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Abstract 
 

Diagonally implicit multistage integration methods (DIMSIMs) are widely utilized in finding the solution to any problems in the 

subject of ordinary differential equations. These methods are selected from the general linear methods, which is considerable 

potential for efficient implementations. The extrapolation is derived from the stability of the explicit Runge-Kutta methods. In 

this paper, the combination of DIMSIMs with Richardson extrapolation of different orders shows that numerical solutions give 

higher accuracy when the extrapolation is applied with the base method. 
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Abstrak 
 

Kaedah penyepaduan berbilang peringkat tersirat (DIMSIMs) digunakan secara meluas untuk mencari penyelesaian bagi 

sebarang masalah dalam subjek persamaan pembezaan biasa. Kaedah ini dipilih daripada kaedah linear umum, yang 

berpotensi besar untuk pelaksanaan yang cekap. Ekstrapolasi diperoleh daripada kestabilan kaedah Runge-Kutta yang 

eksplisit. Dalam makalah ini, gabungan DIMSIM dengan ekstrapolasi Richardson bagi susunan yang berbeza menunjukkan 

bahawa penyelesaian berangka memberikan ketepatan yang lebih tinggi apabila ekstrapolasi digunakan dengan kaedah 

asas. 

 

Kata kunci: Kaedah penyepaduan berbilang peringkat tersirat secara menyerong, Kaedah linear am, Ekstrapolasi aktif 
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1.0 INTRODUCTION 
 

Consider the initial value problem given by 

 

𝑦′(𝑥) = 𝑓(𝑦(𝑥)), 𝑥 ∈ [𝑥0, 𝑋] 

𝑦(𝑥0) = 𝑦0 ∈ ℝ𝑚 ,                             
                                                                                                               (1) 
 

on the uniform grid point 

 
𝑥𝑛 = 𝑥0 + 𝑛ℎ, 𝑛 = 0,1, … , 𝑁, 𝑁ℎ = 𝑋 − 𝑥0 

 

Diagonally implicit multistage integration methods 

can be defined as follows : 

 

𝑌𝑖
[𝑛]

= ∑ 𝑎𝑖𝑗ℎ𝑓 (𝑌𝑗
[𝑛]

) + ∑ 𝑢𝑖𝑗𝑦𝑗
[𝑛−1]

, 𝑖 = 1,2, … , 𝑠,

𝑟

𝑗=1

𝑠

𝑗=1

 

 

𝑦𝑖
[𝑛]

= ∑ 𝑏𝑖𝑗ℎ𝑓 (𝑌𝑗
[𝑛]

) + ∑ 𝑣𝑖𝑗𝑦𝑗
[𝑛−1]

, 𝑖 = 1,2, … , 𝑠,

𝑟

𝑗=1

𝑠

𝑗=1

 

                                                                                                               (2) 
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where 𝑛 = 1,2, … , 𝑁. For these methods, the internal 

stages 𝑌𝑖 are approximation to 𝑦(𝑥𝑛−1 + 𝑐𝑖ℎ) within 

stage order 𝑞. This leads to  

 
𝑌𝑖 = 𝑦(𝑥𝑛−1 + 𝑐𝑖ℎ) + 𝑂(ℎ𝑞+1), 𝑖 = 1,2, … , 𝑠, 

 

and the external stages 𝑦𝑖
[𝑛]

 are approximating to the 

linear combination ℎ𝑘𝑦(𝑘) within order 𝑝, that gives 

 

𝑦𝑖
[𝑛]

= ∑ 𝛼𝑖𝑘ℎ𝑘𝑦(𝑘)(𝑥𝑛) + 𝑂(ℎ𝑝+1), 𝑖 = 1,2, … , 𝑟,

𝑝

𝑘=0

 

 

where the vectors 𝛼𝑖𝑘 will be collect in the matrix 𝑊 as 

follows: 

 

𝑊 = [𝛼0    𝛼1  …   𝛼𝑝]. 

                                                                                                               (3) 
 

 In order to explain the stability of DIMSIMs, consider 

applying (2) to the following test problem. 

