

63:3 (2013) 85–91 | www.jurnalteknologi.utm.my | eISSN 2180–3722 | ISSN 0127–9696

Full paper
Jurnal

Teknologi

Transfering Data from a Server to an Android Mobile Application: A Case
Study

Ricardo Anacletoa*, Lino Figueiredoa, Ana Almeidaa, Paulo Novaisb

aGECAD–Knowledge Engineering and Decision Support Research Center, at School of Engineering of the Polytechnic Institute of Porto, Rua Dr.
António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
bCCTC–Computer Science and Technology Center, at University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

*Corresponding author: rmsao@isep.ipp.pt

Article history

Received :11 September 2012
Received in revised form :

21 February 2013

Accepted :15 April 2013

Graphical abstract

Abstract

Nowadays, due to the incredible grow of the mobile devices market, when we want to implement a client-
server applications we must consider mobile devices limitations. In this paper we discuss which can be the

more reliable and fast way to exchange information between a server and an Android mobile application.

This is an important issue because with a responsive application the user experience is more enjoyable. In
this paper we present a study that test and evaluate two data transfer protocols, socket and HTTP, and three

data serialization formats (XML, JSON and Protocol Buffers) using different environments and mobile

devices to realize which is the most practical and fast to use.

Keywords: Client-server communication; data serialization; parsers; mobile applications; performance;

protocol buffers; algorithms

© 2013 Penerbit UTM Press. All rights reserved.

1.0 INTRODUCTION

In the last years, mobile applications development had an

incredible grow ratio, and in this large spectrum some of them need

to connect to an already developed server application. This type of

integration can be done in many different ways. Therefore the task

of develop a mobile solution can often be daunting considering all

the technology choices and implementation approaches available.

Unlike centralized systems, mobile applications need software

optimization. These optimizations need to consider the network

traffic consumption, battery consumption and system

responsiveness.

 It’s clear that current mobile devices still have several

limitations when compared to traditional computers. It was based

on these limitations that led us to the question: Which is the best

way to exchange information between a server and a mobile client

in order to minimize these limitations?

This question started to appear when we were developing the PSiS

(Personalized Sightseeing Planning System) Mobile [1], which is a

mobile application intended to support a tourist when he is on

vacations, recommending points of interest and helping planning

his stay - more information about PSiS Mobile is presented on

section 2.

 In sections 3 and 4 different data transfer protocols and data

serialization methods are presented, as well as, the results for this

case study, which involves the transfer of points of interest from

the server’s database into the mobile device database using the

previous presented technologies. Based in some metrics we

evaluate the results and realize which protocol and serialization

format are the more appropriate to use. Finally, in section 5 we

present the time that it takes to save data to a mobile database, as

well as, the overall time that download, parse and save operations

take. Also, we analyze and discuss the obtained results and point

out some conclusions.

0

500

1000

1500

2000

2500

3000

3500

4000

Sax DOM Pull JSON Protocol

Buffers

Seconds

Download Parse Save

86 Carina S. González-González et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 85–91

2.0 CASE STUDY CONTEXT

The necessity to discover which is the more adequate data transfer

protocol and data serialization format to transfer information

between a server and a mobile application came when we were

developing a mobile application entitled PSiS Mobile.

 This mobile application appears on the context of PSiS, which

is a tour planning support web application that aims to define and

adapt a visit plan combining, in a tour, the most adequate tourism

products, namely interesting places to visit, attractions, restaurants

and accommodations. This plan is generated according to the

tourist’s specific profile (which includes personal interests and

values, wishes, constraints and disabilities) and the available

transportation systems between the different locations [1].

 In a first phase, tourists only interacted with PSiS through a

web application accessible only from a browser, however

nowadays it’s indispensable to have a tool to assist tourists “on the

field”. Thus, we develop a mobile application entitled PSiS Mobile

to integrate with PSiS.

 PSiS is composed by three pieces (see figure 1), the server-

side, the middleware and the mobile client. In the server there is a

complete database with all the information about points of interest

in a certain city/region and a complete user’s portfolio, as well as,

their travel history. The middleware was implemented to enable the

communication between the server side and the mobile application.

 The mobile client is a very important part of the system,

because it establishes the bridge between the central services and

the user visits. With a mobile device the user can see, on the go, the

generated planning and the information about the nearby sights to

visit, which are recommended according to his profile and current

context. Trip planning can be rearranged according to current

context, for example, if tourist is behind schedule the planning

algorithm is executed to organize the original trip.

