation; linear integral filter; least-
absolute error; variable forgetting factor

Abstrak. Kertas kerja ini membincangkan penganggaran nilai ‘conicity’ dan ‘creep coefficient’
bagi set roda kereta api berbentuk kon yang mengalami perubahan nilai yang signifikan apabila
bergerak di atas landasan lurus yang mempunyai ketaksekataan sisian. Perbandingan prestasi
penganggar least-squares error (LSE), least-absolute error (LAE) dan least-absolute error with variable
forgetting factor (LAE+VFF) masa selanjar (C-T) dibuat. Setiap penganggar direka bentuk
berdasarkan model tertib ke-5 roda kereta api yang disambung ke bumi melalui spring dan peredam
sisi. Bagi setiap simulasi, penganggar LAE+VFF memberi prestasi terbaik kerana algoritma ini
menggabungkan penganggar least-absolute error yang mempunyai elemen instrumental variable
(IV) bagi menyelesaikan masalah bias dalam penganggaran dan variable forgetting factor yang
menghasilkan penganggaran dengan penjejakan cepat dan keadaan mantap yang lebih licin.
Penganggar ini kemudiannya digunakan terus pada setiap roda sistem kereta api dua gandar
bertertib 14. Memandangkan gerabak kereta api ini secara efektifnya boleh dikatakan tidak

1 Electrical Eng. Faculty, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Malaysia
Email: hazlina@fke.utm.my

2 Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur, Malaysia
Email: rubiyah@citycampus.utm.my

3 Electrical & Electronics Eng. Dpt., Loughborough University, Leicestershire LE11 3TU, United
Kingdom
Email: r.m.goodall@lboro.ac.uk



HAZLINA SELAMAT, RUBIYAH YUSOF & ROGER M. GOODALL28

terganding dengan set roda, penganggar LAE+VFF menghasilkan nilai anggaran yang hampir
sama bagi kedua-dua set roda hadapan dan belakang. Ini membolehkan proses penganggaran
parameter set roda bagi model kereta api dua gandar yang lebih kompleks dipermudahkan.

Kata kunci: Bergandar pejal; roda berbentuk kon; penganggaran masa selanjar; penapis terkamir
linear; ralat mutlak terkecil; faktor lupaan boleh ubah

1.0 INTRODUCTION

Solid-axle wheelset is the most commonly used wheelset on railway vehicles. It
consists of two wheels rigidly connected on an axle. The shape of the wheel treads
are conical (or otherwise profiled) to allow the wheelset to travel round curves
naturally. However, when unconstrained, this type of wheelset suffers from dynamic
instability at any speed greater than zero [1]. Furthermore, some of the parameters
of the wheelset, namely the ‘conicity’ (λ) and ‘creep coefficients’ ( f11 and f22), are
time-varying and their values depend on the wheel-rail profile at the contact point
[2]. All of these cause difficulties in the design of the railway vehicle primary suspension
system [3].

The wheelset instability can be dealt with using longitudinal spring connections
between the wheelset and the bogie/vehicle body, but this interferes with the wheelset’s
natural curving action. In many research, active control is employed to overcome
this design trade-off problem where the springs and dampers of the primary suspension
system are replaced or used together with control actuators and other electronic
components. Nevertheless, active control with fixed-gain feedback controller may
not give satisfactory stability and curving performance when the vehicle is subject to
varying λ, f11, and f22 values. Therefore, these parameters must be estimated so that
the feedback controller is designed based on the estimated current values of the
wheelset parameters, providing better control.

Since the dynamics of the railway wheelset/vehicle systems are usually described
in continuous-time (C-T) model and there are various problems associated with
estimating C-T systems in discrete-time (D-T) [4], linear integral filter (LIF) approach
[5] is employed in the parameter estimation process presented in this paper. This
is because it allows the estimation of C-T system in D-T without involving any
conversion of the system model from C-T to D-T, and vice versa. Moreover, it does
not suffer from initial condition problems such as that experienced by, for instance,
the algebraic reformulation of transfer function method [6] and numerical integration
approach [7].

This paper addresses the specific problem of estimating the wheel-rail contact
parameters, which vary significantly as the vehicle runs along straight tracks with
lateral irregularities. For this purpose, a self-tuning controller was used in the primary
suspension control loop, with the objective of minimizing the wheelset lateral
displacement from the track centreline and its yaw angle. The performances of three
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parameter estimation algorithms employing the LIF approach, used to estimate the
conicity and creep coefficient values, are compared. They are the C-T least-squares
error (LSE), least-absolute error (LAE) and least-absolute error with variable forgetting
factor (LAE+VFF) estimators.

