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Abstract 

 

In the context of situated agents simulations, when the number of agents increases, the number of their 

interactions will be increased too. These growths leads to higher requirements in memory and computation 
power. When simulations involve millions of agents, it becomes necessary to distribute the simulator on a 

computer network. In this paper we study the impact of synchronization policies in such context. Our claim 

is that when millions of agents are used in a simulation, because observations of these complex systems is 
made at the population level, emergent properties at the macroscopic level should not be highly impacted 

if some failure appears at the microscopic level. This paper is focused on the study of the impact of 

synchronization relaxation in the context of large scale situated agents simulations. We evaluate the cost in 
performance of several synchronization policies and their impact on the macroscopic properties of 

simulations. To that aims, we study three different time management mechanisms and evaluate them on 

two multi-agent applications. 
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1.0  INTRODUCTION 

 

Multi-agent systems are made of autonomous entities (agents), 

which interact in an environment to achieve their own goals [1], 

producing emergent properties at the macroscopic level. When the 

number of agents or interactions grows to millions or billions, the 

simulation of such system requires important computation power 

and memory volume, which can be handled by distributing 

simulations over network. However, when working with this kind 

of simulations, the goal is not to observe millions of individual 

interactions (microscopic level), but to observe properties at 

macroscopic level. In some applications, we can even consider that 

some agents fail or cannot interact as fast as other agents, that 

should not be critical to the global simulation outcome. In other 

words, if we have a large scale situated multi-agent system, and 

some agents fail to interact, that should not affect the global 

behaviour of the system (macroscopic level). 
  To reach large scalability in such systems, the distributed 

computation over a computer network is required. That raise some 

problematics like: time management and synchronization. This 

paper presents a first study of synchronization costs in 

performances and the impact of synchronization policies on the 

preservation of emergent macroscopic properties of situated multi-

agent simulation. 

The next section details the notion of time in a centralized and 

decentralized setting and introduce the three main synchronization 

policies that we have chosen for this study. The third section 

introduces the main concepts of multi-agent system. The fourth 

section details the platform that we have developed to experiment 

synchronization issues. The fifth section is the experimentation 

made on a prey-predator and capture the flag applications to 

benchmark the impact of synchronization policies on simulation 

outcomes. Last section is the conclusion. 

 

 

2.0  NOTIONS OF TIME AND SYNCHRONIZATION 

 

The word time is often defined as a non-spatial continuum in which 

events occur in apparently irreversible succession from the past 

through the present to the future. This transition from past events 

to events happening in the present is called the flow of time [2].  

 
2.1  The Multiple Notion of Time and Time Steps 

 

In a distributed simulation context, several notions of time are 

involved: user time, which is the real time, and simulated time, 

which is a set of small durations used to produce evolutions within 
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a simulation. This notion of simulated time is less linked to the flow 

of time and irreversibility than the property of ordering events in a 

sequence to guaranty causality between events. This notion of 

simulated time has been defined in a distributed context by 

Lamport [3] through a logical clock that induce a partial ordering 

of events, and has been refined as Logical Virtual Time (LVT) by 

Jefferson [4].  

  In multi-agent simulations, a common implementation to 

enable the simulation dynamic is to query all agents for their 

current action and to apply this set of actions. This round of talk 

defines a simulation step (simulation tick) or Time Step (TS). 

Because several actions are gathered within a time step, one can 

encounter conflicts between two or more actions, thus the simulator 

has to define tie-break rules for such situations. As illustrated in the 

prey-predator applications later in this paper, if two predators try to 

attack the same prey in the same simulation tick, a rule has to be 

given to define the outcome of such conflicting interaction.  

  In centralized multi-agent simulations, there is only one 

simulation time step that organize agents evaluation and that allows 

them to interact in a given period. In a distributed simulation, there 

is one logical clock per machine and the user time needed to handle 

a simulation step is not the same. In order to guaranty causality on 

all machines, we have to synchronize local time step within all 

machines. However, several policies to handle time step 

synchronization can be proposed as we will see in next sections. 

