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Abstract 
 

A power transmission system driven by a Cardan shaft may experience severe 

vibration due to fluctuating rotational speed and moments transferred to the 

final drives, determined by the level of angular misalignment and phasing of the 

joint yokes. This study investigates the potential of an out-of-phase position 

displaced by a phase angle in attenuating vibrations. The governing equations 

representing the dynamics of the system are derived. The torsional and lateral 

vibration responses are numerically calculated over a range of input rotational 

speeds. When attenuating the vibration, the phase angle is set equal to the 

maximum twist that occurs during the in-phase position. Relative attenuation is 

used to investigate the phase angle effects. The effectiveness is studied for 

different levels of static angular misalignment. For the considered system, the 

results showed that for static angular misalignment greater than 20 degrees, the 

proposed phase angle arrangement could attenuate torsional vibration by 

more than 10 percent and significantly attenuate the lateral vibration.  
 

Keywords: Cardan shaft, torsional vibration, lateral vibration, phase angle, 

relative attenuation 

 
 Abstrak 

 

Sistem penghantaran kuasa yang didorong oleh aci Cardan mungkin 

mengalami getaran yang teruk disebabkan oleh kelajuan putaran yang 

berubah-ubah dan momen yang dipindahkan ke pemacu akhir, ditentukan 

oleh tahap sudut jajaran dan fasa sendi. Kajian ini menyiasat potensi kedudukan 

luar fasa yang disesarkan oleh sudut fasa dalam mengurangkan getaran. 

Persamaan gerakan yang mewakili dinamik sistem diterbitkan. Tindak balas 

getaran kilasan dan sisi dikira secara berangka pada julat kelajuan putaran 

input. Dalam melemahkan getaran, sudut fasa ditetapkan sama dengan 

putaran maksimum yang berlaku semasa kedudukan dalam fasa. Pengecilan 

relatif digunakan untuk menyiasat kesan sudut fasa. Keberkesanan dikaji untuk 

pelbagai tahap ketidakjajaran sudut statik. Bagi sistem yang dipertimbangkan, 

keputusan menunjukkan bahawa untuk  sudut jajaran statik lebih daripada 20 

darjah, susunan sudut fasa yang dicadangkan boleh melemahkan getaran 

kilasan lebih daripada 10 peratus dan melemahkan getaran sisi dengan ketara. 
 

Kata kunci: Aci Cardan, getaran kilasan, getaran sisi, sudut fasa, pengecilan 

relatif 

© 2023 Penerbit UTM Press. All rights reserved 
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1.0 INTRODUCTION 
 
The Cardan shaft is a critical power transmission 

component in modern rotational machinery and has 

been utilized in a wide range of systems such as 

automobiles, agricultural, and rail vehicles [1–4].  It is 

equipped with a universal joint at both ends to 

accommodate either parallel or angular 

misalignment between the driving and driven sides. 

However, the Cardan shaft causes a potential 

vibration problem due to the kinematics of the 

universal joint. The joint generates both torsional and 

lateral vibrations [5, 6]. The vibrations are dynamically 

coupled and are determined by system geometry, 

which includes the degree of angular misalignment 

and the phasing of the joint yokes. It has been 

demonstrated that the rotation of the misaligned 

Cardan shaft caused an unbalanced force to act on 

transmission components, failing the gearbox and the 

cause of fracture of connecting bolts installed in the 

high-speed train [7, 8]. In numerous applications, the 

geometry is varied due to operating conditions. So, 

determining the impact of changes in system 

geometry especially phase angle, on system vibration 

is an essential and practical task. 

Many studies have been conducted on the 

dynamics of transmission systems driven by a single 

universal joint, such as torsional vibration [9, 10] and 

lateral vibration [11, 12].  DeSmidt et al. [13] investigate 

the interaction of the lateral and torsional dynamics of 

a rotor disc system mounted on a soft support 

condition while being driven through a universal joint. 