2.0 WHEELSET PARAMETER ESTIMATION

In this paper, only the wheelset with purely coned wheel treads is looked at although
in practice, the coned tread has a nonlinear profile with the tread running progressively
into the flange. To estimate the time-varying conicity (λ) and creep coefficients ( f11,
f22) values of the conical wheelset, two solid-axle wheelset models were considered:
a single solid-axle wheelset suspended to ground via lateral springs and dampers,
called Model 1 (Figure 1), and wheelsets on a two-axle railway vehicle system, called
Model 2 (Figure 2).
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Figure 2 Model 2 – wheelsets on two-axle railway vehicle
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‘Conicity’ is a term related to the coning of wheel treads and for a pure coned
wheelset, its value is equivalent to the coned angle of the tread. ‘Creep coefficient’ is
a term that relates a tangential force acting in a wheel-rail contact patch (known as
creep force), with the creepage/creep. It is nonlinearly dependent on the normal
force between the wheel and the rail, and the value of this force is changing especially
during curving. Other factors such as surface contamination, varying surface condition
and railhead shapes can also cause the creep coefficient and conicity values to change.
For the wheelset used in the simulation work, it was assumed that all the creep
coefficients have the same value and so wheelfff == 2211 was taken. Figure 3 shows
the two different variations of λ and fwheel values of the conical wheelset used in this
paper. Figure 3(a) could represent a wheelset travelling on a piece of railway track to
another (possibly new) piece of track, which caused changes in the wheels and track
profiles, and hence in the conicity and creep coefficient values. On the other hand,
Figure 3(b) represents slowly but continuously varying contact parameter values to
simulate, for instance, worn wheels and rail.

The equation of motion of Model 1 and Model 2 are given by Equations (1a–1b)
and (2a–2f), respectively [8]. All symbols and typical parameters used are given in
the Appendix.

Figure 3 Time-varying fwheel and conicity: (a) Variation A (b) Variation B
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Rotary actuators were used to replace the longitudinal spring connections and to
provide yaw torque for controlling the wheelset. The type of controller used was a
self-tuning linear-quadratic regulator (S-T LQR) that used the estimated λ, f11 and
f22 values in the calculation of its feedback gain matrix.

The wheelset/vehicle were considered to be travelling at 83 m/s (approximately
300 km/h) on straight track with lateral irregularities. The velocity of the random
track irregularities has a power spectral density (p.s.d) given by Equation 3 [8].
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2.1 Linear Integral Filter (LIF) Method

The LIF is a method to estimate continuous-time (C-T) system models without
converting the models from continuous- to discrete-time (D-T) or vice versa. The C-
T model described by Equation 4 is considered where p is the differential operator,
d
dt

, and η is the system disturbance.

( ) ( )

( ) ( ) ( )η

− −
− −

− −
− −

+ + + +

= + + + + +

1 2
1 2 0

1 2
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Equation 4 can also be expressed in a regression model form given by Equation 5.
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where ( ) ( ) ( ) ( )
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= =

To estimate the parameters contained in θ, derivatives of the possibly noisy input
and output signals are needed. To avoid accentuating the noise when differentiating
these signals, the dynamical system described by differential equations has to be
converted into a system described by algebraic equations [4]. This approach is also
known as ‘linear dynamic (LD) operation’ [9]. In this approach, input and output
signals are passed through the linear dynamic operator and the sampled signals of
the operator’s output can be used directly in the estimation algorithm for discrete-
time systems. LIF is one of the manifestations of the LD operation.

To apply the LIF, the derivatives of the signals in Equation (5) are first replaced
with the integral of the signals by introducing a finite horizon nth-order integration
operator, Γn. Then, multiple integrations over the time interval [t-lfTs , t) are performed
on both sides of Equation 5 to give Equation 6. Ts is the sampling period and lf is
called the length factor of the LIF.
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The C-T multiple integrals in ϕΓ
T(t) in Equation (6) are then replaced with their

