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Abstract 
 

This work advocate self-explanation as one foundation of self-* properties. Arguing that for system 

component to become more self-explanatory the underlining foundation is an awareness of themselves and 

their environment. In the research area of adaptive software, self-* properties have shifted into focus caused 
by the tendency to push ever more design decisions to the applications runtime. Thus fostering new 

paradigms for system development like intelligent and learning agents. This work surveys the state-of-the-

art methods of self-explanation in software systems and distills a definition of self-explanation. 
Additionally, we introduce a measure to compare explanations and propose an approach for the first steps 

towards extending descriptions to become more explanatory. The conclusion shows that explanation is a 

special kind of description. The kind of description that provides additional information about a subject of 
interest and is understandable for the audience of the explanation. Further the explanation is dependent on 

the context it is used in, which brings about that one explanation can transport different information in 

different contexts. The proposed measure reflects those requirements.   
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pragmatic 
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1.0  INTRODUCTION 

 

In nowadays computing environments where different parties at 

different times are allowed to make use of different technologies 

it seems to be necessary to move evermore details from the 

application design time to the application runtime. This trend, 

which is a consequence of the arising complexity crisis [1], can 

be supported with applications possessing a set of self-* 

properties, where the initial set is known as self-CHOP 

(configuration, healing, optimization, protection). As these are 

the “big four”, several researchers have begun to investigate the 

requirements and in consequence introduced more self-* 

properties refining the initial set [2]. One of these basic properties 

is Self-Explanation, which can be seen as a prerequisite for self-

configuration [3]. Self-explanation is the capability of a system 

to provide information about itself and its functionalities. Of 

course, the term system comprises not only the whole system but 

also its components. Yet, providing information about 

functionalities is only the first step towards self-explaining 

systems as there must be the ability to consume and interpret that 

information as well.  

  The goal of this work is to foster the understanding of the 

self-explanation property, with a special focus on multi-agent 

systems. Here, self-explanation is the ability of an agent to 

describe its capabilities to other agents in order to enable them to 

autonomous reach the system goal, i.e. using planning techniques 

to do so. Typically, planning agents have the ability to solve 

problems autonomously by creating a plan (a sequence of actions) 

that reaches a desired goal state. In such a plan, agents can include 

capabilities of other agents. To elude a brute-force approach on 

trying every combination of available capabilities or in other 

words to reduce the branching factor of the search space, answers 

to the following questions are of interest:  

 

 Which functionalities does an agent provide?  

 How and under which conditions can another agent use 

these functionalities? 

 What is the expected outcome of the provided 

capability? 

 

  An agent has to be able to reason upon the information given 

to it, to decide if a given action is helpful in regard of achieving 

an active goal. In this work we reduce the agent to its reasoning 

capability, since the execution, the plan creation, communication 

aspects and other details of agent systems are out of scope of this 

work. Henceforth we will refer to these agents as reasoner, where 
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the term reasoner will be explained in more detail in the following 

section, which also provides an overview about the research field 

(See Section 2.0).  

  The rest of the work is organized as follows. In addition and 

as an extension to a prior work [3] we introduce a formal 

definition of self-explanation and a measure enabling to decide 

which description is more self-explanatory (See Section 2.3). 

Subsequently, as self-explanation requires to formulate an 

abstract description of the system components Section 3.0 

introduce the term self-explanatory descriptions. Afterwards, the 

work proceeds with an approach on creating self-explanatory 

descriptions that, in contrast to classical descriptions, provide 

additional semantically and contextual information in a structured 

and computer readable manner as proposed by Oaks et al. [4] (See 

Section 4.0). This approach investigates the applicability of the 

Natural Semantic Metalanguage [5] (NSM), a theory from 

linguistic, which introduces a bag of sematic primes able to 

represent all expressions producible in a natural language. 

Finally, Section 5.0 concludes how all these pieces fit together 

and elaborates on future work. 

 

 

2.0 SELF-EXPLANATION 

 

There is a German saying that translates to: “to understand 

something, you have to be able to explain it”. Here, one might 

notice that the activity of explaining something comprises the 

understanding of a subject of interest (SoI) as well as the ability 

to describe how this SoI works (or at least to convey all the 

information about a SoI available). We can distinguish two 

entities involved into the activity of explaining something: The 

explaining entity, which is the producer or the provider of the 

explanation and the audience of the explanation, which is the 

reasoner or consumer of the explanation. One interesting fact is 

that the former and the latter could be the same entity. In this 

context, self-explanation is defined as “activity of explaining to 

oneself in an attempt to make sense of new information, either 

presented in a text or in some other medium” [6]. Commonly, 

explaining events, intentions and ideas is a well-known way of 

communicating information in everyday life. On the one hand, 

the explaining entity (the producer) is able to impart knowledge 

to some audience. On the other hand, the audience (the 

reasoner/consumer) is able to understand and comprehend the 

explainer's intentions and they may even understand the 

explainer's course of actions. 

  The ability of the consumer to learn from a given 

explanation can be seen as a major part of our adaptability as 

humans. It is only natural that we want our technology to be able 

to do the same. The research area of Artificial Intelligence (AI) 

studies amongst others this ability, which is the ability of 

machines to learn. This work can be seen as part of this research 

focusing on the explanations of capabilities of artificial agents for 

an audience of other artificial agents.  

  In the following we want to carve out the term self-

explanation giving an overview of the research field, a definition 

of the term self-explanation and a formal model for a measure 

enabling to decide which description is more self-explanatory. 

This measure differs from the existing ones in terms of the point 

of view an explanation is rated and in consequence follows the 

idea that the currently available description must be enriched with 

semantically and contextual information. Finally we will give an 

overview of currently available measure to carve out the 

difference to ours in more detail. 

                                                
1 The Haskell Programming Language – For more information visit:  

http://www.haskell.org/haskellwiki/Haskell   

2.1  Formal Explanations 

 

Several definitions of explanations have been proposed. Each one 

specialized for the needs of some domain. We will look at some 

of them to see how they can help defining the term.  

J.A. Overton [7] presents a philosophical approach to 

explanations, which can be described in a computable manner. 

Different classes of explanations are presented: 

 

 Design/causation 

 Syllogism/instantiation 

 Modeling 

 Argumentation/justification 

 

  Explanations are defined in a working definition as answer 

to Why-questions. J.A. Overton demonstrates an explanation via 

a type system implemented in Haskell1. A working definition of 

an explanation is given as well: 

  
“An explanation is the pair of an explanans A and an 
explanandum B, such that there exist a why/how-question Q with 

B as its presupposition, and A explains B.” [7, page 44] 

 

  Furthermore, the work explains what a scientific explanation 

might be and how it can be formulated but lacks to introduce or 

discuss a structure for such machine readable descriptions. 

In AI expert systems a definition of explanations is a topic of 

research as well. Moore and Swartout [8] introduce an expert 

system that is able to engage a dialog while explaining some 

system state. By using static hand written explanation they are far 

from having semantics or any other understanding of the 

explanation from the machine, i.e. the provided explanations are 

not able to give information about the current state of the system, 

which is required for the superior goal of self-adaptive systems 

[9]. 