 
𝑦′ = 𝜉𝑦, 𝑡 ≥ 0,  

 

where  𝜉 denotes as complex parameter, then  

 

𝑦[𝑛] = 𝑀(𝑧)𝑦[𝑛−1], 𝑛 = 1,2, …, 
 

where 𝑧 = ℎ𝜉 and the stability matrix 𝑀(𝑧) is defined as 

follows: 

 

𝑀(𝑧) = 𝑉 + 𝑧𝐵(𝐼 − 𝑧𝐴)−1𝑈. 

 

The stability of explicit type of DIMSIMs is similar to the 

stability of explicit Runge-Kutta methods which is in the 

form of a polynomial function, 

 

𝑅(𝑧) = 1 + 𝑧 +
𝑧2

2!
+

𝑧3

3!
+ ⋯ +

𝑧𝑝

𝑝!
, 

 

for order-p method. On the other hand, the stability of 

implicit type of DIMSIMs is constructed based on the 

stability of Singly Diagonal Implicit Runge-Kutta 

methods (SDIRK).   

In this paper, we consider the first type of DIMSIMs 

with condition 𝑝 = 𝑞 = 𝑟 = 𝑠. These four itegers are 

defined as: 𝑝 is order condition, 𝑞 stage order, 𝑟 is the 

number on external stages and 𝑠 is the number on 

internal stages.  

DIMSIMs have been considered by many 

researchers mainly Butcher in [3], and further 

investigation given by [7, 4, 2, 5, 6].  DIMSIMs were also 

studied by Wright in [16] and Huang in [11] as for their 

PhD research. In the resent years, DIMSIMs are 

becoming popular between the researchers such as 

studies by [10, 1, 8]. In addition to this, there is also an 

article for solving Volterra integro-differential 

equations which is based on a subclass of explicit 

general linear methods with and without Runge-Kutta 

stability property [13]. This stability properly is explained 

in  Section 3.0. 

The organization of this paper is considered as follows. 

Section 2 includes the construction of DIMSIMs in 

Nordsieck representation. The methods through this 

representation are proved zero stable for most of 

selecting of variable mesh. The proves are also not 

complicated in the performances through the 

changing of step-size. Section 3 describes the 

extrapolation approach in order to construct an 

efficient method known as extrapolated DIMSIMs with 

assumed 𝑝 = 𝑞 = 𝑟 = s. This approach gives 

advantages to the existing methods which are given 

in Section 4 on the numerical experiments. The last 

section concludes the article. 
 

 

2.0 DIMSIMs IN NORDSIECK REPRESENTATION 
 

To construct DIMSIMs in Nordsieck representation, 

consider another approximation 𝜂[𝑛] ∈ ℝ𝑚 defined as 

follows 

 

𝜂[𝑛] = ℎ(𝑏𝑇⨂𝐼𝑚)𝐹(𝑌[𝑛]) + (𝑣𝑇⨂𝐼𝑚)𝑦[𝑛−1], 

 

which can be approximate to ∑ ℎ𝑘𝑡𝑘𝑦(𝑘)(𝑥𝑛)
𝑝
𝑘=0 . In 

addition, suppose the matrix �̃� given by 

 

�̃� = [
𝑊
𝑡𝑇] = [

𝛼0 𝛼1 …
𝑡0 𝑡1 …

𝛼𝑝

𝑡𝑝
]. 

 

The independence of the approximations 𝜂[𝑛] ∈

 ℝ𝑚 and 𝑦𝑖
[𝑛]

, 𝑖 = 1,2, … , 𝑠 ensures that �̃� is non-singular.    

As given in [5], putting �̃�[𝑛] = [𝑦[𝑛]𝑇
, 𝜂[𝑛]𝑇

], DIMSIMs is 

given in Nordsieck representation as 

 

𝑌[𝑛] = ℎ(𝐴⨂𝐼𝑚)𝐹(𝑌[𝑛]) + (�̃�⨂𝐼𝑚)�̃�[𝑛−1],  

�̃�[𝑛] = ℎ(�̃�⨂𝐼𝑚)𝐹(𝑌[𝑛]) + (�̃�⨂𝐼𝑚)�̃�[𝑛−1], 

                                                                                                               (5) 
where 

 

�̃� = [𝑈   0], �̃� = [
𝐵
𝑏𝑇] , �̃� = [

𝑉 0
𝑣𝑇 0

] . 