D-T equivalent using normal method of numerical integration utilizing spline-based
interpolation of sampled input and output data [5] by means of operator polynomial,
Ji

n(q–1), where for the multiple integral of any C-T signal, x(t),
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Replacing the time index kTs in Equation (7) with k only, the discrete-time regression
model can be written as
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Finally, the three C-T parameter estimators (LSE, LAE and LAE+VFF) are
discretised using rectangular approximation method where the minimization criteria
for the methods are given below:
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Table 1 gives the summary of the estimation algorithms, where subscript k
represents the discrete-time index. εmin in both the LAE and LAE+VFF algorithms is
a threshold value used to maintain the values of previous �θ  and P when the current
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Table 1 Summary of LSE, LAE & LAE+VFF estimators

LSE LAE LAE+VFF
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generated errors are sufficiently small, whereas κ in the LAE+VFF algorithm is a
design variable that balances the tracking rate and steady-state smoothness of the
parameter estimates. It is also worth noticing that the discretised LAE estimator has
a similar recursive representation as in the D-T framework of instrumental variable
(IV) estimation scheme known from discrete-time identification literature (e.g. [10]).
Also, the variable forgetting factor, γ, provides faster parameter tracking and smooth

steady – state of the estimates by producing time-varying gain matrix, 
1

1

k
T

k k k

P

kPγ ϕ ξ
−

Γ −+ .

2.2 Parameter Estimator Design

The design of the C-T parameter estimator was based initially on Model 1, using the
wheelset’s yaw rate, ψ� , and the control torque input, u, as the inputs to the parameter
estimator. With ψ�  taken as the measured system output, the transfer function of
Model 1 is given by
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Equation 9 was then rearranged into a regression model form (Equation 8) for the
purpose of estimating parameters using LIF.

( ) ( ) ( )Ty k k kϕ θΓ Γ= + estimation error (10)

where,
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The coefficients of the system’s transfer function (a4 to b2) in θ above were estimated.
The estimates of f11, f22 and λ, i.e. l11f , l22f , �λ  were then calculated from any
suitable combinations of these estimated coefficients.
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The pair {
1

300s
s

f
T

= = Hz, lf = 3} was chosen as it gives the LIF a frequency

response that lies almost exactly between the least stable (with f11 = f22 = 5 MN,
λ = 0.05) and the most stable (with f11 = f22 = 10 MN, λ = 0.5) wheelset system’s
frequency bands.

Two separate estimators, which were identical to that used for Model 1, were
used to estimate the front and rear wheelsets parameters of Model 2 independently.
Each estimator assumed the estimation of a 5th order transfer function model of the
wheelset (Model 1). Therefore, instead of estimating a 14th order model of the two-
axle vehicle, two 5th order wheelset models were considered. This simplified the
parameter estimation process, but still provided satisfactory results because of the
low vehicle body’s natural frequencies compared to the wheelset’s kinematic
frequencies i.e the body is effectively decoupled from the wheelsets. The input
signals to the front and rear wheelset estimators were ( ) ( ){ },F Ft u tψ� and

( ) ( ){ },R Rt u tψ�  respectively. The estimated parameters were supplied to the LQR
design algorithm to calculate the controller feedback gain for the two-axle vehicle
model.

2.3 Self-Tuning Linear Quadratic Regulator (S-T LQR)

The railway wheelset and vehicle systems given by Equations 1 and 2 were arranged

in a state space form (Equation 11) so that for Model 1, [ ]ψ ψ= − �� T
t tx y y y y , and

for Model 2,  [ ]2 2 2
T

F R B tF tRx x x x y y= with ( )2F F F tF F Fx y y y ψ ψ= =  �� ,

( )ψ ψ= −  ��2R R R tR R Rx y y y  and ψ ψ+  = −    
��2

2
tF tR

B B B B B
y y

x y y .

( ) l ( ) ( ) l ( ) ( )x t A t x t B t u t= +� (11)

lA and lB  are the estimated system and input matrices respectively, obtained from
Equations 1 and 2 with state vectors as defined above. The estimated values of the
creep coefficients and conicity produced by the parameter estimator were used in
lA and lB .

The parameter estimation module employing the parameter estimation algorithms
described previously provides the LQR design algorithm, which is a type of optimal
controller, with the estimated λ, f11 and f22 values. The objective of the LQR was to
minimize the lateral deflection of the railway wheelset relative to the track centreline
and its yaw angle. Therefore the control law was chosen such that it minimized the
following cost function
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( ) ( ) ( ) ( )( )
0

T T
LQ LQ LQ LQ LQJ y t Qy t u t Ru t dt

∞

= +∫ (12)

where [ ]TLQ ty y y ψ= −  for a Model 1, or [ ]TLQ F tF F R tR Ry y y y yψ ψ= − −  for

Model 2. Q and R are weighting matrices, which have been chosen as follows so that
they result in the contribution of each controlled state being roughly equal and
satisfactory overall control performance.