  The question that we are interested in is whether 

synchronization constraints can be relaxed without impacting the 

simulation outcome. Indeed, the balance between communication 

costs, performances and reliability is dependent on the application 

that is implemented. For example, if a simulation is used to 

generate an animation with a huge agent number, it should not be 

so important if some agents fail to interact, or if they do not interact 

as fast as other agents. However, in some other applications, like 

urban traffic simulations, we need reproducibility and reliability to 

ensure that all interactions between agents are fulfilled and also that 

performances are able to catch up with faster than real-time 

resolution. 

 

2.2  Synchronization Policies 

 

In this section, we explore three synchronization policies for 

distributed multi-agent simulations: strong synchronization, 

flexible synchronization and no synchronization. The main 

problem in a distributed setting is time management between 

machines [5] [6]. There are mainly two synchronization approaches 

in distributed systems: conservative (or synchronous) and 

optimistic (or asynchronous) synchronization [7], [8], [9]. 

However, we propose to divide synchronization policies into three 

main approaches: strong synchronization, flexible synchronization 

and no synchronization. 

 

2.2.1  Strong Synchronization 

 

This policy is simple: all machines are synchronized together in 

such a way that all local clocks are running at the same pace. Thus, 

the distributed simulator guaranty that all agents execute the same 

number of actions. To implement a strong synchronization, more 

messages have to be exchanged between machines, so 

communications costs are increased. This kind of conservative 

approach strictly avoid causality errors, but can introduce 

communication delays or deadlock problems. 

 

2.2.2  Flexible Synchronization 
 

The second policy allows machines to progress at different pace. 

One way to implement such flexibility is to use an optimistic (or 

asynchronous) synchronization, which allows machines to advance 

at different pace in simulated time. The main issue is to handle 

causality errors by detecting and recovering them through a 

rollback mechanism [9]. A rollback mechanism enforces temporal 

consistency by allowing a simulator to roll back previous events to 

reconstruct a previous state of the simulation. To enable this 

property, a simulator has to maintain a list of anti-messages that can 

undo side effects that have been produced by events evaluation. 

The gain of optimistic approaches is based on the fact that 

simulators should not roll back too often.  

  Another flexible synchronization that can be proposed is time 

window synchronization. With this approach, machines can 

progress at different pace but a global constraint is enforced such 

that the slowest and fastest machines do not have a time shift 

greater than the defined time window. Thus, a time window defines 

the worst spread in time steps that can happen between the slowest 

and fastest machine. With this window permission, machines can 

avoid some delays of strong synchronization but we have to check 

that this flexibility do not affect macroscopic behaviours outcome. 

Of course, with this approach, we can have situations where agents 

in different time steps can interact. These situations can be resolved 

through roll back mechanisms, or can be ignored if it is believed 

that the impact of time incoherency in some interactions is 

negligible in respect to the volume of interactions in the whole 

system. This is a strong hypothesis that will be studied through the 

two applications in next sections. 

 

2.2.3  No Synchronization 

 

The third and last policy is to simply drop synchronization between 

machines. It can be seen as a variation of the time window policy 

with an infinite window size. This approach exploit the available 

speed of all machines, however, we will see in section 4 obviously 

that this policy is not fitted for all applications. 

  To conclude, this section has presented the three 

synchronization policies that will be studied in following sections. 

With the synchronous approach (or strong synchronization), all 

machines guaranty the correct execution for all parts of the 

simulation but additional messages have to be exchanged and 

induce more delays for each time step. Whereas, in asynchronous 

approaches, machines take checkpoints independently without any 

synchronization among them. Unfortunately, because of the 

absence of synchronization, there is no guarantee that local time 

steps are the same. In order to get rid of these disruptions, machines 

have to roll back to older checkpoints.  

  The problematic studied in this paper is thus to determine 

whether we are able to keep macroscopic behaviours emergence 

when relaxing synchronization constraints. This approach aim is to 

gain performance by reducing synchronization costs and to 

determine which kind of applications are robust with respect to 

these synchronization issues. 