  Heckerman et al. [10] describe explanations as a Bayesian 

believe network. A variable, which is the subject of interest, is 

explained by its predecessor in a Bayesian believe network. Each 

predecessor then influences the variable to a certain extend. An 

explanation then can be seen as an evidence weight, representing 

the logarithmic likelihood ratio of the influence of an observation 

on a variable in a Bayesian believe network. An example is shown 

in Figure 1.  

 

 
 

Figure 1  Example of a Bayesian believe network explaining the 

influence of different factors through getting cancer 

 

Age Gender

Smoking

Cancer

P(Smoking|Age) P(Smoking|Gender)

P(Cancer|Smoking)
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The example, which is a formal representation for an explanation, 

can be seen as an explanation for getting cancer. 

In AI research this formalism is used to describe probabilistic 

models and here we can inference that the event smoking and so 

forth influence the probability of the event having cancer. Thus 

this model can represent multiple layers of explanations in a 

probabilistic manner. W.G. Cole [11] uses such a graphical 

representation of Bayesian belief networks, to create a mental 

model for the Bayesian belief update. Heckerman et al. [10] 

describe the reasoning on probabilistic explanation from a 

decision-theoretical point of view. Here expert systems are 

combined to reach a decision using Bayesian beliefs updates by 

using an “odds–likelihood updating scheme” like the one 

described above.  

  M.J. Druzdzel [12] separates explanations in two categories: 

Explanation of assumptions focusing on the communication of 

the domain model of the system and explanation of reasoning 

focusing on how conclusions are made from those assumptions. 

In this separation the author describes on the one hand 

explanations transmitting assumptions about the world, like a 

domain model to have a common language. This model is a 

diagram in which nodes represent assumptions. On the other 

hand, the explanation of reasoning described by the edges of the 

diagram, explain the inference on how the a-posteriori probability 

is changed by an observation. It might be worthwhile to transfer 

these categories to self-explanation since the meaning of concepts 

used might differ depending the exogenous or endogenous origin 

of the fact explained. Therefore the reasoner has to distinguish 

between the explanations of the system itself and how it can be 

interpreted related to the current context.  

  This work focuses on the explanation of assumptions, since 

the audience of such a description is seen as an external system 

component reasoning for itself. Nevertheless, in multi-agent 

systems this restriction implies no loss of generality. That is, 

since autonomous agents typically reason for them self by 

observing the environment with sensors and influence the 

environment using available actors. Further the agents might be 

developed by different parties, working in different domains and 

having different contexts in mind while developing their agent 

applications.  

 

2.2  Towards a Definition 

 

Going back to the initial set of self-* properties one can imagine 

that self-explanation injects momentum not only to the self-

configuration but also to the other properties. Indeed, these 

properties cannot be considered independently. Consequently, 

the term self-explanation has different meanings, too.  

  The information that is intended to be transported with the 

explanation is sometimes called explanandum. The explanadum 

typically holds some information about the SoI. The explanation 

itself is also sometimes called explanans. Thus an explanation 

given by one entity might contain an explanans.  An example 

explanadum could be: “Why is this room unsecure?” A fitting 

explanans could be: “Because the door is open.” 

Taking into account the different parties involved – agents (the 

system itself), developers and (end) users – we can distinguish 

between two sides of self-explanation.  

  To start with, we can refer to the system side with the goal 

to integrate agents autonomously into existing infrastructures [1] 

[13]. Following the idea of self-explanation this means that 

agents are able to learn the capabilities of each other and to 

comprehend in which way they are able to interact (e.g. which 

data format and concepts match). One can imagine this process 

in the way a new human introduces itself into a prior unknown 

group of other humans, e.g. a team to solve some work related 

problem, by explaining its name and capabilities. Consequently, 

the system-side self-explanation is concerned with explanations 

to be used by artificial reasoners. Thus the descriptions are 

optimized to being computer readable.  

Furthermore, we refer to the human side as self-explanation 

aiming to integrate the user (a human agent) into the system 

consisting of artificial agents as well as other human agents. As 

those systems are typically goal-driven, one example of humans 

interaction would be that the human can set the pursuit goals, to 

restrict the systems resources or other parameters using 

constraints and to observe the results of an otherwise autonomous 

process [13] [14] [15]. 

  Taking both sides together the goal is that agents are able to 

learn about the capabilities of each other to the extent of having 

enough information to make use of them. The following 

definition for the term self-explanation is proposed [3]: 

 
“Self-explanation identifies the capability of systems and system 
components to describe themselves and their functionalities to 

other systems, components or human beings.” 

 

 

2.3  A Measure for Self-Explanation 

 

Explanation of assumptions might informally be defined as a 

description to reveal the identity of some subject of interest. This 

might for example include information about its functionality. 

Imagine that we want to identify different boat types for tax 

reasons. We might not use the appearance to identify the 

difference of a rowing-, sailing- and a motor boat, because there 

might be different appearances in each class of boats. Instead, to 

identify the different boat classes, we need to describe some other 

details like the propulsion method and the tonnage of the boat. In 

contrast, if somebody wants to describe the different boat types 

to a child the functionality might be the detail separating the 

identities. In AI this fact is well known, since we seek different 

metrics to decrease intra class scatter and increase inter class 

scatter [16, page 121]. Furthermore, the explanation depends not 

only on the context but also on the reasoner who infers about it. 

With this in mind, an explanation should help the audience, to 

identify the classes a SoI might be part of and with that better 

describe its identity to foster understanding of the explanation 

whereas the understanding determines the goodness of an 

explanation [17]. To rate this goodness a measure for 

explanations is required. Roughly speaking one will need a way 

to rate if a self-explanation capability is available from the point 

of view of the reasoner. Indeed, this point of view constitutes the 

difference between the measure presented in the following and 

the measures available in the related work presented afterwards. 

 

2.3.1  Abstract Measure 

 

To determine the quality of an explanation and in consequence to 

ease the creation of measureable properties of explanations, we 

will now formalize a measure. As mentioned above, we define 

the amount of information transferred to the audience as a 

measure of quality of an explanation.  

First we want to define a domain as a set of information 

concerning this domain: 

 

Definition 1. The information available in one domain d is 

defined as the set 𝔻𝑑 with 𝔻𝑑 ⊂  𝕀 and 𝕀 being the set of all 

information. 

 

  Here, the basic assumption we follow is, that in computer 

science where information is digitalized, information is a discrete 
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entity. For example the chess move “Qxd4” (e.g. as move in the 

center game of a Danish Gambit) in the domain of playing chess 

is one piece of information 𝑖 ∈ 𝕀 in the domain of chess 𝔻𝑐ℎ𝑒𝑠𝑠 
– where 𝕀 is the amount of information available and 𝔻𝑑 is the 

formal description of a domain as a proper subset of the 

information space 𝕀. Consequently, a domain 𝔻𝑑 contains those 

information necessary to create fully observable planning for the 

given domain. Here, planning as the reasoning side of acting [18] 

and one inherent part of artificial agents, which are typically goal 

driven and try to achieve their goals autonomously. 