Model 1: Q = diag (5, 10), R = 1 × 10–12

Model 2: Q = diag (5, 10, 5, 10), R = diag (1 × 10–12, 1 × 10–12)

The control law is given by Equations (13) and (14),

( ) ( ) ( )u t K t x t= − (13)

( ) l ( ) ( )1 T
rK t R B t P t−= − (14)

where K(t) is the feedback gain matrix and Pr(t) is obtained by solving the Ricatti
equation given in Equation (15).

( ) ( )l ( ) l ( ) ( ) ( )l ( ) l ( ) ( )−= − − − +� 1T T
r r r r rP t P t A t A t P t Q P t B t R B t P t (15)

3.0 RESULTS & DISCUSSIONS

To assess the performance of each of the parameter estimators used in the simulation
work, the following parameters are defined (N is the total number of samples used
in the estimation process and ρ is either fwheel or λ):

(i) Mean absolute percentage error (MAPE) [11] of ρ�  for the jth test run,

ρ ρ
ρ

ρ=

 −
Λ = × 

 
∑

�
�

1

1
 of 100%th

N
i i

j
iiN

(ii) Average MAPE of ρ�  for m test runs made for each test condition and in
this paper, m = 10.

( ) ( )ρ ρ
=

= Λ∑� �
1

1
 of %  of th

m

m j
j

E
N

Firstly, the C-T LSE was used to work out the parameters for the LIF. These
parameters were then used in the LAE and LAE+VFF algorithms. The effects of
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using different values of lf and fs for the C-T LSE estimator are given in Table 2.
Note that p = (n × lf) + 1 is the maximum LIF filter order required. Here, n = system
model order of Model 1= 5.

From Table 2, the pair {fs = 300 Hz, lf = 1} gave the worst estimation. lf = 6 gave
the best estimation but since p that it required was almost twice that of lf = 3 and the
difference in the E10 ‘s were not much, lf = 3 can be considered to be the better
choice. Also, too small fs (e.g. 100 Hz) would prevent the important data from being
included in the estimation process whereas too high fs (e.g. 500 Hz) would include
too much high frequencies effect such as the measurement/sensor noise, giving less
accurate estimation. Therefore, the combination of fs = 300 Hz and lf = 3 were used
throughout this paper.

Table 3 Effect of εmin for LAE on estimates

εεεεεmin = 0.8 εεεεεmin = 0.08 εεεεεmin = 0.008

E10 of f
^
wheel(%) Variation A 14.24 3.92 23.39

Variation B 11.22 10.24 14.49

E10 of λ^(%) Variation A 33.119 16.30 85.62

Variation B 29.97 23.10 75.39

Table 2 Effects of lf and fs on parameter estimates

fffffsssss = 300 Hz lf = 3

lf fs (Hz)

1(p = 6) 3(p = 16) 6(p = 31) 100 300 500

E10 of f
^
wheel(%) Var. A 16.97 13.54 13.63 15.61 13.54 24.61

Var. B 13.85 10.98 6.35 20.33 10.98 16.77

E10 of λ^(%) Var. A 48.04 20.24 19.68 28.02 20.24 36.37

Var. B 31.22 27.41 17.04 23.23 27.41 32.61

For the LAE estimator, Table 3 gives the effect that different εmin values of the
LAE algorithm had on the estimates. It shows that the choice of εmin is quite crucial.
Unsuitable values gave extremely inaccurate estimation results. It turned out that the
εmin value should be closer to the average a priori prediction estimation error, obtained
by first running the estimator with known and fixed system parameters.

Finally, the performances of all the three estimators are compared in Figures 4
and 5, which show that for Model 1, the LAE estimator gave better parameter
tracking and less estimation bias than the LSE estimator. This is as a result of having
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Figure 4 Comparing the performances of LSE, LAE and LAE + VFF methods – straight track,
Variation A

Estimation using LSE, LAE & LAE + VFF method (Variation A)
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Estimation using LSE, LAE & LAE + VFF method (Variation B)
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Figure 5 Comparing the performances of LSE, LAE and LAE + VFF methods – straight track,
Variation B
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the IV-like element inherent in the algorithm to reduce estimation bias. However,
these are further improved when the variable forgetting factor was include in the
LAE+VFF estimator. Detailed comparisons are given by Table 4, which again shows
that the LAE+VFF estimator was the best of the three and was then used in the
estimation of wheelset parameters of Model 2.