 

 

3.0  AGENT AND ENVIRONMENT CONCEPTS 

 

In MAS systems, agents and environment are the main concepts 

that allows entities to perceive and act on a common medium. We 

first describe what is an agent before detailing the importance of 

the environment in a situated multi-agent simulation.  

  An Intelligent Agent [1] is an autonomous entity which 

observes its environment and acts by following its own goals. 

Intelligent agents can use old knowledge or learn new one to 

achieve their goals. They can be very simple or very complex as we 

can see in table I. Agents can range from purely reactive agents 

(simple strategy) to cognitive agents (complex strategy) by 

involving abstract knowledge representation and planning systems. 
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Simplest agents can be passive entities like an apple. A more 

complex agent can be a door which is a reactive agent without 

goals. More complex, cognitive agents can learn and update their 

strategy. Agents are able to interpret their environment and try to 

achieve their own goals. Depending on the application, we can have 

a large number of agents like in a physical collision simulation 

(mainly made of reactive agents) or only one cognitive agent (chess 

player agent): 

 

 
  The environment in a multi-agent system can be considered as 

an agent container and an interaction mediator between agents. 

Different environment types can be used for different application 

types. In some applications, there is no spatial environment like in 

financial markets simulations ATOM [18]. However, we are 

mainly interesting in applications that have spatial environments. 
  In our study, we distinguish two main spacial environment 

types: 

 
 Discrete Environments: like IODA [19], 
 Continuous Environments: flocking model [16]. 

 
  These environments types are deduced from the type of 

interactions that happens between agents. Depending on the 

application domain, the environment can enforce spatial constraints 

(soccer or collision simulations) or not (stock market simulations). 

 When an environment has a spatial dimension, agents are 

embodied, so two agents cannot be in the same place at the same 

time. Within spatial environment, a distinction can be made 

between discrete and continuous environments. In a discrete 

context, the environment is made of a grid and agents move in this 

grid by swapping between environment’s cells. In continuous 

environments, the space is represented by ranges and agents have 

floating positions. More details about environment properties can 

be founded in [1]. 

 

 

 

 

 

4.0  DISTRIBUTED AGENT-BASED SIMULATORS 

 
To achieve large scale agent-based simulations, we believe that the 

distribution of a simulator on a computer network is necessary to 

reach a high number of agents and interactions. A simple 

distributed platform can be M machines with a communication 

layer that informs others about simulation changes. Each machine 

is able to build a partial view of the system, and with all other 

machines we have the global view of the system. However, there 

are different ways to distribute such simulations with its concepts 

(agents and environment). In this paper, we will focus more on time 

management and synchronization rather than the way of 

distribution. 

 
4.1  State of the Art 
 

Many platforms already exist in the domain of distributed large 

scale agent-based simulation: Repast [10], FLAME [11] (and 

FLAME-GPU implementation [12]), AglobeX Simulation [13], 

and DMASON [14] [15]. But, they do not support several 

synchronization policies.  

  Repast [10] provides components to build multi-agent 

simulations on a network with a shared middleware between 

machines, so simulator is free from all distribution considerations. 

Distribution through a middleware do not take into account specific 

optimizations that can be implemented to distribute multi-agent 

simulation. Another approach proposed by Repast is HLA, but it is 

focused on the coordination between different sequential 

simulation toolkit and is not really designed to gain speedup.  

  Other interesting works are D-MASON [6] and AglobeX [7] 

platforms. D-MASON is based on a master/workers approach, the 

master assigns a portion of the whole computation (like a set of 

agents) to each worker. Then, for each simulation step, each worker 

simulates the agents assigned and sends back the result of its 

computation to each interested worker. AglobeX[13] also has been 

built on the same mechanism and both platforms use simple models 

as application: AglobeX uses an airplanes applications while D-

MASON uses a flocking model. These simple models do not 

produce complex interactions. For example in flocking model, 

birds will flock only by watching other birds and no interactions 

between two birds can explode the communication costs. However, 

in other classical models like prey-predator model, agents can 

produce complex or conflicting actions. For example, if two wolves 

want to eat the same sheep from different machines, then a protocol   

of agreement must be provided to resolve these actions.  