 

Since 

 

�̃�[𝑛] = (�̃�⨂𝐼𝑚) [

𝑦(𝑥𝑛)

ℎ𝑦′(𝑥𝑛)
⋮

ℎ𝑝𝑦(𝑝)(𝑥𝑛)

] + 𝑂(ℎ𝑝+1), 

                                                                                                               (6) 
 

and the vector 𝑧[𝑛] can be defined by 

 

�̃�[𝑛] = (�̃�⨂𝐼𝑚)𝑧[𝑛]. 

 

Through the considerations of above, we can see 

 

�̃��̃� = [𝑈   0] [
𝑊
𝑡𝑇] = 𝑈𝑀. 
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The resuting DIMSIMs methods in Nordsieck 

representation can be obtained by substituting (7) in 

(5).  

 

𝑌[𝑛] = ℎ(𝐴⨂𝐼𝑚)𝐹(𝑌[𝑛]) + (𝑃⨂𝐼𝑚)𝑧[𝑛−1], 

𝑧[𝑛] = ℎ(𝐺⨂𝐼𝑚)𝐹(𝑌[𝑛]) + (𝑄⨂𝐼𝑚)𝑧[𝑛−1], 

                                                                                                               (8) 
 

where 𝑃 = 𝑈𝑀, 𝐺 = �̃�−1�̃�, 𝑄 = �̃�−1�̃��̃� and 𝑧([𝑛]) given 

by 

 

𝑧[𝑛] = (�̃�−1⨂𝐼𝑚)�̃�[𝑛] = [

𝑦(𝑥𝑛)

ℎ𝑦′(𝑥𝑛)
⋮

ℎ𝑝𝑦(𝑝)(𝑥𝑛)

] + 𝑂(ℎ𝑝+1). 

                                                                                                               (9) 
 

The coefficient Q can be simplified as �̃�[𝑒𝑇 , 1]𝑇 = 𝑒1, 

where 𝑒1 = [1,0, … ,0]𝑇 that gives  

 

𝑄 = �̃�−1�̃��̃�,                                                                              
 

= �̃�−1 [
𝑒
1

] [𝑣𝑇  0] [
𝑊
𝑡𝑇] = 𝑒1[1  𝑣𝑇𝛼1    ….   𝑣𝑇𝛼𝑝].  

                                                                                                               (10) 

 

The marix G is defined by the following theorem. 

 

Theorem 2.1  

 

𝐺 = 𝐿𝐶−1, 

 

where 𝐶 is the Vandermonde matrix and 𝐿 is the matrix 

with columns 𝐿𝑘  given by  

 

𝐿𝑘 = (𝑘 − 1)! (∑
𝑒𝑗+1

(𝑘 − 𝑗)!
− 𝑄𝑒𝑘+1

𝑘

𝑗=0

) , 𝑘 = 1,2, … , 𝑝, 

                                                                                                               (11) 

 

where 𝑒𝑖 = 1,2, … , 𝑝 + 1. In particular, the matrix 𝐺 is 

independent of 𝑡1, 𝑡2, … , 𝑡𝑝. The proof of this theorem is 

given by [1].  Several other numerical methods 

derived for General Linear Methods using explicit 

Nordsieck representation is given in [15]. 

 

 

3.0 DIMSIMs WITH EXTRAPOLATION 
 

The extrapolation technique is one of the popular 

numerical procedures that can be used efficiently in 

the efforts of some programs to improve the 

performance by which long-time-dependent 

engineering and scientific issues are dealing on 

computers. Richardson first introduced extrapolation 

in 1911. It is an approximation method in the numerical 

solution of differential equations. The different 

phenomenon that happens in engineering and 

science are successfully described by using some 

advanced large-scale mathematical models. The 

extrapolation in most of the applications is used as an 

initial technique to evaluate the magnitude of the 

computational errors and is used in the efforts to 

improve the accuracy of the model results  [13]. 

The extrapolation can be performed by a couple 

of types focused on getting high accuracy of a time 

integration technique. In addition, the approximation 

improved in a good way by extrapolation technique 

for a given time which is not utilized in the next 

computations when the passive mode is applied. 