As illustrated in the boat example, the quality of explanations 

depends on the reasoner who infers about this explanation. As this 

point of view is one important part of our measure, we now need 

to define what a reasoner is. The following definition expresses 

what a reasoner is: 

 

Definition 2. Given a set of explanations 𝔼 and a domain d, a 

reasoner for d and e, 𝑟 ∶=  (𝐼𝑟 , 𝜄𝑟) is defined as an entity which 

integrates a new explanation 𝑒 ∈  𝔼 into its knowledge-base  𝐼𝑟 ∈
𝔇 using the function 𝜄𝑟: 𝔇 ×  𝔼 → 𝔇 where 𝔇 is a σ-Algebra 

over the information 𝔻𝑑 available in the domain d. 

 

  This does not mean that all elements of 𝔻𝑑 are available to 

each reasoner r. This offers the advantage that reasoners are able 

to infer in both fully and partial observable problems. Indeed, the 

typical agent application is located in partial observable 

environments and requires capabilities enabling to achieve given 

goals under uncertainty [19]. To elude the problem of domain 

overarching knowledge, we define a domain as a σ-Algebra 

introducing the characteristic that all unions of information of one 

domain with information of the same domain are always part of 

the domain again. This could e.g. happen if two agents share their 

knowledge in one domain. Later on we will use this and other 

characteristics of σ-Algebras as important properties for our 

measure.  

  Now, let ℜ be a σ−Algebra of sets over all reasoners of 

concern 𝑅. Reasoners of concern are the reasoners which make 

up the audience of an explanation. Further let e ∈ 𝔼 be an 

explanation in some domain 𝔻𝑑. Then we can define how an 

explanation maps to information by defining how the information 

in an  

Definition 3. Given a domain d and a set of explanations 𝔼, an 

information 𝑖 ∈  𝔻𝑑 is contained in an explanation 𝑒 ∈  𝔼 for a 

set of reasoners (the audience) 𝐴 ∈ ℜ, iff all reasoner  𝑟 ∈ 𝐴  are 

able to integrate 𝑖 into their knowledge-base (𝑖 ∈ 𝜄𝑟(𝐼𝑟 , 𝑒)), 
written 𝑒 

   𝑟  
→  𝑖 

  Integration of new information into a knowledge base can 

be seen as the union 𝐼𝑟 =  𝐼𝑟 ∪ 𝑖 of the new information with the 

knowledge base 𝐼𝑟, without destroying the consistency of 𝐼𝑟. With 

this definition an explanation holds and transmits information to 

an audience if a reasoner of the audience can integrate new 

information into its knowledge-base. To avoid a philosophical 

discussion, we define that an explanation has to be understood by 

someone. Now that we have some definitions about explanations, 

we will look at self-explanation to determine more specifically 

what exactly an explanation is. 

  The dictionary defines self-explanatory as “easily 

understood from the information already given and not needing 

further explanation” [20]. This definition leads to the conclusion 

that the information given by self-explaining descriptions is 

sufficient for some reasoner in the audience to understand the 

subject of interest and that the explanation is given by the entity 

representing of encapsulating this subject. Taking this definition 

into account, we define a degree of explanation as follows: 

Definition 4. Given a set of explanations 𝔼, a set of reasoners 

𝐴 ∈ ℜ and a domain d, 𝜇: 𝔈 → ℝ̅ is a measure to an affine 

extension of the real numbers ℝ̅:= ℝ ∪ {+∞,−∞}, where 𝔈 is 

the σ-algebra over 𝔼.  𝜇 is defined as: 

𝜇(𝐸) ≔ sup
𝑟=(𝐼𝑟,𝜄𝑟) ∈𝐴

𝑖∈𝔻𝑑

(∑(𝛿𝑖,𝑟,𝑒)
𝑒∈𝐸 

) 

with 

𝛿𝑖,𝑟,𝑒 = {

1, 𝑖𝑓 𝑒 
   𝑟  
→  𝑖 𝑎𝑛𝑑 𝐼𝑟 ∪ 𝑖 ≠ 𝐼𝑟

0, 𝑖𝑓 𝑒 
   𝑟  
→  𝑖 𝑎𝑛𝑑 𝐼𝑟 ∪ 𝑖 = 𝐼𝑟  

−1,        𝑒𝑙𝑠𝑒                                             

 

 

  Where 𝐸 ∈ 𝔈  is the set of explanations, 𝐴 ∈ ℜ is the 

audience observing the explanation and 𝐼𝑟 ∈ 𝔇 is the knowledge 

base of an reasoner which is used to reason upon the 

explanandum for a SoI in the given domain. We acknowledge that 

this is a practical measure, since the degree of explanations drops 

when an explanation is repeated in front of the same audience 

several times. Further we chose the supremum instead of an 

average since for a scientific “proof of concept” we need one 

reasoner able to reason upon the explanation. With this definition 

of a measure for the degree of explanation, we can conclude that 

a theoretical complete self-explaining explanation with 𝜇(𝐸) =
|𝔻𝑑| for some explanations 𝐸 ∈ 𝔈 could exist, so that no other 

explanation 𝑒𝑖 ∈ 𝐸 could explain the information i better to the 

audience – practically it may be not possible to produce such an 

explanation. For example, a good practical explanation is given 

by the Peano-Axiomes a set of axioms that define the natural 

numbers [21]. Indeed, this is only a good explanation for 

reasoners able to interpret the formalism. For them, there might 

be no explanation easier to understood, as the Peano-Axiomes 

present the most accurate way to describe natural numbers. In 

contrast, if the reasoner are not able to understand the formalism, 

they a not able to infer what natural numbers are given the Peano-

Axiomes.  

  However, for a specific domain 𝔻𝑑 an explanation e might 

be self-explanatory if the knowledge base 𝐼𝑟1 …𝐼𝑟𝑛 ∈ 𝔻𝑑 of the 

audience 𝑟1…𝑟𝑛,, 𝑛 ∈ ℕ of a domain 𝔻𝑑, is filled in that way, that 

the audience might reason to extract the entire information i hold 

by e by observing e. 

  On the one hand, the degree of self-explanation can be 

interpreted as the additional information needed to create 

understanding. On the other hand, a measure depends on the 

reasoning capability of the audience and how the explanation fits 

to those capabilities. If no further information/capability is 

required for some reasoner to understand the SOI, then the degree 

of self-explanation rises. The more information is needed the less 

the degree of self-explanation becomes, where in the worst case 

no useful information about the SOI can be extracted from the 

explanation. 

  In a domain, the information about the domain might be 

limited, and with that, the possibility for a good explanation 

might be given.  