The stability of the system with different levels of 

angular misalignment has been analysed using the 

Floquet theory. Results showed that the angular 

misalignment induced dynamic coupling between 

lateral and torsion vibrations. The coupled could lead 

to parametric instability close to sum-type 

combinations of lateral and torsional natural 

frequencies. Xia et al. [14, 15] conducted a numerical 

and experimental study on the coupled torsion-lateral 

vibration of a 4WD driveline system. The universal joint 

produced an external excitation force in a lateral 

direction. The torsional and lateral vibrations were 

excited when twice input rotational speed equals 

each of the torsional and lateral natural frequencies. 

In controlling the second-order vibration, the universal 

joint was replaced with a flexible coupling, 

significantly reducing the second-order vibration. 

Tchomeni et al. [16] studied the dynamic 

characteristics of two misaligned rotors connected by 

universal joint under the influences of unbalance rotor 

condition. The vibration induced by the combination 

of misalignment and unbalance is characterised by a 

frequency component which is two times the running 

speed. Later, Tchomeni and Alugongo [17] 

conducted theoretical and experimental analysis of a 

coupled lateral and torsional vibrations of the rotor 

system under the influences of unbalance rotor and 

cracked shaft. Crack characteristics are revealed by 

the appearance of super-harmonic excitation in the 

frequency spectrum.  

Regarding the dynamic of power transmission systems 

driven by the Cardan shaft, Browne and Palazzolo [18] 

developed an analytical model and experimental test 

to study the nonlinear lateral vibration, which focused 

on the derivation of secondary moment. The angular 

misalignment and the load inertia caused the 

moment excitation. It was suggested that variations in 

angular misalignment are a more critical variable to 

investigate when studying the level of moment 

excitation. SoltanRezaee et al. [19, 20] studied the 

torsional stability of three flexible shafts connected by 

a pair of universal joints. The system's stability is 

investigated using the monodromy matrix. The effects 

of angular misalignment, damping, and stiffness on 

the system stability were numerically studied. It was 

found that harmonic, sub-harmonic, and 

combination-type resonance regions appear in 

different values of angular misalignment. Saurabh K. 

Bharti and Samantaray [21] analysed the torsional 

vibration of the Cardan shaft configured in angular 

misalignment greater than 45°. Numerical simulations 

revealed that higher vibration amplitude was 

observed when twice of input rotational speed 

reaches the torsional natural frequency. It was 

demonstrated that the amplitude of vibrations could 

be reduced by lowering the angular misalignments or 

increasing shaft torsional damping. Yao and DeSmidt 

[22] studied coupled torsional-lateral vibration of the 

driveline connected by the Cardan shaft under 

constant input torque. The system experiences a 

dynamic angular misalignment due to vertical 

suspension travel. Output shaft speed, lateral and 

torsional vibrations were observed for different values 

of static angular misalignments and vertical 

suspension damping. Again, numerical results showed 

that higher torsional vibration amplitude was 

observed when twice of input rotational speed 

reaches the torsional natural frequency. The torsional 

vibration was reported to be reduced by reducing 

load or increasing input torque. 

Apart from studies on the effect of angular 

misalignment, there exists limited initial research into 

vibrations caused by out-of-phase position. An and 

Wang [23] investigated the kinematic relationship of a 

driveline with a Cardan shaft, including the effects of 

unequal angular misalignments and nonzero phase 

angles. Their results shown that the output shaft speed 

fluctuations worsen when these two conditions occur 

simultaneously. Fischer and Paul [24] experimentally 

showed that under equal angular misalignment for 

both joints, the fluctuation is cancelled if the phase 

angle is equal to the twist angle. Wu et al. [25] showed 

that proper phase angle arrangement in multi 

universal joints system could attenuate the torsional 

vibration and should be considered when designing a 

driveshaft. 

The torsional and lateral vibrations caused by a 

combination of angular misalignment and out-of-

phase position of the Cardan shaft were not 

thoroughly investigated in the previous study. To the 

best knowledge of these authors, most of the 

published research analyses torsional and lateral 
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vibrations with the in-phase position. This study 

presents a model for analyzing the torsional and 

lateral vibration of a transmission system driven by a 

Cardan shaft. The aim is to examine the possibility of 

an out-of-phase position displaced by a phase angle 

in attenuating the vibrations. The governing equations 

representing the dynamics of the system are derived. 