However, the extrapolation technique in its active 

mode will be used through the computation of the 

next approximation.The extrapolation technique can 

be applied with explicit DIMSIMs methods by 

depending on their stability property. This property is 

an important key to increase the efficiency of the 

computational procedure and also to get reliable 

and more accurate results.  

Dahlquist in [9] introduced to study the stability 

properties by choosing numerical methods that are 

dealing with solving the ODEs and applying to the 

following test problem 

 
𝑑𝑦

𝑑𝑥
= 𝜆𝑦, 𝑥 ∈ [0, ∞], 

                                                                                                               (12) 

 

where 𝜆 is considered to be complex number, the 

exact solution of this test problem given by 

 

𝑦(𝑥) = 𝜂𝑒𝜆𝑥 , 𝑥 ∈ [0, ∞] 
                                                                                                               (13) 

 

where 𝜂 is assumed to be initial value which given also 

as complex number. In order to solve the system of 

ordinary differential equation 𝑦′ = 𝑓(𝑥, 𝑦) by the 

numerical methods, consider the approximations of 

the exact solutions 𝑦(𝑥𝑛) are calculated for values 𝑥𝑛 

either of the grid point of 

 

𝑥0 = 𝑎, 𝑥𝑛 = 𝑥𝑛−1 + ℎ, 𝑥𝑁 = 𝑏, ℎ =
𝑏−𝑎

𝑁
, 

                                                                                                               (14) 

 

where 𝑛 = 1,2, … , 𝑁, or of the grid point of  

 
𝑥0 = 𝑎, 𝑥𝑛 = 𝑥𝑛−1 + ℎ𝑛, 𝑥𝑁 = 𝑏, 

                                                                                                               (14) 

 

where 𝑛 = 1,2, … , 𝑁. During these conditions, the 

formula of the extrapolation technique that will be 

dealing with the numerical methods.  

There are critical conditions considered in this 

paper, first of all, the order condition 𝑝 is assumed to 

be equal to the stage order 𝑞. The second condition is 

the approximation solution 𝑦𝑛 of the exact value 𝑦(𝑥) 

of the test equation (12) can be calculated under the 

same assumption which is imposed to the 

approximation 𝑦𝑛−1 has already computed.  

The extrapolation technique can be formulated in 

cases where the test problem of Dahlquist is solved. 

Besides, the extrapolation technique in active mode 

can be applied with DIMSIMs methods in three 
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practical ways. Firstly, implement one large step N with 

the stepsize h by applying 𝑦𝑖−1 as a starting value to 

compute: 

 
𝑧𝑖 = 𝑅(𝑧)𝑦𝑖−1, 

                                                                                                               (16) 

 

Secondly, implement two small steps with the stepsize 

0.5ℎ by applying 𝑦𝑖−1 as the starting value in the first of 

the two steps. 

 

�̃�𝑖 = 𝑅 (
𝑧

2
) 𝑦𝑖−1, 𝑤𝑖 = 𝑅 (

𝑧

2
) �̃�𝑖 = [𝑅 (

𝑧

2
) ]

2

𝑦𝑖−1.  

                                                                                                               (17) 

 

Lastly, the extrapolation technique is computed by 

 

�̃�𝑖 =
2𝑝�̃�𝑖 − 𝑧𝑖

2𝑝 − 1
=

2𝑝 [𝑅 (
𝑧
2

)]
2

− 𝑅(𝑧)

2𝑝 − 1
 𝑦𝑖−1, 

                                                                                                               (18) 

 

where the stability function of the combined DIMSIMs 

with extrapolation can be considered as follows. 

 

�̅�(𝑧) =
2𝑝 [𝑅 (

𝑧
2

)]
2

− 𝑅(𝑧)

2𝑝 − 1
 . 

                                                                                                               (29) 

 

This way of applying extrapolation is known as active 

extrapolation on where the extrapolation solution �̃�𝑖 is 

continued to be applied at every steps. However, 

passive extrapolation is also possible with the same 

equation (19) on where the extrapolation is only 

applied at the end of the iterations.  