  To come back to our chess example the move: “Qxd4” 

probably needs further explanation. First we could explain the 

steno-notation syntax: The first element represent a chess piece 

here Q for the queen. The second element represents an optional 

action, here x which stands for making a capture and the last 

element d4 concerning the location on the chess board where the 

move ends. Further we could additionally explain the meaning of 

“queen” or “making a capture”. If e.g. the audience has watched 

the move of the chess game, the first explanation of the move 
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given above is 𝜇(𝐸) = 0. Under the assumption that the audience 

of this explanation does not know the steno-notation, the first 

explanation of the move given above could is 𝜇(𝐸) = −1. That 

is, because there is one explanation and it is not understood. Now 

the second more detailed explanation can be of higher or lower 

quality. Since we have added multiple sub-explanations (Q, x, d4, 

queen and capture), if the audience still does not understand the 

explanation the measure of explanation can become 𝜇(𝐸) = −6. 

In this case all explanations did fail to transport information to 

the audience. Further this explanation does not contain 

information about where the move started from, thus not being 

completely self-explanatory, since this depends on the context of 

the chess game. As we argued above, such contextual information 

is needed in self-explanatory descriptions. As contexts can be 

hierarchical we see a domain as a set of contexts.   

 

2.3.2  Practical Measures 

 

Since we define a practical but abstract measure of explanation, 

the next section will survey different measures of explanations. 

To start with we have different types of measures: confirmation 

measures and coherence measures [22]. Here an explanation E is 

incrementally confirmed by evidence d given some background 

knowledge Ir. The observations collected are formalized in the 

data d. Ir
 is defined as the information that the reasoner r holds as 

background knowledge.  

  D.H. Glass [22] argues that the most probable explanation is 

not equal the “best explanation”. Thus the authors work compares 

different measures for the quality of explanation. The measures 

compared are separated into three classes. The first class is based 

on the theorem of Bayes: 

 

1. As baseline the maximum Bayesian a-posteriori 

probability (MPE) of an explanation is chosen.  

 

𝑃(𝐸𝑖|𝑑) =  
𝑃(𝑑|𝐸𝑖)  ×  𝑃(𝐸𝑖)

𝑃(𝑑)
 

 

 With that an explanation E1 is better than explanation 

 E2 iff: 

 

𝑃(𝐸1|𝑑) > 𝑃(𝐸2|𝑑) 
 

  Here the most probable explanation regarding the 

observations d is chosen. Furthermore, the author argues that 

defining the best explanation as the most probable one makes the 

inference to the best explanation trivial. We argue that the 

evidence and the prior used in Bayes differ according to the view 

point or context of a reasoner – which makes the interpretation of 

the probability a subjective one. Other Bayesian measures are: 

 

2. The maximum likelihood approach [23] which 

compares the likelihood of an event: 

 

𝑃(𝑑|𝐸1) > 𝑃(𝑑|𝐸2) 
 

3. The Conservative Bayesian [24] combines the 

maximum likelihood approach with the addition that 

the a-priori probability of Ei 
  is regarded as well. Thus 

E1 is a better explanation then E2 iff: 

 

𝑃(𝑑|𝐸1) > 𝑃(𝑑|𝐸2) and  𝑃(𝐸1) > 𝑃(𝐸2) 
 

The conservative Bayesian has the problem that in the case where 

the likelihood of one explanation and the a-prior of the other one 

is greater it fails to order the two explanations. 

  The second class is based on confirmation theory. Here the 

confirmation or disconfirmation of an explanation E by an 

observation d is given only if there is a positive or negative 

dependence between the explanation E and the observation d. 

Thus confirmation measures rate the increase of probabilities of 

an explanation E with the observation d  [22].  
 

4. The difference confirmation measure compares the 

difference of confirmation after an observation d: 

 

𝑃(𝐸1|𝑑) − 𝑃(𝐸1) > 𝑃(𝐸2|𝑑) − 𝑃(𝐸2) 
 

5. The likelihood ratio measures the ratio of the 

confirmation of the two explanations: 

 

𝑙𝑜𝑔 [
𝑃(𝑑|𝐸1)

𝑃(𝑑|¬𝐸𝑖)
] > 𝑙𝑜𝑔 [

𝑃(𝑑|𝐸2)

𝑃(𝑑|¬𝐸𝑖)
]  

 
where 

 

𝑃(𝑑|¬𝐸𝑖) = ∑ 𝑃(𝑑|𝑒)

𝑒∈𝔼∖𝐸𝑖

 

 

  The third class of measures is based on coherence. There is 

a discussion if an increase in coherence is accompanied with an 

increase in the likelihood of truth [25]. E.J. Olsson [26] defines 

the coherence as: 

𝐶𝑜(𝐸𝑖 , 𝑑) =  
𝑃(𝐸𝑖  ∧  𝑑)

𝑃(𝐸𝑖  ⋁ 𝑑)
 

 

6. The overlap coherence measure (OCM) is then defined 

as: 

 
𝑃(𝐸1  ∧  𝑑)

𝑃(𝐸1  ⋁ 𝑑)
>
𝑃(𝐸2  ∧  𝑑)

𝑃(𝐸2  ⋁ 𝑑)
 

 

7. The Fitelson coherence measure [27] (FCM) is then 

defined as: 

 

𝐶𝐹(𝐸1, 𝑑) > 𝐹(𝐸2, 𝑑) 
 

with 

 

𝐶𝐹 =
𝐹(𝐸𝑖 , 𝑑) + 𝐹(𝑑, 𝐸𝑖)

2
 

 

and with 

 

𝐹(𝐸𝑖 , 𝑑) =  
𝑃(𝑑|𝐸𝑖) −  𝑃(𝑑|¬𝐸𝑖)

𝑃(𝑑|𝐸𝑖) +  𝑃(𝑑|¬𝐸𝑖)
 

 

  D.H. Glass [22] compares all other measures proportional to 

the MPE measure. The author experiment concludes that the 

OCM measure is closest to the most probable explanation.   

  All of these measures are probabilistic measures but none of 

them takes the ability of the reasoner into account. In line with 

D.B. Leake [28] we argue that an explanation can only be 

evaluated with the perspective of a reasoner, thus taking its 

knowledge, goal and reasoning capabilities into account. Further 
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we argue in the line of D.H. Glass [22] since our postulation 

differs from the MPE measure.  

 

 

3.0 SELF-EXPLANATORY DESCRIPTIONS 

 

Self-explanation requires formulating an abstract description of 

the capabilities an agent provides in order to answer the question 

stated in the Introduction. Indeed, different software engineering 

paradigms like Service Oriented Architectures (SOA) and of 

course Agent Oriented Software Development use such 

descriptions to enable system components to access and use the 

available capabilities nowadays. Thus descriptions that origin – 

for example from the SOA community – typically provide 

additional information to the description to enable the audience 

to better understand it. This additional information in what we 

call classical descriptions is constrained to semantic information. 

The problem at hand is the semi-optimal performance of AI 

algorithms using currently available descriptions like service 

matcher and planner [29].  

  Here we want to motivate this by the results of the Annual 

International Contest on Semantic Service Selection2 (S3) [29] at 

which the SeMa2 [30] has performed well in the latest (2012) 

edition. Figure 2 illustrates the precision and recall values of the 

SeMa2 and shows the space of improvement.  