 Since this application is an occasionally connected application

(Smart client), a temporary database is used on the mobile device

to enable access to parts of the data without being constantly

consuming network traffic allowing the application to work

without an internet connection (with some limitations, like no

access to new points of interest).

 After the user request a recommendation for a trip, all the

necessary data is transferred from the server and stored on the

mobile device. We have found this to be necessary, because of the

mobile Internet low speed rates and its possible unavailability. The

necessary data includes the information about all the points of

interest that will be on the planning schedule, and other points of

interest nearby the first ones. This approach is useful if the tourist

wants to rearrange the original planning in real time.

What we pretend to do in this case study is to test the data exchange

performance between the PSiS server application and the mobile

one. To do this we have transferred points of interest data between

the two sides. A representation of a point of interest data, structured

as a XML, can be seen in figure 2.

 Each point of interest is represented by 13 data fields where

each one is formatted as a string field. The field which contains

more data is the description, which can have more than 1000

characters. In average each point of interest has about 600 Bytes of

data.

 The tests were performed using 8 different Android mobile

devices with different Android OS (Operating System) versions.

We choose to use this broad range of devices and platforms to see

if there are any significant differences between them or any evident

changes in the results according to the hardware or software. These

devices had different Chipset’s, CPU’s (from a single-core with

528 MHz to a dual-core 1.6 GHz), RAM quantities (from 288 Mb

to 1GB), as well as, different versions of the Android Operating

System, ranging from the 2.1 to the 4.1.2.

<PointOfInterest>

 <id>23</id>

 <name>Fantasporto - Porto International Film Festival</name>

 <description>Considered by the professional international

magazine "Variety" as one of the 60 top film festivals of the world,

and the best as far as the fantasy genre is considered, Fantasporto

has become the most talked about film and culture event in

Portugal. Organization: Cinema Novo CRL. Founding

member of the European Fantastic Film Festivals Federation and of

the European Coordination of Festivals.</description>

 <poi_class_id>45</poi_class_id>

 <latitude>41.1537797</latitude>

 <longitude>-8.6210345</longitude>

 <address>Rua Aníbal Cunha, nº 84 - 4050 - 048

Porto</address>

 <phone>351 222 076 050</phone>

 <fax>351 222 076 059</fax>

 <email>pressfantasporto@mail.telepac.pt</email>

 <url>www.fantasporto.online.pt</url>

 <avg_cost>10</avg_cost>

 <avg_duration>180</avg_duration>

 <active>1</active>

</PointOfInterest>

Figure 2 Point of interest data represented as XML

Figure 1 PSiS architecture overview

87 Carina S. González-González et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 85–91

Table 1 XML, JSON and protocol buffers structured data examples

XML JSON Protocol Buffers

<poi id="23">

<id>23</id>

<name>Fantasporto</name>

<lat>41.1537797</lat>

<lon>-8.6210345</lon>

</poi>

{

"id":23,

"name":"Fantasporto",

"lat":"41.1537797",

"lon":"-8.6210345"

}

poi {

id:23

name:"Fantasporto"

lat:"41.1537797"

lon:"-8.6210345"

}

 The devices that we have used are listed below:

 HTC Hero, Desire and One S;

 Samsung Galaxy S and S2;

 Google Nexus S;

 BQ Edison;

 Huawei Ascend G300.

 Four different sizes of data information were used to ensure

more accurate results and evidence any major differences

according to the quantity of data. The first dataset includes only the

data from 1 point of interest, the second has information of 250

points of interest, the third has information of all the points of

interest (461) present at PSiS database and finally we have used a

heavier dataset with information of four times all the points of

interest, which gives a total of 1884 points of interest.

 Each test, that we have done, was performed 10 times per each

mobile device and dataset. Between each test, the mobile device

was turned off and the cache was clear. This is important to remove

data in cache and to clean the device memory.

 As expected the least powerful devices were slower than the

best ones, and also there aren’t any significant differences between

the conclusions for them all. The results that we will present on this

research paper are the average of ten runs, and using the Samsung

Galaxy SII. We choose to leave out the information for the other

mobile devices, since they followed the same pattern and did not

bring any added value to the results analysis.

 The only major difference that we have notice was related to

the Android OS version, as we will see in the section 4.

3.0 PROTOCOL EVALUATION

As is commonly known there are several ways to exchange

information between a server and a client, but in this case we

choose to study two of the most used data transfer protocols, the

Java Socket API [2] and the HTTP with REST (REpresentational

State Transfer) Web Services [3].