  To summarize,  no platform can be considered as a test-bed of 

our works, as all works are working only on strong 

synchronization. Table 1 shows a comparison between all these 

platforms:

 

Table 1  Comparison between platforms 

 

Platform MaxNbOfAgents MaxNbOfMachines Model Policy 

Repast 68 billions  32000 cores  Triangles Model  Strong sync only 

DMASON 10 millions 64 Boids Strong sync only 

FLAMEGPU 11000 GPU Pedestrian Crowds GPU-Strong Sync 

AglobeX 6500 22 cores Airplanes Strong sync only 

Our platform 20 millions 200 p2p-Machines Prey-predator model 3 different capabilities 
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Door 

Reactive 
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with goals 
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Learner 

Simple  
Entity 

Complex 
Entity 
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4.2  Testbed Description 
 
To evaluate the impact of synchronization policies, we have 

developed a distributed simulator. This simulator is based on a set 

of machines (peer-to-peer network), that handle the simulation of a 

subset of the environment with its agents. Each machine is 

connected with all other machines, so the communication topology 

is a fully connected graph. The distributed simulator can be run in 

one of the three available synchronization policies: strong, time 

window and no synchronization.  

  Figure 1 shows 4 machines executing a distributed agent-

based simulation. Each machine consists of: a local simulator, a 

communication unit and an environment part with its agents. The 

local simulation is a top-manager layer in each machine, which 

manages all tasks like: interactions between agents, receive 

information from neighbourhood machines and local visualization. 

Communication unit manages connections links between machines 

for message exchange and informs local simulator about machines 

time step (TS).  

  In case of strong synchronization, each machine follows 7 

main steps in each TS: 1) it sends information to all neighbours 

about the environment state near them. 2) Then it waits for new 

information from neighbours to inform local agents about the 

neighbours’ environments. 3) After that, each machine asks local 

agents about their next desired interactions. 4) Then, it sends the 

external interactions, which are interactions between agents from 

different machines, to neighbours. 5) Also, each machine receives 

interactions from others. 6) And, the possible interactions should 

be applied. 7) Finally, each machine draws its local environment 

and it synchronizes to next time step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1  Description of a distributed agent-based simulation on 4 machines, each machine consist of: local simulation, communication unit and part of the 

environment with its agents. In strong synchronization: all steps (from 1 to 7) will be followed, whereas in flexible synchronization: receiving steps (like 2 
and 5) can be passed to avoid communication delays 

  

  To illustrate the main loop executed by each machine, we 

have sketched two algorithms: algorithm 1 for strong 

synchronization and algorithm 2 for flexible synchronizations. 
 
Algorithm 1 for strong synchronization: 

1. Sync for zero-TimeStep 

2. While Running do 

3. //Exchange information 

4. //Local Interactions 
5. Get List Of Interactions From Our Agents 

6. Solve List Of Conflict Interactions 

7. Get List Of External Interactions 
8. While Not All Machines Are Satisfied do 

9. Send External Interactions 

10. Receiving From Others External Interactions 
11. Send Acceptance For Others’ External Interactions 

12. Receiving From Others Acceptance 

13. End while 
14. //Transferring Agents 

15. Transfer Agents With Notifications 

16. Receive Agents From Others 
17. //Sync With Others 

18. Receiving Messages 

19. Sync With Others for next TimeStep 
20. //Applying TimeStep’s Interactions And Drawing 

21. Applying Local Interactions 

22. Drawing 

23. End While 

 

Algorithm 2 for flexible synchronizations: 