 

 
Figure 2  Recall (x-axis) and Precision (y-axis) value of the SeMa2 for 

the S3 Contest sample problems 

 

 

  Here, we are able to identify several improvement points. 

For example the artificial reasoner that reasons upon the given 

description. Another improvement points are the used 

knowledge-base, the used languages and the used formalisms. 

Since this work copes with capability descriptions we try to 

improve this point. Therefore self-explanatory descriptions – in 

contrast to classical descriptions – provide additional 

semantically and contextual information in a structured and 

computer readable manner as proposed in Oaks et al. [4]. This 

allows us to define self-explanatory descriptions as follows: 

 
“A self-explanatory description provides all information 
necessary for a reasoner in a given context.” 

 

                                                
2 The Annual International Contest on Semantic Service Selection (S3) – For 

more information visit: http://www-ags.dfki.uni-
sb.de/~klusch/s3/html/2012.html 

Furthermore, using the measure presented earlier we can 

state for a given reasoner: 

 
“A description is more self-explanatory if it provides additional 

information about the explanandum B in order to ease the 

reasoning on the explanans A, such that there exist a why/how-
question Q with B as its presupposition, and A explains B.” 

  

  In our example of the open door, a more self-explanatory 

description could be: “The room is unsecure, because the door is 

open, giving unauthorized personal the possibility to breach the 

security.”   

  The measure defined above describes an explanation as 

more self-explanatory if the audience is able extract the explained 

information. To ease this extraction the explanation is enriched 

with information, which might help the artificial reasoner. This 

leads to the question on which information should be provided in 

the self-explaining description. The following section will try to 

answer this question by looking at state of the art description and 

propose an extension to make them more self-explanatory. 

 

3.1  Contained Information 

 

In order to enable a system to be more self-explaining the system 

has to provide information about its capabilities, interaction ways 

and current state. Nowadays this information is provided by e.g. 

service descriptions. This has been subject to standardization, e.g. 

for service description in the Web Ontology Language (OWL).3  

OWL-S4 based descriptions present the current state-of-the-art in 

service description. They enrich the OWL based descriptions 

with semantically information and contain the following three 

elements to explain a service: 

 

1. Service profile: Describes the service offered by some 

provider so that a service requester is able to decide if 

this is a service fulfilling its request.  

2. Service Model: describes how the service is used. This 

may involve a process, which extends the basic idea of 

a simple function call.  

3. Service Grounding: Specifies the details on how the 

service can be invoked.  

 

  To extend the current available descriptions to self-

explanatory descriptions, we opine the idea of C. W. Morris [31] 

and in consequence distinguish between three different types of 

information: 

 

1. Syntax – concerning the interpretation of signals, 

2. Semantics – concerning the meaning and relationship 

between entities and  

3. Pragmatics – concerning the interpretation of 

statements  

 

  Sooriamurthi and Leake [32] present in an early work their 

viewpoint on explanations in the Artificial Intelligence (AI) 

research domain. They developed a definition of explanation “as 

a situated, utility-based, hierarchical, goal-driven process” [32]. 

The authors emphasize that the context should be incorporated in 

the interpretation and creation process of explanations to enable 

systems to adapt to dynamic situations and therefore introduce 

the use of pragmatics as context-dependent interpretation of 

meanings. This is important since the explaining system might 

3 The Web Ontology Language (OWL) – For more information visit: 
http://www.w3.org/TR/owl-features/ 

4 OWL-S: Semantic Markup for Web Services – For more information visit: 
http://www.w3.org/Submission/OWL-S/ 
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have to cope with partial observable situations while creating an 

explanation. In such situations the proposed approach suggests to 

take former explanations to guide the search for information to 

create a new explanation.  

  D.B. Leake [28] underpins this finding while arguing that 

with changing system goals the interpretation of an explanation 

should change as well. Furthermore, the author motivates an 

explanation evaluation process, which concentrates on evaluating 

explanations of anomaly events. The proposed process that is 

illustrated in Figure 3 reaches from an observed anomaly to an 

evaluation decision. We want to emphasize that an explanation in 

this work is goal driven, too. That is, because the reasoner using 

an explanation infers on this explanation in a given context to 

reach a given goal. Thus multiple explanations can be created 

depending to the goal of the reasoner and in consequence of the 

explanation. With this evaluation of explanation, the work of 

D.B. Leake copes with the same problem as the one followed in 

this work, which is to create self-explaining agents.  

  The author also emphasizes that this requirement holds in 

different research fields like Psychology, Philosophy and AI. At 

the same time, D.B. Leake uses the factors plausibility, relevance 

and usefulness for explanations concerning anomalies in regard 

to a given goal. Coming to the conclusion that “(m)any 

explanations can be generated for any event, and only some of 

them are plausible” [28]. The three factors are defined as follows: 

 

 Plausibility – the explanation has to provide a plausible 

reason on why the entity is of interest.  

 Relevance – for the explanation to be relevant it has to 

create knowledge or belief that is conflict free and 

should provide information about the entity of interest 

explained.  

 Usefulness – the explanation should contribute to the 

goal and the explanations purpose.  

 

 
 

Figure 3  Goal driven explanation evaluation process as proposed by D.B. 
Leake [28] 

 

 

  Those three properties can be seen as requirements on 

explanations. The requirements we identify here is that a self-

explanatory description must include not only regular 

information but also semantic information (about the meaning of 

the regular information) and context information for the context 

dependent meaning. This correlates with the overall goal of self-

explanation proposed by C. Müller-Schloer [14] to enable 

systems to explain its current state, which seems to be impossible 

without providing contextual information. Current descriptions 

do no fulfill all of these requirements – providing only regular 

information and sometimes semantic information but no context 

information as e.g. shown in Listing 1.  

  Coleman et al. [33] notice that within communication 

between agents which are not context aware, the meaning cannot 

extend beyond the meaning explicitly carried by the message. 

Thus the meaning needs to be predefined or explained within the 

message, which forms the crux of the motivation of this work to 

use context dependent meaning. On the one hand meaning might 

be twofold: First we can define abstract domain specific meaning. 

Secondly during runtime the abstract values have to be filled with 

concrete contextual information. On the other hand, with context 

aware communicating agents, context dependent meaning might 

change over time, since the context may change. As argued by R. 

Laddaga [34] adaptive software requires knowledge of the 

context as in: “what does the application/capability do?”, how to 

react/adapt to change and runtime support on detecting change as 

well as modifying parameters to adapt to that change. Thus the 

contextual information needs to be part of the description. A more 

detailed overview about the current state-of-the-art in description 

is given in the following. 

 

3.2  State of the Art Description  

 

As the approaches above are quite fundamental and thus general 

or theoretic we further want to list more practical approaches in 

the agent community. 

  Braubach et al. [35] uses the beliefs, desires and intents to 

formulate goals, knowledge and capabilities for a multi-agent 

system. Here the beliefs represent the knowledge of an agent. 

This knowledge base is influenced by belief updates representing 

the observations an agent does. Desires represent the goals an 

agent has and intents are the capabilities available to the agent to 

achieve its goals.  