 The other types of Web Services were left behind because they

are too heavy for a mobile environment, i.e., they have bigger

headers than the REST architecture, thus increasing the amount of

data traffic [4].

After select the data transfer protocols, we have selected the data

structure formats to serialize the information. This is important in

order to the two parts (server and client) “understand” each other.

Since both protocols support the transfer of different file types, we

choose to test three data structure formats – XML (eXtensible

Markup Language), JSON (JavaScript Object Notation) and

Protocol Buffers.

 XML was chosen since it is one of the most popular data

structure formats used to store information in a structured and

hierarchical way. Also, it is widely used to store data to be

exchanged between information systems.

 Second is JSON [6] which has a structure identical to the

XML, but tries to be a low-overhead format and nowadays it is

being increasingly used.

 Finally, we have the Protocol Buffers [7], which is a

serialization format developed by Google Inc with the purpose to

be lighter than XML, focusing on simplicity and performance.

Protocol Buffers is very simple to use, because we only need to

define how we want the data to be structured once. Then a

generated source code, for that structure, is used to easily write and

read the structured data to and from a variety of data streams.

 It is implemented in Java, C++ and Python, so it can be used

in Android but also in other mobile platforms. Also, it can also

implement some data compression which improves the data file

sizes. Since it has an open source license it is available to the public

for free.

 An example for each of these structure formats, applied to the

information of a point of interest, can be seen on table 1. The file

data sizes for each of these data structure formats is presented on

table 2.

 Based on this information we can confirm that JSON fulfills

its propose, having a file almost 17% lighter compared to XML.

However, Protocol Buffers is even about 16% lighter than JSON.

So, the difference between this last two is almost the same

difference between the XML and JSON. This represents that

Protocol Buffers file is 30% lighter than XML.

 These differences are also evident if we analyze table 1. In this

example, the XML message has 95 characters, JSON 69 characters

and Protocol Buffers message has 60 characters.

 Raw socket was the first approach tested, since normally they

are used to quickly exchange information [5]. First of all, a raw

socket client and server modules were implemented.

Table 2 File sizes (in kB) for each data structure format and file number

 First Second Third Fourth

XML 1.0 253 375 1875

JSON 0.779 227 313 1564

ProtocolBuffers 0.665 195 256 1276

88 Carina S. González-González et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 85–91

Table 3 Transferred kB between the server to the mobile device

File

Number

XML JSON Protocol Buffers

HTTP Socket HTTP Socket HTTP Socket

First 1.34 1.28 1.23 1.07 0.851 0.799

Second 274.97 266.2 245.37 244.3 210.1 208.3

Third 405.33 389.9 337.28 337.3 275.4 272.4

Fourth 2000.2 1910 1700 1650 1400 1384

 For each established connection, the server creates two

threads: one for sending data to the client and another for receiving

data from the client.

 Since there are two different threads, one for sending and one

for receiving data, the exchange can be performed asynchronously,

avoiding waiting states on the client application.

 With this protocol, message sizes were more compact since

there aren’t any headers (e.g., HTTP or SOAP headers) -

table 3.

 However, this system poses several problems to sockets

management. Besides the apparent need to specify a hard-coded

and very inflexible communication protocol, raw sockets also need

further implementation for error detection and transaction control.

 The other protocol that we test was HTTP, which is one of

today’s most popular client-server communication protocols.

HTTP is a mature approach and a widely used protocol that already

handle errors, simplifying its use and implementation. So, the

errors that we have found using raw sockets don’t emerged with

this protocol.

 The only downside, comparing to the raw socket

communication protocol, is the size of the sent/received data

frames. This mainly happens because of the HTTP header, which

is added to the sent/received data.

 The size of the header, on HTTP, along with the sent and

received ACK packages to validate the transaction, varies between

6% and 10% of the size of the transferred data. For example, for a

XML file with a size of 1.875 Mb, the client receives a total of 2.0

Mb (9% more than the original file size). The size of the headers

on socket (which includes all the ACK) varies between 2% and 6%,

meaning that it transfers less 4% data than HTTP.

 However, the size of the data frames isn’t the only metric that

we use to compare both protocols. The download time is also very

important when transfer information between two sides, since it

influences the application responsiveness.

 These protocols were tested using a normal Notebook PC

working has a server and an IEEE802.11g wireless network to

transfer the data between the two sides.

 Analyzing table 4 we can see that raw socket protocol proved

to be slower mainly because of the connection initialization, which

is a time consuming process, especially when we try to control

errors that may exist in the connection.