1. Sync for zero-TimeStep to begin together 

2. While Running do 

3. //Send and Receive Information If Exist Without Wait 
4. //Local Interactions 

5. Get List Of Interactions From Our Agents 

6. Solve List Of Conflict Interactions 

7. Get List Of External Interactions 

8. //Without any wait 

9. Send External Interactions 
10. Receiving External Interactions If Exist Without Wait 

11. Add Possible Interactions To Local Collection 

12. //Transferring Agents 
13. Transfer Agents Without Notifications 

14. Receive Agents From Others If Exist Without Wait 

15. // W Time-Window-Sync With Others 
16. Receiving Messages 

17. Send Next TimeStep Notification 

18. Sync With Others On W TimeSteps If We Reach It 
19. //Applying TimeStep’s Interactions And Drawing 

20. Applying Local Interactions 

21. Drawing 

22. End While 

 

 

  The three synchronization policies have similar 

communication protocols with small differences. Algorithm 1 

shows the states of a machine when it is running in strong 

synchronization mode. Strong synchronization algorithm has in 
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each communication state a notification, which is kind of 

replying and acceptance from other machines. Especially for last 

state of communication, all machines should be synced for next 

TS and they are suspended until other machines are ready for next 

TS.  

  Algorithm 2 shows the two other mechanisms: time window 

and no synchronization. In this algorithm, there is no notification 

for any communications states, except the last state which is for 

next TS. For time window policy, machine sends a notification of 

its current TS, and it checks if it has permission for next TS. 

Which is in our case, the difference between the local machine’s 

TS and slowest machine’s TS must be less than W Steps (W is a 

number of steps which can be determined by the user). Whereas, 

in case of no synchronization, machines send only a notification 

for next TS. It is similar to time window, but with an infinity 

window W = ∞. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2  More than 5 million agents running on 50 machines 

 

 

  To evaluate the scalability of our testbed, we have 

implemented a simple flocking behaviour similar to Reynolds 

[16] and made it run on a network made of 50 machines, where 

each machine holds at the beginning of the simulation 100000 

agents (Figure 2). 

 

 

5.0  EXPERIMENTATIONS 
 

In this section, we describe two applications that have been 

implemented and benchmarked to quantify the impact of the three 

proposed synchronization policies. It seems obvious that time 

inconsistency have not the same effect in all applications. For 

example, the simple boids application (Figure 2) can run without 

synchronization and still produce the emerging flocking 

behaviour. So, we want to determine with the following 

experimentations the impact of synchronization policies on the 

outcome of the simulation, more precisely on the conservation of 

the expected macroscopic behaviours. 

 

5.1  Two Extrema Models 
 

To study the synchronizations impact, we have implemented two 

applications. One is extremely affected by changing the policy of 

synchronization, while the other is extremely not affected. 

 

5.1.1  Prey-Predator (PP) or Lotka-Volterra Model 
 

This model is a classical multi-agent application that involve two 

kind of agents, preys and predators. Both kinds reproduce 

themselves at a given rate, but predators seek and eat preys. If a 

predator does not find preys quickly enough, it dies of starvation. 

This application illustrates population co-evolution in a 

simplified ecosystem. An example of such model is the wolf-

sheep-grass simulation proposed by Wilensky [17] that we have 

implemented in our test-bed. In this example, wolf tries to find 

and eat sheep, sheep searches for grass to eat and grass re-grows 

at a given rate. Wolves and sheep can have energy when they find 

something to eat, and then they can reproduce themselves.  

  In normal situation, the number of wolves and the number 

of sheep will be inversely proportional in some periods of the 

simulation and directly proportional in others. If the number of 

wolves increases, then they will eat more and more of sheep, and 

the number of sheep will decrease. Then the wolves will not find 

more sheep to eat and that will lead to decreasing in wolves 

energy and then decreasing in number of wolves. After that, the 

sheep will increase because there are no more wolves try to eat 

them and again the number of wolves will increase as there are 

more and more of sheep to eat.  

  However, if we lose all wolves or all sheep, then the model 

will be destroyed. That because, if we lose all sheep, then wolves 

cannot find any sheep to eat, and all wolves will be died. Again, 

if we lose all wolves, then the number of sheep will be increased 

to infinite as there are no wolves to eat them. So, all types of 

agents have to co-evolve to keep the model alive: 
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5.1.2  Capture The Flag Model (CTF) 

 

This second model has been build to illustrate the fact that if a 

simulation outcome relies on timing issues, like population 

growth speed, then synchronization policies can introduce a bias. 