  Sycara et al. [36] formulates agent and service capabilities 

utilizing the Input, Output, Precondition and Effect (IOPE) 

approach. The authors propose the description Language for 

Advertisement and Request of Knowledge Sharing (LARKS). 

Additionally a textual description of the meaning of the IOPE 

description can be attached. This additional description is not 

optimized for computer readability.  

  Grüninger et al. [37] use First-order Logic Ontology for 

Web Services (FLOWS) to describe the functionalities of a 

service. FLOWS can be seen as an extension of a process 

specification language enabling the description of IOPE as well 

as internal structures of services, composition patterns, 

messaging behaviors, and impact of services on the external 

world. 

  Martin et al. [38] uses the Web Ontology Language to 

structure the description of services. The proposed Ontology Web 

Language for Services (OWL-S) is an extension of the Web 

Services Description Language (WSDL) to enable the description 

of workflows composed of basic services.  

  Those approaches all explain something about the subject of 

interest in specific domains but all lack the ability to measure the 

amount of information transferred by such an explanation, 

making it impossible to distinguish the quality of such 

explanations. Furthermore, the descriptions presented here 

present context-independent information and with this are not 

able to fulfill the requirements presented above.  

 

 

4.0  APPROACH 

 

So far we have motivated why we need descriptions and why they 

should be self-explanatory. Now we will introduce a formal 

definition of self-explanatory descriptions and present the 

components of such a description in more detail. Furthermore, we 

will introduce how we want to enrich a description with 

additional contextual information to describe context dependent 

Anomaly

Goals

Plan

Explanation Purpose

Dimentionchecks

Evaluation decision
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meaning. Therefore we want to use a concept from linguistic and 

investigate its applicability to modern computer readable 

capability description. We will introduce this theory, which is 

called Natural Semantic Metalanguage, in the following as the 

theoretical foundation for our approach. We then explain how 

meaning is described using this metalanguage and how this 

meaning is contextualized.   

 

4.1  The Natural Semantic Metalanguage 

 

The Natural Semantic Metalanguage (NSM) is a linguistic theory 

originated in the early 1970s [39]. It stated that each expression 

created in a natural language can be represented using a set of 

atomic terms – so-called universal semantic primes. These primes 

have an indefinable word-meaning and can be identified in all 

natural languages [5]. In conjunction with associated grammatical 

properties NSM presents a decomposition system able to describe 

all expressions build in the appropriated language. Here, an 

expression is decomposed into less complex expressions, where 

the process ends if the expression is decomposed to the atomic 

level of semantic primes, which cannot be analyzed further. One 

can imagine that the decomposition builds a tree, where all leafs 

are semantic primes. Consequently for each natural language a 

metalanguage exist which consist of the semantic primes in the 

specific syntax and their appropriated grammatical properties. In 

this work, those semantic primes are predefined by the 

applications domain. However, about 63 semantic primes exist 

which can divided into 16 categories whereby Table 1 lists the 

semantic primes for the English language. 

 

4.2  Formal Model of Explanation 

 

To use NSM as a metalanguage for self-explanatory descriptions 

we first need to transform the words used as semantic primes in 

NSM into concepts that can be used to explicitly describe the 

meaning of concepts used in descriptions. Therefore, we need a 

conceptual model as theoretical device for describing the main 

elements of a self-explanatory description. This model can depart 

significantly from real world algorithms solving the problem we 

cope with. However, it will be very useful to explain the basic 

concepts we want to follow and to clarify the assumptions and the 

requirements for self-explaining agents. To describe an 

explanation with context dependent meaning we formalized a 

self-explanatory description here called explanation, as a five-

tuple 𝑒 ∈ 𝐸∆𝑆𝑃
with: 

 

𝑒 = (∆𝑆𝑃,∘
𝐼 ,∘𝑃 , Γ𝑑 , Ξ 𝑑

𝑡 ) 
 

 ∆𝑆𝑃  is the set of atomic semantic primes 

 ∘𝐼  is the interpretation function of the semantic 

primes 

 ∘𝑃  is the decomposition function of concepts 

 Γ𝑑  is the conceptual contest 

 Ξ 𝑑
𝑡  is the tangible context 

 

4.2.1  Semantic Primes 

 

The first element ∆𝑆𝑃 is the set of atomic primes given by the 

language used for the description. It holds all primes needed for 

the application. For example, for an explanation e written in the 

English language the set ∆𝑆𝑃 would contain all primes listed in 

Table 1. In the following we will use these primes for our 

                                                
5 Expression is a term used in the domain of linguistic, where concept is a term 

used in the domain of description. We will further use the term concept. 

examples. One might notice that we will not use all primes for the 

examples through simplicity reasons and that in consequence the 

set ∆𝑆𝑃 used within this work would not contain all primes listed 

in Table 1. 
 

Table 1  A list of all sematic primes of the English language according to 

the Natural Semantic Metalanguage theory [5] 

 

Category Primes 

Substantive I, YOU, SOMEONE, SOMETHING/THING, 
PEOPLE, BODY 

Relational 

substantives 

KIND, PART 

Determiners THIS, THE SAME, OTHER/ELSE 

Quantifiers ONE, TWO, MUCH/MANY, SOME, ALL 

Evaluators GOOD, BAD 

Descriptors BIG, SMALL 

Mental predicates THINK, KNOW, WANT, FEEL, SEE, 

HEAR 
Speech SAY, WORDS, TRUE 

Actions, events, 

movement, contact 

DO, HAPPEN, MOVE, TOUCH 

Location, 

existence, 

possession, 
specification 

BE (SOMEWHERE), THERE IS, HAVE, BE 

(SOMEONE/SOMETHING) 

Life and death LIVE, DIE 

Time WHEN/TIME, NOW, BEFORE, AFTER, A 
LONG TIME, A SHORT TIME, FOR SOME 

TIME, MOMENT 

Space WHERE/PLACE, HERE, ABOVE, BELOW, 
FAR, NEAR, SIDE, IN- SIDE 

Logical concepts NOT, MAYBE, CAN, BECAUSE, IF 

Intensifier, 
augmenter 

VERY, MORE 

Similarity LIKE 

 

 

4.2.2  Semantic Primes and their Interpretation 

 

The second element of our theoretical model is ∘𝐼: ∆𝑆𝑃 → 𝔻𝑑 the 

interpretation function of the semantic primes. For the formalism 

the set of semantic primes is held in ∆𝑆𝑃 and the interpretations 

are subsumed in the interpretation function ∘𝐼. 
In contrast to the original idea of NSM we need to provide an 

interpretation or more specifically the domain-specific meaning 

for each semantic prime. As the interpretation for each semantic 

prime is an inherent part in natural languages this interpretation 

must be provided for computers and for the domain addressed by 

the application. Consequently the definition of such an 

interpretation requires domain knowledge.  

  An example could be the concept ‘I’ in an IP-network 

security domain. We could specify that if some entity has to 

identify itself it must return its IP-address. As mentioned above 

the domain-specific meaning of ‘I’ has to be filled by the 

developer for further use in descriptions. An example 

interpretation of ‘I’ and therefore of the IP could be that the 

structure of IPs encodes locations in subnets. Thus giving 

meaning to the otherwise random numbers.  