The stability function of explicit s-stage RK method 

of order 𝑝 = 𝑠 ≤ 4 is given by the following equation 

 

𝑅(𝑧) = 1 + 𝑧 +
𝑧2

2!
+ ⋯ +

𝑧𝑠

𝑠!
. 

                                                                                                               (20) 

 

Since DIMSIMs considered here have similar stability as 

the RK methods, the derivation of the stability of the 

following order-2 and order-3 DIMSIMs methods are 

given next. 

 

Order 2: (𝒑 = 𝒒 = 𝒔 = 𝟐) 

 

The DIMSIMs method is given by 

 

 
 

The stability function is given by 

 

𝑅(𝑧) = 1 + 𝑧 +
𝑧2

2
, 

which is similar as to the order-2 RK method.   

 

Next by using the extrapolation of the stability 

equation (19),  �̅�(𝑧) with 𝑝 = 2 is given by 

 

�̅�(𝑧) =
4

3
[1 +

𝑧

2
+

𝑧2

8
]

2

−
1

3
(1 + 𝑧 +

𝑧2

2
). 

 

 
Figure 1 Stability regions of order-2 explicit DIMSIMs and 

extrapolated explicit DIMSIMs 

 

 

Order 3: (𝒑 = 𝒒 = 𝒔 = 𝟑) 

 

The DIMSIMs method is given by 

 

 
The stability function is given by 

 

𝑅(𝑧) = 1 + 𝑧 +
𝑧2

2
+

𝑧3

6
, 

 

which is similar as to the order-3 RK method.   

 

Next by using the extrapolation of the stability 

equation (19),  �̅�(𝑧) with 𝑝 = 2 is given by 

 

�̅�(𝑧) =
8

7
[1 +

𝑧

2
+

1

2!
(

𝑧

2
)

2

+
1

3!
(

𝑧

2
)

3

]
2

−
1

7
(1 + 𝑧 +

𝑧2

2!
+

𝑧3

3!
). 

 

 

The given order-2 and order-3 methods are 

considered in the numerical experiments. 
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Figure 2 Stability regions of order-3 explicit DIMSIMs and 

extrapolated explicit DIMSIMs 
 

 

Figure 1 and 2 give the stability regions of order-2  

and order- 3 explicit DIMSIMs and extrapolated explicit 
DIMSIMs respectively. We can clearly see that the 

extrapolated order-2 and order-3 explicit DIMSIMs has a 

wider region then the base method without extrapolation.  
 

 

3.0 RESULTS AND DISCUSSION 
 

To test the efficiency of the explicit DIMSIMs methods 

with active extrapolation, the modified code dim18.m 

is used which is the variable order-variable stepsize 

given for 1 ≤ 𝑝 ≤ 3. This code was considered by 

Butcher [6]. Three test problems are considered to test 

the efficiency and accuracy of the methods. The test 

problems that are considered in this article are given 

in [12]. The class B problems that are selected are small 

systems that consists of linear and nonlinear equations. 

The numerical approximations are obtained for 𝑥𝑛 =
10. The starting tolerance (𝑡𝑜𝑙) used is 10−3 and the 

solutions are obtained until 𝑡𝑜𝑙 = 10−10. CPU time were 

measured using tic and toc build in functions in Matlab 

2022.  

To determine the accuracy of the approximations, 

the graphs of norm of global errors versus tolerances 

are given in Figures 4, 6 and 8, while to determine the 

efficiency of the approximations, the graphs of norm 

of global errors versus CPU Time are given in Figures 3, 

5 and 7. 

The two numerical methods thats are considered 

in the numerical experiments are DIMSIM order-2 

(dim2x) and DIMSIM order-3 (dim3x) together with 

active extrapolations (dim2xactive) and 

(dim3xactive) respectively. These methods are 

compated with ode23 and ode45. The legends used 

in all the graphs is defined in Table 1. 
 

Table 1 The legends used in all the graphs. 
 

ode45 Six-stage, fifth-order, Runge-Kutta method 

ode23 Three-stage, third-order, RK methods 

dim2x Order-2 DIMSIMs 

dim2xactive Order-2 DIMSIMs with active extrapolation 

dim3x Order-3 DIMSIMs 

dim2xactive Order-3 DIMSIMs with active extrapolation 

B1 problem:  

 

The first problem is the B1 problem which describes the 

growth of two conflicting populations. 