To achieve this goal, we propose the use of a simplified capture 

the flag application with two competing populations (or teams). 

For each team, we have two kind of agents: flag agents which 

produce new attackers at a given rate, and attacker agents which 

protect their flags or attack the other team (flags or attackers).  

  However, attack action is very simple: if an attacker agent 

from one team detects another agent from different team (attacker 

or flag), then it will try to reach that agent and destroy it (both 

agents should be dead). To enhance the stability of this model, we 

add defence behaviour for attacker agents to protect their flags, 

that can be by observing the number of team attackers around a 

team flag and see if this number is small (less than N for 

example), then the attacker agent will flock around the flag to 

protect it from any attack from the other team: 

 
 

 

  In both models, the macroscopic behaviour is considered as 

a stability measure of the model. For Prey-Predator (PP) model, 

the stability is to keep all populations in co-evolution during the 

simulation. That mean in all time steps, we should have wolves 

and sheep in the simulation, because if we lose one of these types, 

the model is destroyed. For Capture The Flag (CTF) model, the 

stability is to keep all flags of all teams alive and they produce 

more and more attackers. If a team loses their flags, then its agents 

should disappear, and the other team win. 

 

5.2  Synchronization Policies Performances 

 

We have executed experimentations on a network of machines 

with similar hardware. Most experimentations have run until 2 

million time steps and the only parameter modified is the time 

window size. We have started with a time window with size = 0 

strong synchronization, then 10 TS (between the fastest and 

slowest machine), 100, 1000, 10000, 100000 and finally no 

synchronization at all. Figure 3 Shows that no-synchronization 

policy always provides the lowest execution time because it is 

free from all communication delays. It shows that the simulation 

reach 10000 TS in 3 hours only with no synchronization policy. 

Whereas, it takes 6 hours (double time) in case of strong 

synchronization.  

  Consider that we have an emergency scenario of tsunami-

town simulation which can be calculated faster with no 

synchronization policy than strong synchronization. Even, if 

some agents fail to interact, but we can get the main macroscopic 

behaviour. Then, we maybe save more lives in dangerous areas 

with no synchronization policy than strong synchronization. 

However, in some application like CTF, it can be unstable in case 

of no synchronization. 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Figure 3  No-synchronization always gives the maximum speed 
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Table 2  Summary table with results of three synchronization policies for two models 

 

Model Strong-Sync Time-Window No-Sync 

Wolf-Sheep-Grass WSG Stable Stable Stable 

Capture The Flags CTF Stable Stable if W < n time step Unstable 

 

 

  Table 2 shows results of the stability of both models. The 

prey-predator model stay stable for long time (until 2 millions 

TS), for all experimentations, the co-evolution of prey-predator 

model has been preserved until we reach 2 million TS, even 

without any synchronization. Thus, this application is stable with 

all synchronization policies. Whereas CTF have been unstable in 

case of no synchronization and also time window synchronization 

after window size bigger than N (N depends on the initial 

configuration ).  

  In next sections, we study first interactions effects between 

agents on the stable model (Wolf-Sheep-Grass WSG model) and 

see how interactions are impacted when we change the 

synchronization policies. Then, we study the instability of CTF 

model in details by exploring a biased initial configuration.  

 

5.3  Interactions in Wolf-Sheep-Grass Model 

 

As this model is stable for all synchronization policies, we study 

in details how interactions are impacted. Table 3 shows some 

facts on PP model in case of strong or no synchronization. It 

shows that all properties are similar in both synchronization 

policies, except Life-Circles. Life-Circle is the number of TS that 

will be taken by the population to return to the same previous 

state, or complete a phase of the co-evolution: 
 

Table 3  Prey-predator model for two synchronization polices 

 

Synchronization Avg  

Life-circles 

Max Nb of  

sheep 

Max Nb of  

wolves 

Min Nb of  

sheep 

Min Nb of  

wolves 

Max-age of  

sheep 

Max-age of  

wolves 

Strong-Sync 276.24 TS* 4281 1134 615 44 221 TS 153 TS* 

No-Sync 270.43 TS* 3852 1142 612 53 215 TS 148 TS* 

 