 It was slower for the smaller files, however when the files

were getting bigger, the results were better. This mainly happens

because it needed to transfer less 100 kB than the HTTP protocol.

The part that needs more time is the initialization part in order to

control the errors and the creation of the socket’s to transfer

information between the two sides.

 Another curiosity, from our tests, is that socket method proved

to consume less system resources (CPU and memory) than the

others because it doesn’t have so many parsing routines. However,

the whole process still takes more time to execute, which isn’t so

great for the system responsiveness.

 Since users of this type of mobile applications (tourism) will

use it more in an environment where no Wi-Fi connectivity exists,

we test the download time difference between the Wi-Fi and the 3G

network, both using HTTP protocol. The tested 3G network has a

speed of 5Mbps and it had the signal at maximum level. As already

stated in the literature [8] we also notice that the major problem of

the 3G networks is the latency.

 In the first file, which includes only the data from one point of

interest, for all of the three file types (XML, JSON and Protocol

Buffers) we can see that the download time is almost 1000% bigger

than over Wi-Fi. As the file size is getting bigger the download

duration difference is smaller. For the last file (the biggest one) the

difference is around 600% more time. In practice this is the

difference between waiting almost 3 seconds to download the file

via Wi-Fi to wait over 18 seconds to download the file via 3G. To

the user experience this is very relevant, and can compromise an

application.

 Based on this results we can conclude that sockets uses less

bytes to transfer messages than HTTP, which can reduce mobile

network costs since they can be expensive and we need to use the

less bytes as possible. However, it is also important to consider the

process duration in order to maximize the user experience. Taking

into consideration this metric and the obtained results for all the file

types and sizes, we can say that the HTTP protocol is better.

Furthermore HTTP protocol is easier to use and implement, it

already controls errors and is well established in the community,

being used in a lot of server applications, making the migration to

a mobile environment easier.

C onsidering these statements we choose HTTP protocol to

exchange information between the PSiS server and PSiS Mobile

application.

Table 4 Download duration for each protocol and data format serialization

File

Number

XML JSON Protocol Buffers

HTTP Socket HTTP Socket HTTP Socket

First 23.3 44.8 19.3 43.7 12 39.7

Second 757.6 808.1 665 702 420.8 475.8

Third 990.0 1010.6 740.4 755.6 564.3 570.1

Fourth 5176.3 5175.4 3631.8 3707.6 2314.3 2246.7

89 Carina S. González-González et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 85–91

Table 5 Download time using IEEE 802.11G and 3G

File

Number

XML JSON Protocol Buffers

Wi-Fi 3G Wi-Fi 3G Wi-Fi 3G

First 23.3 199.6 19.3 198.1 12 165.1

Second 757.6 5343.5 665 3422.8 420.8 3126.2

Third 990.0 6030.7 740.4 4691.5 564.3 3536.8

Fourth 5176.3 25323 3631.8 21628.9 2314.3 18084

4.0 SERIALIZATION EVALUATION

After choose the exchange protocol we need to analyze which

serialization format and respective parser is faster to use. To have

a better understanding of the XML performance, we tested three

different XML parsers:

 DOM (Document Object Model);

 SAX (Simple API for XML);

 XPP (XML Pull Parser).

 DOM was chosen since it is the World Wide Web Consortium

(W3C) standard and the other two because they claim to be the

fastest XML files parsers.

 The parsers that were used are the ones included in the

Android OS, apart from the Protocol Buffers which is an external

API. The packages that we use for each parse were the following:

 DOM – org.w3c.dom

 SAX – org.xml.sax

 XPP – org.xmlpull.v1

 JSON – org.json

 Protocol Buffers – com.google.protobuf

 The first file, where we have used only the data of one point

of interest was valuable to get a first look on the behavior of the

mobile devices when few data bytes are parsed compared to bigger

files.

 In table 6, are described the parse times for each file and the

correspondent parser. According to the results it appears that the

fastest parser is Protocol Buffers. However, the second fastest

depends on the Android OS version. From our previous publication

[9] we can see that in Android 2.1 the second fastest was SAX

Parser with XML. In these tests we can see that for Android 2.3.7

the seconds fastest is JSON and for Android 4.1.2 is the PULL

Parser with XML.

 This aroused our curiosity, since this was transversal for all

the devices. The results only changed according to the Android

version. So we analyze the Android source code and found that

each parser (JSON for Android 2.3 and PULL Parser for Android

4.1) receive improvements in their implementations, turning them

20% to 30% faster than before. This was an excellent finding that

has confirmed our results.