 
   𝑦1

′ = 2(𝑦1 − 𝑦1𝑦2), 
𝑦2

′ = −𝑦2 + 𝑦1𝑦2, 
 

𝑦0 = [1,3]𝑇 . 
 

 

B2 problem:  

 

The second problem is the B2 problem which is a linear 

chemical reaction. 

 
 𝑦1

′ = −𝑦1 + 𝑦2, 
 𝑦2

′ = 𝑦1 − 2𝑦2 + 𝑦3, 
 𝑦3

′ = 𝑦2 − 𝑦3, 
 

𝑦0 = [2, 0, 1]𝑇 . 
 

B3 problem:  

 

The third problem is the B3 problem which is a 

nonlinear chemical reaction. 
𝑦1

′ = −𝑦1 

𝑦2
′ = 𝑦1 − 𝑦2

2, 
𝑦3

′ = 𝑦2
2, 

 

𝑦0 = [1, 0, 0]𝑇 . 
 

 
igure 3 Global error & CPU time for B1 problem 
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Figure 4 Global error & Tolerance for B1 problem 

 

 

For B1 problem, dim2x and dim3x with extrapolations 

(dim2xactive and dim3xactive) have greater 

accuracy at different tolerance values (refer to Figure 

3). Although these methods are also efficient (refer to 

Figure 4), both methods require slightly additional 

computational time. This is because as given in the  

extrapolation formula in equation (18), extrapolation is 

determined by using two different values of stepsize (h 

and h/2). 

 
Figure 5 Global error & CPU Time for B2 problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6 Global error & Tolerance for B2 problem 

 

For B2 problem, similar results are shown as given for 

Problem B1 where both dim2x and dim3x with 

extrapolations (dim2xactive and dim3xactive) give 

greater accuracy and efficiency at different 

tolerance values (refer to Figure 5 and Figure 6 

respectively). However, due to greater accuracy and 

efficiency as we have seen that the global errors are 

almost to 10-20, the approximations started to be 

destroyed due to the round of errors. This can be 

overcome by using compensated summation or 

adjusting the, time interval and tolerance value.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7 Global error & Tolerance for B3 problem. 
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Figure 8 Global error & CPU time for B3 problem 

 

 

Lastly, for B3 problems, similar results are obtained as 

given for problems B1 and B2 (Refer to Figure 7 and 

Figure 8). 

The numerical results show that for all problems, 

active extrapolation is more efficient than ode45 and 

ode23. DIMSIMs with active extrapolation are seen to 

be superior than DIMSIMs without extrapolation. 
 

 

4.0 CONCLUSION 
 

The construction of diagonally implicit multistage 

integration methods has been considered to be a 

hard task. In this work, we apply the active 

extrapolation with DIMSIMs of order-2 and order-3 in 

solving non-stiff differential equations. These issues 

consider of the way of applying the active 

extrapolation with the choice of initial stepsize and 

order-changing strategies. Although the numerical 

results give promising results on the implementation of 

DIMSIMs with active extrapolation, theoretical analysis 

on the convergence of the extrapolation is also 

important to be studied in detail. Theoretically for 

Runge-Kutta methods, we know that the order of 

extrapolation will increased by one at a time for non-

symmetric methods and two at a time for symmetric 

methods. Since type one DIMSIMs have similar stability 

as to explicit Runge-Kutta method, it is important to 

investigate whether the latter is also true for all the 

families of type one DIMSIMs with extrapolation. We 

wish to investigate the order behaviour in the future. 
 

 

Conflicts of Interest 
 

The author(s) declare(s) that there is no conflict of interest 

regarding the publication of this paper. 

Acknowledgment 
 

The authors would like to extend their gratitude to the 

Universiti Pendidikan Sultan Idris, Malaysia especially 

the Research Management and Innovation Center for 

providing the research grant GPUF (Vote No: 2021-

0215-103-01). 

 

 

References 
 

[1] Abdi, A. and Jackiewicz, Z. 2019. Towards a Code for 

Nonstiff Differential Systems based on General Linear 

Methods with Inherent Runge-Kutta Stability. Applied 

Numerical Mathematics. 136: 103-121. 