 

  Figures 4 & 5 show the effects of Prey-predator model when 

synchronization policies changes. Both policies, strong 

synchronization and no synchronization have the same behaviour 

on prey-predator model, except that no synchronization is faster 

in life circles for its agents (prey and predators). That because in 

no synchronization, there are agents could fail to interact. For 

example, sheep cannot find grass to eat or wolves cannot find 

sheep to eat, then agents could have less energy and it will die to 

starvation. Thus the life-circles are a bit shorter in no 

synchronization than strong synchronization:  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4  Both policies: strong-synchronization and no-Synchronization have the same behave on prey-predator model, but no-synchronization is faster in 

life-circles 
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Figure 5  Life circles of agents in prey-predator model for both policies: SS and NS 

 

 

5.3.1  External Interactions 

 
External interactions are interactions between agents that belong 

to different machines. We have measured the evolution of 

external interactions with different time windows ranging from 0 

(strong synchronization), 2, 100 and until no synchronisation (all 

tests have been executed for 100000 TS). Figure 6 shows how 

much external interactions between agents are executed in the 

prey-predator mode (with 5000 agents for each family: sheep, 

wolves and grass). This graph shows that with strong 

synchronization we have a lot of external interactions, this is 

normal because information (about agents) can be sent and 

received by other machines. But, and this is important, when there 

is no synchronization or even for a small time window 

synchronization, external interactions are significantly reduced. 

Our explanation for that is even if we choose the time window of 

only one time step, information about agents are sent between 

machines, but they are not received in the corresponding time 

step. Thus external interactions are reduced significantly: 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6  Prey-predator model, External-interactions with different Synchronization polices 

 

 

 

5.3.2  Invalid Time Step Interactions 
 

In this test, we study the interactions on prey-predator model, 

when machines are not on strong synchronization. We define 

invalid interaction as an interaction between two agents from 

different time step. Clearly, it represents interactions that are 

temporally incoherent. This situation can appear for example 

when two agents are coming from two different machines which 

are not on the same time step. Figures 7 shows that the percentage 

of invalid interactions increases when the W time window 

increase. However, the percentage of invalid interaction is less 

than 0.4 from the total number of interactions. In case of four 

machines we have a double percentage than two machines, that 

because agents can swap between 4 machines more than in case 

of two machines. 
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Figure 7  Invalid interactions between two or four machines in prey-predator model 

 

 

5.4  Instability of CTF Model 

 

As the previous experimentations, we have run these simulations 

on similar machines for 2 million TS and with a time window size 

evolving from 0 to infinity. The first initial configuration that has 

been explored was defined with one flag per machine. This 

configuration, nearly like the prey-predator model, is stable in 

respect to synchronization issues. If we choose another initial 

configuration, like 20 flags per machine, we can get different 

results. Table 4 shows that, for different sizes of time window 

bigger than 100000 the model is not always stable.  

 

Table 4  Capture The Flags Model: 20 flags per machine 

TimeWindowSize 0 10 100 1000 10000 100000 ∞ 

CaptureTheFlags Stable Stable Stable Stable Stable Fail Fail 

*’Stable’ Stable Model, ’Fail’ Not Stable Model, ’∞’ means no synchronization 

 

 

  We have defined another initial configuration to evaluate the 

instability degradation that is induced by synchronization policies 

when machine load is not the same on all machines. This second 

experimentation runs on three machines: the first one contains all 

flags from the first population and the two others machines 

contain only half flags of the second population (Figure 8). The 

aim is to generate more load on one machine than others and to 

provoke an unstable model: the second population should always 

win because its attacker production will be higher (on two 

machines):  

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8  Two blue flags in one Machine and two red flags in two different machines 

 