Since the estimation results for Variation A and Variation B shown in Table 4 are
quite close, only Variation A was considered for the parameter estimation of

Estimation for FRONT wheelset parameters (Variation A)
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Table 4 LSE, LAE and LAE + VFF methods performances

LSE LAE LAE + VFF
µ = 0.99 εmin = 0.02 εmin = 0.08

µ = 0.99 κ = 0.08
µ1 = 0.8,
µ2 = 0.99

Var. A f
^
wheel E10 (%) 13.54 03.92 04.90

Steady-state error (%) 08.53 07.65 07.35

λ^ E10 (%) 20.24 16.30 12.31

Steady-state error (%) 05.48 10.88 03.64

Var. B f
^
wheel E10 (%) 10.98 10.24 03.84

λ^ E10 (%) 27.41 23.10 16.78
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Table 5 Em produced by the same LAE + VFF estimator used on Models 1 and 2

On straight track On curved track

f
^
wheel E10 (%) 04.90 04.80

Steady-state error (%) 07.35 07.29

λ^ E10 (%) 12.31 12.24

Steady-state error (%) 03.64 03.42

Figure 6 Comparing parameter estimates of Model 1 and the wheelsets of Model 2

Estimation for REAR wheelset parameters (Variation A)
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Model 2. The same LAE + VFF parameter estimator designed for Model 1 was
applied to each of the two wheelsets on the two-axle railway vehicle (Model 2), and
Figure 6 and Table 5 show that the estimator designed based on Model 1 can be
directly used on Model 2 to give similar estimation results.

4.0 CONCLUSIONS

In estimating the time-varying wheelset conicity and creep coefficient values, the LIF
approach was adopted to avoid problems of estimating continuous-time system
parameters in discrete-time, and without suffering from initial condition problem.
The effectiveness of three different parameter estimation algorithms utilising the LIF
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technique were compared. They were the C-T LSE, LAE and LAE + VFF methods.
Each estimator was designed based on the fifth order model of a single conical solid-
axle wheelset suspended to ground via lateral springs and dampers connected in
parallel. For this wheelset system travelling on a straight track with lateral irregularities,
the LAE + VFF estimator performed the best. This is because the LAE + VFF
algorithm combines the continuous-time least-absolute error identification that has
an IV element to overcome the estimation bias problem and the variable forgetting
factor method for fast tracking and smooth steady-state estimation. The LAE+VFF
estimator was then directly applied to a two-axle railway vehicle system where two
separate fifth order wheelset model estimators were used to estimate the front and
rear wheelsets parameters independently. Since the vehicle body of the two-axle
vehicle was effectively decoupled from its wheelsets, the LAE + VFF estimator
produced similar estimated front and rear wheelset parameters values, and hence
simplifying the estimation process of the higher order 2-axle railway vehicle model.
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APPENDIX

Symbol Parameter

y, ψ Lateral displacement and yaw angle of the solid-axle wheelset,
respectively

u Control input signal
yF, yR, yB Lateral displacement of front (leading), rear (trailing) wheelset and

vehicle body
ψF, ψR, ψB Yaw displacement front (leading), rear (trailing) wheelset and vehicle

body
v Vehicle travel speed
m, I Wheelset mass (1250 kg) and yaw inertia (700 kg m2)
l, lB Half gauge of wheelset (0.7 m) and half space of the vehicle body

(4.5 m)
ro, λ Wheel radius (0.45 m) and conicity
mB, IB Vehicle mass (30 000 kg) and yaw inertia (558 800 kg m2)
Kl, Cl Lateral stiffness (200 kN/m) and damping (50 kN s/m) per wheelset
f11, f22 Longitudinal and lateral creep coefficients
RF, RR Radius of the curved track at the front (leading) and rear (trailing)

wheelsets
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θcF, θcR Cant angle of the curved track at the front (leading) and rear (trailing)
wheelsets

ytF, ytR Track lateral displacement (irregularities) at the front (leading) and
rear (trailing) wheelsets

uF, uR Controlled torque input for the front (leading) and rear (trailing)
wheelsets

g Gravity (9.8 m/s2)
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