Doi: https://doi.org/10.1016/j.apnum.2018.10.001.  

[2] Butcher, J. and Jackiewicz, Z. 1993. Diagonally Implicit 

General Linear Methodsfor Ordinary Differential Equations. 

BIT. 33(3): 452-472. DOI: https://doi.org/10.1007/BF01990528.  

[3] Butcher, J. C. 1993. Diagonally-implicit Multi-stage 

Integration Methods. APP. Numer. Alg. 11: 347-363. 

Doi: https://doi.org/10.1016/0168-9274(93)90059-Z.    

[4] Butcher, J. C. 2016. The Numerical Analysis of Ordinary 

Differential Equations: Runge-Kutta and General Linear 

Methods. John Wiley and Sons, New York. 

DOI: https://doi.org/10.1007/978-3-319-17689-5_2.  

[5] Butcher, J. C., Chartier, P. and Jackiewicz, Z. 1997. 

Nordsieck Representation of DIMSIMs. Numerical 

Algorithms.16: 209-230. 

Doi: https://doi.org/10.1023/A:1019195215402.  

[6] Butcher, J. C., Chartier, P. and Jackiewicz, Z. 1999. 

Experiments with a Variable-order Type 1 DIMSIMs Code. 

Numerical Algorithms. 22: 273-261. 

Doi: https://doi.org/10.1023/A:1019135630307.  

[7] Butcher, J. C. and Jackiewicz, Z. 1996. Construction of 

Diagonally Implicit General Linear Methods of Type 1 and 2 

for Ordinary Differential Equations. Appl. Numer. Math. 21: 

385-415.  

Doi: http://doi.org/10.1016/S0168-9274(96)00043-8.   

[8] Califano, G., Izzo, G. and Jackiewicz, Z. 2017. Starting 

Procedures for General Linear Methods. Applied Numerical 

Mathematics. 120: 165-175.  

Doi: https://doi.org/10.1016/j.apnum.2017.05.009.  

[9] Dahlquist, G. 1963. A Special Stability for Linear Multistep 

Methods. BIT. 3: 27-43.  

Doi: http://doi.org/10.1007/BF01963532.   

[10] Famelis, I. T. and Jackiewicz, Z. 2017. A New Approach to 

the Construction of DIMSIMs of High Order and Stage 

Order. Applied Numerical Mathematics. 119: 79-93.  

DOI: http://doi.org/10.1016/j.apnum.2017.03.015.  

[11] Huang, S. J. 2005. Implementation of General Linear 

Methods for Stiff Ordinary Differential Equation. Ph.D. Thesis. 

University of Auckland, New Zealand. 

[12] Hull, T. E., Enright , W. H., Fellen, B. M. and Sedgwick, A. E. 

1972. Comparing Numerical Methods for Ordinary 

Differential Equations. SIAM Journal on Numerical Analysis. 

9(4): 603-637.  

DOI: http://doi.org/10.1137/0709052.  

[13] Mahdi, H., Hojjati, G., & Abdi, A. 2019. Explicit General 

Linear Methods with a Large Stability Region for Volterra 

Integro-differential Equations. Mathematical Modelling 

and Analysis. 24(4): 478-493.  

DOI: https://doi.org/10.3846/mma.2019.029.  

[14] Ramazani, P., Abdi, A., Hojjati, G., & Moradi, A. 2022. Explicit 

Nordsieck Second Derivative General Linear Methods For 

ODEs. The ANZIAM Journal. 64(1): 69-88.  

Doi: https://doi.org/10.1017/S1446181122000049.  

[15] Richardson, L. F. 1911. The Approximate Arithmetical 

Solution by Finite Differences of Physical Problems Involving 

Differential Equation, with an Application to the Stresses in 

Amasonry Dam. Philos. Trans. Roy. Soc. London, ser. A. 210: 

307-857.   



202                                        Ali J. Kadhim et al. / Jurnal Teknologi (Sciences & Engineering) 85:3 (2023) 195–202 

 

 

[16] Wright, W. 2002. General Linear Methods with Inherent 

Runge-Kutta Stability. Ph.D. thesis, University of Auckland, 

New Zealand. 

 