 According to the results presented in table 6 we can verify that

JSON is the fastest when parsing the first file. Also, the SAX Parser

is similar to the Protocol Buffers, though the performance of the

PULL Parser is very poor for small files, when compared to the

results for bigger files.

 Analyzing the second file, where the information about 250

points of interest were transferred, one of the most relevant findings

are revealed. The XML parsing algorithms have significant

performance differences. The DOM was the slowest and PULL

proved now to be the fastest XML parser.

 In the third file, which has the information about 461 points of

interest, the results follow the same pattern, where Protocol Buffers

was the fastest by a significant margin.

 JSON behaved as expected, its serialization turns the file

lighter than XML, but his decoder on Android 4.1 isn’t so good

when compared with the PULL parser.

 Finally, analyzing the more thorough test we can extract

additional information from the obtained results. Remember that in

this test we have used the information about 1884 points of interest.

Comparing the third with the fourth file, we can observe that the

processing time of DOM parser has been 6 times greater and the

amount of data transferred is only 4 times the data transferred on

the third test. This is mainly explained because of the limited

mobile device memory. The operating system is always trying to

get more and more memory and it slows down the entire process.

 Notice that in some devices, the ones with less memory, DOM

parser gave an “Out of Memory” error due to the mobile device

lack of memory.

 In this test we can denote a bigger difference in performance

between Protocol Buffers and PULL or JSON. The difference of

the parse duration between them passes from 30% to 40%.

 What we can conclude from all of these results is that the

parsing duration depends heavily on the parsing algorithm and

there are significant differences between the Android OS versions

which might be considered when implementing an application of

this type. Only the extremes are equal for all the platforms, the

lowest is DOM Parser and the fastest is Protocol Buffers.

S ince Protocol Buffers, which was the fastest, is an external

library it not depends on the Android version, so the

implementation was the same for all the tests.

Table 6 - Parse duration (seconds) for each format and Android version

File

Number

SAX DOM PULL JSON Protocol Buffers

2.3.7 4.1.2 2.3.7 4.1.2 2.3.7 4.1.2 2.3.7 4.1.2 2.3.7 4.1.2

First 1.9 1.8 10.6 8.7 9.3 7.3 0.8 0.3 1.3 1.2

Second 219.7 211.7 640.9 615.6 205.7 161.1 186 186.8 119.9 115.2

Third 329.7 315.4 1120.8 1060.1 342 198.2 252.9 237 134.3 134.4

Fourth 1262.3 1200.6 6744.9 6514.3 1444.7 825.8 1175.2 887.4 551.9 503.1

90 Carina S. González-González et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 85–91

Figure 3 Data exchange process duration for 461 points of interest, for each parser, using HTTP protocol

 The second fastest depends on the Android version, for

Android 2.3 we have the JSON parser and for Android 4.1 we have

PULL parser.

 The CPU utilization data is very similar between all the

parsers, the major concern are the 6 seconds that DOM puts the

processor at 100%, which can represent a lot of battery spent.

 With these results we choose the Protocol Buffers as the

serialization method, since it not depends on the Android OS

implementation and presented the best results. Also, it is available

to use in other mobile platforms.

5.0 CONCLUSION

The purpose of this study was to discover which

technology/technique is more reliable and faster to use in order to

transfer information between a server and an Android mobile

application. Therefore, in this chapter we present our conclusions

about the obtained results and what technique we choose to use and

why we did it. Also, we present some considerations that we have

learned and validate during these tests.

 In theory, socket approach seems to be the right choice.

However, in practice we have found some important disadvantages

compared to other approaches, since it proved to be more error

prone and slower. Analyzing the cost over benefit between this

approach and HTTP, it was concluded that the socket gains on the

transferred kB’s between the two sides, don’t outweigh the

associated disadvantages. Also, raw sockets are much more

complex and hard to work with. On the other hand, HTTP is reliable

and is able to perform natively error handling.

 After choose the transfer protocol we inspect the most

commonly used data serialization formats to encapsulate our data

to be sent over that protocol. Starting with XML, the case study

revealed that after all it isn’t so slow to parse, but instead it highly

depends on the parser that we pretend to use. The biggest issue of

this serialization format is the file sizes which are about 30% bigger

than the messages created by Protocol Buffers. This happens

because of the inclusion of multiple tags and it hasn’t a data

compression implementation. Then and as expected, since it is one

of its claims, JSON files are smaller. However, depending on the

Android version the native JSON parser can be slower than the best

XML parser.