  With this configuration, we ensure that the model is 

unstable, the same population always win. But, the convergence 

should be faster with more flexible synchronization policies, and 

fastest in case of no synchronization at all. If we define the 

Critical Time Step (CTS) as the necessary time step to completely 

destroy the model if no synchronization has been used. For 

capture the flag model, all flags of one population have been 

disappeared. Then, Figure 9 shows that the number of flags has a 

huge effect in the simulation, more flags mean less CTS to 

completely destroy the model. This CTS time depends on the 

initial configuration of the model, like the number of flags F and 

communication delays between machines: 
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Figure 9  Capture The Flag Model: CTS vs Number of flags 

 

 

  As in Figure 9, the CTS will decrease by increasing the 

number of flags which have been used: 

 

𝐶𝑇𝑆 =
α1

F
, α1 is constant 

 

  However, CTS depends on the initial configuration and on 

machines itself which have been used.  

  If we define the Time-Step to Destroy (TSD) as the necessary 

TS to completely destroy the model if W  time window has been 

used (TSD = CTS if and only if W = ∞ or no synchronization).  

For this test, we study the time window size from 0 to infinity to 

determine how much time steps are necessary before one team 

disappear. Figure 10 shows that each configuration has a curve 

with different scale, which is reduced by increasing the time 

window W. It also shows that it is difficult to measure different 

initial configurations (different number of flags) as the curves do 

not have the same scales For that, we scale each curve to its CTS 

(as each configuration has its own CTS). Figure 11 visualizes 

results after scaling each curve in respect to its CTS. This figure 

shows that the Time Step to Destroy (TSD) decreases if the time 

window W increase.  

 

 
 

Figure 10  Different configurations of Capture The Flag model with time window synchronization 
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Figure 11  TSD for different configurations of CTF Model with different sizes of TW (W) 

 

 

According to the Figure 11:   

𝑇𝑆𝐷/𝐶𝑇𝑆 =
α2

W/CTS
, α2 is constant 

Then: 

𝑇𝑆𝐷 =
α2 × CTS2

W
 

 

Again, each curve has more flags, will be destroyed with smaller 

TS, we can replace: 

𝐶𝑇𝐹 =
α1

F
  

Then:  

𝑇𝑆𝐷 =
α

W × F2
, α = α1 × α22 is constant 

 

  That means, TSD decreases if the flags number increases or 

the time window W has been increased too. Figure 11 shows also 

that, for all configurations the model stay stable for a small time 

window. According to this figure and for all configurations, we 

can divide each curve into two main parts. First with W ranging 

from 0 to 30% of CTS, the model stay stable for a long time. So 

we can give permissions of advancing in time step between 

different machines until 30% of its critical time-step, and in this 

part all curves have a strong effect to the time window. The 

second part with W bigger than 30% of CTS, in this part the TSD 

is decreased slowly according to W time window. 

 

 

6.0  CONCLUSION 

 

To simulate millions or billions of interacting agents, we have to 

distribute our agent based simulator in order to scale it on network 

machines. A safe approach consists in splitting the environment 

into smaller parts and using a strong synchronization policy, but 

it implies a high cost in message exchanges and execution time.  
This paper has explored a relaxation of this constraint to speed up 

execution time and has identified applications where this 

relaxation do not degrade simulations outcome. We have studied 

three synchronization policies for distributed multi-agent 

simulations: strong synchronization, time window 

synchronization and no synchronization. Experimentations show 

that some applications, like prey-predator model, stay stable with 

any synchronization policy. Whereas in others models, like 

capture the flags, it can be strongly affected by changing these 

policies. We have studied how interactions are changed when we 

switch the synchronization policies on prey predator model and 

we have explored in details the instability of capture the flags 

model when a biased initial configuration is used.  
  Experimentations presented in this paper are a first step, we 

have to experiment other kind of applications to illustrate 

synchronization policies impacts and see if results presented in 

this paper are suitable for other applications. For example, an 

emergency scenario of tsunami-town simulation which can be 

calculated faster with no synchronization policy than strong 

synchronization. Even, if some agents fail to interact, but we can 

get the main macroscopic behaviour, and we may be able to save 

more lives in such dangerous situation with no synchronization 

policy than strong synchronization.  
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