 

4.2.3  Decomposition  

 

As mentioned above NSM presents a decomposition system able 

to describe all expressions build in a natural language using the 

semantic primes.5 In order to enable agents to decompose 
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concepts to the atomic level of semantic primes we introduce the 

third element of our model ∘𝑃 : ∆𝑆𝑃 ×𝔻𝑑  → ℘(∆𝑆𝑃) the 

decomposition function of concepts. 

  After having filled all used semantic primes with meaning 

using the interpretation function, we are able to describe the 

meaning of all other concepts used in descriptions utilizing the 

decomposition function.   

  An example here could be the composed statement ‘I CAN 

DO SOMETHING’, where ‘SOMETHING’ is replaced by e.g. an 

action that is exposed to others – meaning in our example that an 

entity ‘I’ with a specific IP can do a specific action.  

Further, the descriptions build upon ∆𝑆𝑃 are formalized in 

𝑒 consisting of 𝑛 ∈ ℕ semantic primes used to explain a subject 

of interest. This is similar to the conventions proposed by M.P. 

Singh [40] as communicative acts, but lacks the attempt to be 

used domain-independently. 

  The next example shows how semantic information can be 

extended by contextual information. This example is located in a 

bottle or security domain and uses the concept ‘OPEN’ which 

might be of interests concerning doors or bottles. The example 

ontology “messemodul.owl” of the annual S3 contest [29] defines 

the meaning of ‘OPEN’ as follows: 

 

<owl:Class rdf:about="#Open"> 

 <rdfs:subClassOf rdf:resource="&owl;Thing"/> 

 <owl:disjointWith rdf:resource="#Closed"/> 

</owl:Class> 

Listing 1  XML representation of the meaning of the concept ‘OPEN’ 

taken from the example ontology “messemodul.owl” of the annual S3 

contest [29] 

 

 

  As one can imagine the meaning extracted here is quite 

general. From the metalanguage three concepts are used: ‘Class’, 

‘subClassOf’ and ‘disjointWith’, disregarding the domain-

specific effect of this concept. We argue that adding such domain-

specific and context dependent meaning increases the reasoning 

capabilities. For example adding information like: ‘If something 

is open for a long time, something bad can happen’ might be 

considered in the security domain. The classification in good or 

bad is domain-specific. The ‘something’ is context dependent, 

which should be replaced at runtime, to the actual thing being 

opened. This makes it necessary to identify the ‘variables’ which 

can be specialized in the context (at runtime). Further the context 

dependent information that if something is opened, implying that 

something else is opened as well is normally formulated in the 

effect of a capability descriptions (e.g. opening a door, opens the 

room which the door is part of), or described as a property of the 

concept. The metalanguage of OWL describes this as a 

‘owl:TransitiveProperty’. We argue that such a property is used 

by reasoners to reason upon the state ‘OPEN’ but the change of 

meaning of other concepts is neglected. Thus the change of 

meaning of other concepts can be specified giving the concepts 

context dependent meaning. In our example the meaning of 

‘INSIDE’ changes if something is ‘OPEN’ connecting all entities 

which are affected by the something being open to incorporate all 

transitive things to be inside. The NSM description of this could 

start with:  
 

‘If something is open the things inside the something being 

open, maybe inside all other things being opened’.  

 

This can be imagined like a door opening and with that joining 

two rooms to one. At this point we want to highlight that this is 

not a natural language, since all the concepts used in such an 

NSM description are part of the metalanguage used to describe 

meanings. It seems like natural language since a natural like 

syntax has been chosen for these examples. 

  The following extensions of the implication in semantics to 

the implicature in pragmatics, holds a main benefit of using 

context dependent meaning, but is out of scope for this work. 

For the syntax of explanation: To reason upon those explanations, 

the meaning of every concept and the use of those concepts in 

explanations, a syntax need to be determined. Swartout et al. [41] 

uses a case-grammar introduced by C.J. Fillmore [42] to structure 

the descriptions in natural human readable manner. A fitting 

domain specific syntax is subject to research. As for now we will 

use the Manchester Syntax [43] meanwhile to ensure the 

compatibility with OWL2 and with that with existing reasoner. 

One might argue that this is equal to a standardization process. 

We argue that reducing the amount of concepts which are subject 

of standardization to about 63 concepts might help reducing the 

effort on creating domain-specific ontologies and ease the 

reasoning on the created domain-specific language. As further 

argument, the explanation consists solely of those semantic 

primes, rather than the descriptions which require Natural 

Language Processing to be reasoned upon. 

  As in organic computing an observer/controller pattern is 

often used [13], we assume that some kind of precondition and 

goals are defined, as well as some mechanism observing if 

preconditions are reached. In our surveillance example such a 

precondition might be that there should never be unauthorized 

personal in room A. Opening a door to room A might be used as 

an example on how changes at runtime might change the meaning 

of the concept ‘INSIDE’. It is our thesis that giving an 

explanation using concepts from NSM might enable reasoners to 

better identify change in meaning of concepts used. We postulate 

that with some description like the one outlined above a reasoner 

might be able to reason that if opening one door to room A, all 

entities in the ’new’ joint room need to be authorized. This kind 

of inference is called implicature. 

 

4.2.4  Contextual Information 

 

The fourth and fifth element of our theoretical model are the 

conceptual context Γ𝑑 and the tangible context Ξ 𝑑
𝑡 .  

As argued above, those semantic models as part of a self- 

explanatory description can be extended with the changes in 

context. The change of meaning is caused by the different context 

decompositions attached from the different reasoner. This context 

dependent meaning can be seen like the pragmatic extension of 

semantics in linguistics.  

  This section motivates why domain specific meaning should 

be explicitly described. We use as example the concept 

‘INSIDE’: A factoring plant filling bottles and a surveillance 

system might both have a sensor announcing a statement using 

the concept ‘INSIDE’. Since those are two different domains, the 

developers of a system need to specify the meaning of ‘INSIDE’ 
as part of the semantic primes (here inside a bottle or a room) in 

different ways. As for now, this semantic is left to the developers 

since they use their common sense to install a movement sensor 

to determine if someone is inside a room not in a bottle and reflect 

this in a ontology used later by some component to reason upon. 

So there is no explanation needed if the interpretation of the 

sensor values are fixed. But in a dynamic and adaptive scenario 

this is not the case and descriptions become necessary to 

determine if the system component might be of use to reach a 

certain goal.  
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Coleman et al. [33] identifies three types of context (linguistic, 

individual, social) that can be interpreted in two forms: Internally 

and externally. Internally from the view of the entity explaining 

and externally for the view of the audience. Since in classical 

descriptions none of this contextual information is explicitly 

given, a reasoner needs to infer the contextual information, which 

can be necessary to define the meaning of a concept or to identify 

an SOI uniquely. As an extension of the approach introduced by 

Coleman et al. to the run-time, we identified two additional 

granularities of contextual information needed in a self-

explanatory description: 

 

 Conceptual context Γ𝑑: Describes the features of a 

system under study, which might be of interest to the 

adaption and are effected by some action. The 

conceptual context thereby is formalized as Γ𝑑 the 

contextual information in the domain d. 