 It is also interesting to analyze figure 3 where we present the

overall process duration for each parser using the HTTP protocol

to download the data. It is worth to notice that the average time to

save the data in the database is almost 1.2 seconds. The parse time

is the part of the all process that consumes less time. The most

important is the download one.

 Considering figure 3 we can see that Protocol Buffers is much

faster than the others, and the difference between JSON, SAX and

PULL parser isn’t so significant.

 According to the previous statements, the HTTP protocol in

conjunction with Protocol Buffers was the mechanism that we

choose to exchange information between our server and our mobile

application, since it spent less system resources (therefore less

battery) and less network data consumption. Thus, we minimize

some of the limitations of mobile devices.

 Another lesson that we have learned is that there is no

advantage in sending fewer or huge information at once, but

something in between them. If we send few information at once we

have a great waste of time in the initialization of the

communication, as we can see comparing the second and third files.

However, if we send a lot of information at once, as done in the

fourth file, we can experience some memory problems and thereby

slow down the whole process. The best thing to do is to choose

something in the middle, i.e., medium-sized files. This happens

because Android heap memory is limited to 16MB per application

on the most available devices, and only the high-end ones have a

limit of 24MB.

 Another important note is to realize that 3G communications

are very slow when compared to IEEE802.11 ones. The results

established that the download duration difference can be 10 times

slower for smaller files and 5 times slower to larger files, which

represents a lot of time. when using a mobile network, it is

necessary to optimize the applications in order to prevent

overweight the network and to not decrease the user experience.

 Finally, we have learned that it is worth investing some time

in carrying out these small tests, because with this knowledge we

can improve, a lot, the user experience. Has can be seen, for

Android platform, the HTTP protocol and Protocol Buffers are so

well implemented that it is worth to give a try, getting a fast and

0

500

1000

1500

2000

2500

3000

3500

4000

Sax DOM Pull JSON Protocol
Buffers

Seconds

Download Parse Save

91 Carina S. González-González et al. / Jurnal Teknologi (Sciences & Engineering) 63:3 (2013), 85–91

reliable solution to transfer information between a server and an

Android mobile device.

Acknowledgement

The authors would like to acknowledge FCT, FEDER, POCTI,

POSI, POCI and POSC for their support to GECAD unit, to the

project PSIS (PTDC/TRA/72152/2006) and for the PhD grant

(SFRH/BD/70248/2010).

References

[1] Anacleto, R., N. Luz and L. Figueiredo. 2010. Personalized Sightseeing

Tours Support Using Mobile Devices. Human-Computer Interaction (eds.
Forbrig, P., Paternó, F. and Mark Pejtersen, A.). IFIP Advances in

Information and Communication Technology. Springer Boston. ISBN

978-3-642-15230-6. Volume 332/2010. 301–304.

[2] Harold, R. and M. Loukides. 2000. Java Network Programming. O’Reilly

& Associates, Inc. Sebastopol. CA, USA.

[3] Fielding, R. and R. Taylor. 2002. Principled Design of the Modern Web

Architecture. ACM Transactions on Internet Technology (TOIT). 115–
150.

[4] Pautasso, C., O. Zimmermann and F. Leymann 2008. Restful Web

Services Vs. Big Web Services: Making the Right Architectural Decision.

Proceedings of the 17th international conference on World Wide Web.

805–814.

[5] Pakin, S., V. Karamcheti and A. Chien. 1997. Fast messages: Efficient,

Portable Communication for Workstation Clusters and MPPs.
Concurrency IEEE. 5(2): 60–72.

[6] Crockford, D. 2006. JSON: the Fat-free Alternative to XML. In Proc. of

XML.

[7] Google Inc. 2013. Protocol Buffer.

http://code.google.com/apis/protocolbuffers/docs/overview.htm.

[8] Inamura, H., G. Montenegro, R. Ludwig, A. Gurtov, and F. Khafizov.

2003. TCP Over Second (2.5 G) and Third (3G) Generation Wireless

Networks. RFC3481.
[9] Anacleto, A., L. Figueiredo, A. Almeida and P. Novais. 2013. Server to

Mobile Device Communication: A Case Study. Ambient Intelligence -

Software and Applications (eds.) Berlo, A., Hallenborg, K., Rodríguez, J.

M. Corchado, Tapia, I. and Novais, P. Springer - Series Advances in

Intelligent Systems and Computing. ISBN 978-3-319-00565-2. 219: 79–

86.