 

 Tangible context Ξ 𝑑
𝑡 : during execution the contextual 

information gets filled with particular values and 

linguistic references are resolved, which are used by the 

adaption. The tangible contest is formalized as Ξ 𝑑
𝑡  

being dependent of the time t at which a value of a 

fluent (or variable) 𝜉𝑑
𝑡 ∈ Ξ is held for domain d. 

 

  The conceptual context (the domain: bottles or rooms) and 

the tangible context are modeled separately by our approach. In 

our surveillance example the tangible context of ’room A’ might 

be filled with an instance of a room for example ’the hallway’ 

described by its concrete coordinates. Further for example the 

alarm might have different signals, which are by default, free of 

meaning. This meaning can be set statically, by programming it 

into the system, or as proposed by this work, specified in the 

description. The change of having a semantic meaning of the 

concept, to having a context dependent meaning is the extension 

of a syntactical, semantic interpretation to a pragmatic one [31].  

Further the identification of fluents (variables effected by some 

action) and the effect of action on them need to be explained so 

that reasoner can relate given actions to their goals. As 

descriptions of actions might include the description of its effect, 

the tangible contextual information might help to identify fluents.  

 

4.3  Technical Implementation of Context and Domain 

 

Technically the concepts formulated in NSM are then used in 

OWL2 expressions. Using the direct semantics of OWL2 the 

expressiveness of the description logic 𝒮ℛ𝒪ℐ𝒬(𝒟) is available. 

Reducing the expressiveness ensures the decidability [44] and 

with that the use of existing OWL reasoner likes Pallet6 or 

FACT++7. As an expression type, a NSM expression can be used 

like any other expression in OWL2. Introducing to OWL2 a 

language with the focus on describing context dependent 

meaning of new concepts. The representation of such an 

explanation might look like the XML in Listing 2. 

 

 

5.0 CONCLUSIONS 

 

In summary an explanation is a kind of description that gives 

information about a subject of interest. We can conclude that an 

explanation e transports information i to an audience of reasoner. 

Since the audience reasons context dependently about the 

                                                
6 The Pellet OWL 2 Reasoner for Java – For more information visit: 

http://clarkparsia.com/pellet/ 
 

observed explanation, the explanation has to be extended with 

context dependent meaning. The quality of an explanation can be 

measured by how much information the audience can extract 

from the explanation. So far, we define that an explanation 

becomes of higher quality if the degree of explanation rises.  

 

<nsm:Class rdf:ID="Expression"> 

 <rdfs:subClassOf> 

  <nsm:Domain> 

   <nsm:onProperty rdf:resource="#NSM"/> 

   <nsm:uri rdf:resource="#URI"> 

    domain expressions 

   </nsm:uri> 

 </nsm:Domain> 

 </rdfs:subClassOf> 

 <rdfs:subClassOf> 

  <nsm:ConceptualContext> 

   <nsm:onProperty rdf:resource="# 

       expressionBody"/> 

   conceptual context 

  </nsm:ConceptualContext> 

 </rdfs:subClassOf> 

 <rdfs:subClassOf> 

  <nsm:TangibleContext> 

   <nsm:onProperty rdf:resource="# 

       expressionBody"/> 

   tangible context 

  </nsm:TangibleContext> 

 </rdfs:subClassOf> 

</nsm:Class> 

Listing 2  XML representation of a NSM expression 

 

 

  The presented approach uses context-dependent meaning in 

addition to semantics to describe the concepts used in an 

explanation. The descriptions are built upon semantic primes –

atomic elements of a natural language with an indefinable word-

meaning – that are identified by NSM, a natural semantic meta-

language. We formalized our approach for self-explanatory 

description as a five tuple that can be used to build such 

description using contemporary techniques like OWL2. Figure 4 

describes our approach as an abstract process enriching currently 

available descriptions with more information. In a nutshell, 

service descriptions, e.g. used in the SOA community, already 

provide semantic information (as illustrated in Figure 4 at Level 

1). This semantic information can be formalized using e.g. 

Ontologies and is used to describe context independent meaning. 

This is represented by the tree. In our approach we plan to 

enhance the concepts described in such Ontology by enriching 

the already available information with a domain specific 

description (as illustrated in Figure 4 at Level 2). Those 

7 The FaCT++ OWL-DL reasoner – For more information visit: 
http://owl.man.ac.uk/factplusplus/ 
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descriptions are built upon the semantic primes provided in NSM. 

This line of action offers the advantage NSM provides for 

computer readable descriptions. That is, that every explained 

concept can be decomposed into the atomic level of semantic 

primes leading to a decomposition tree where all leafs are 

semantic primes (as illustrated in Figure 4 at Level 3). That is not 

only a structure which is efficient for computers to cope with but 

it might also lead to improvements for the match-making of 

concepts as only 63 concepts must be matched not all concepts 

buildable in a language (e.g. OWL-S based descriptions can be 

used to describe an infinite number of concepts).  

 

 
 

Figure 4  Our approach for self-explanatory descriptions enhances 

currently available descriptions (level 1) with domain information (level 

2) using NSM in order to reduce the complexity of concepts described 
(level 3) 

 

 

  A concrete example on how well we as humans do 

understand such explanations is given by this (hopefully) self-

explaining description:  

 
‘This is something very big / people can see it / people can think 
like this about this something: “it is a place / is is above all other 

places / it is far from people”’ 

 

  Depending to the background knowledge the interesting 

reader might reason that we search for a concept like the sky or 

the universe. An artificial reasoner will rather need a more 

extensive explanation since most of our background knowledge 

is missing. However, the reasoning process is the same and 

maybe powerful enough to match such an explanation with a 

prior known concept.  

  To prove this thesis we have to create self-explanatory 

descriptions on which artificial reasoners can make inference. Yet 

the creation of such descriptions and the development of tools is 

subject to research.  Based on the presented formalism we can 

state that one needs to fulfill the following three steps to 

implement a self-explanatory description: 

 

 Define meaning of the semantic primes  

 Describe meaning of concepts used with only those 

semantic primes, including context dependent 

(conceptual and tangible) and context independent 

meaning  

 Use described concepts to build up an description 

 

  For the purpose of evaluation a sufficient amount of services 

or agent capabilities need to be described using the approach 

presented in this work. Then the reasoning upon those 

descriptions can be subject of research.  

Our future work will be concerned with properties of explanation, 

in the attempt to make the definition more tangible. Further we 

want to integrate the existing structures of explanations like BDI 

and IOPE into explanations, to become able to connect an 

explanation to the goal of an agent, and with that fill the 

conceptual context with concrete instances.  

  The decomposition process needs to be automated. Thus a 

formal syntax has to be chosen and data sources like DBPedia and 

Wordnet can to be used to automate the decomposition process. 

This leads to a learning component, which adapts the descriptions 

at runtime and extracts heuristics out of the explanation. 
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