Numerical simulations are carried out for a range of 

angular misalignments. The steady-state vibration 

responses are compared for in-phase and out-of-

phase positions. Relative attenuation is used to 

investigate the effect of the phase angle in 

attenuating the vibration amplitudes. 

Apart from this introduction, the remainder of this 

study is organized as follows. Section 2.1 provides a 

detail on system parameters and underlying 

assumptions. Section 2.2 is focused on developing the 

mathematical model. Section 2.3 involves assigning a 

set of parameter values. Section 3 presents numerical 

simulation results for both in-phase out-of-phase 

positions. The effects of the phase angle on vibration 

attenuation are discussed. This article is concluded 

with viewpoints in Section 4. Figure 1 shows the flow 

chart of the process involves. 

 

 

2.0 METHODOLOGY 
 

2.1 System Description  

 

The schematic representation of the power 

transmission system is shown in Figure 2. The Cardan 

shaft is assumed to be torsionally flexible and 

connected to rigid input and output shafts. This 

rotational system is configured in Z-configuration, with 

angular misalignment only in a single plane, the XZ-

plane.  

 

 
 

Figure 1 Flowchart of methodology 

 

 

The rotor disk is attached to the end of the output 

shaft and mounted on a support structure that 

provides translational stiffness and damping property 

in Z-axis. It is assumed that the output shaft bending 

stiffness is greater than the stiffness of the support 

structure. So, the output shaft only experiences rigid 

lateral modes which cause fluctuation in angular 

misalignment. In-line with study by Yao and DeSmidt 

[22], the present study assumed that even when 

subjected to lateral fluctuation, both universal joints 

remained in equal angular misalignment. 

Furthermore, the rotary inertia of the universal joints 

and friction effects are neglected. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2 Schematic of transmission system dynamic model 

 

 

The model parameters are described as follows. 

The quantity 𝐽𝑜𝑢𝑡 represents the total rotary inertia of 

the rotor, output shaft, and any additional spinning 

components on the output shaft side, while 𝑚𝑔 is the 

total suspended mass of the load end. 𝑇𝑜𝑢𝑡 represents 

the constant loading torque. The quantity  Ω𝑜 and 𝜑̇𝑜𝑢𝑡 

represent the input shaft's and output shaft's speed. 

The angular position of the yokes on the drive and 

driven sides of the Cardan shaft is denoted by 𝜑𝑖 and 

𝜑𝑜, respectively.  

The Cardan shaft has a length of 𝐿𝑠 and an outer 

diameter of 𝑑𝑜. The Cardan shaft's torsional stiffness is 

𝑘𝑠, while 𝑘𝑣 is the support structure’s stiffness. Torsional 

viscous damping is given as 𝑐𝑠 = 𝜉𝑠𝑘𝑠, where 𝜉𝑠 is the 

material’s viscous damping parameter. The support 

structure’s damping coefficient is 𝑐𝑣 = 𝜉𝑣𝑘𝑣, where 𝜉𝑣 is 

the viscous damping parameter. The angular 

misalignment for each universal joint is represented by 

𝛽. Dynamic angular misalignment, 𝜙 due to elastic 

deformation of the support, is calculated by 

considering the moment equation about point 1. Thus, 

𝛽 is due to both the static, 𝛽0 and dynamic angular 

misalignment. 

 

2.2 Equations of Motion 

 

The model of the system is developed based on 

kinematic equations of a single universal joint with 

constant angular misalignment, β as shown in Figure 3. 
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Figure 3 Single universal joint 

 

 

The well-known kinematic relationship between 

the angular positions of the driving and driven yokes 

of a universal joint can be expressed as [26, 27].  

 

𝑡𝑎𝑛(𝜑2) =
𝑡𝑎𝑛(𝜑1𝑡)

𝑐𝑜𝑠(𝛽)
       (1) 

 

Equation 1 shows that as angular misalignment 

increases, the fluctuation in angular positions of driven 

yokes intensifies. In Figure 2, when the driven rotor 

fluctuates in the lateral direction, the angular 

misalignment of the joint varies. Thus, the resulting time 

function angular misalignment, β(t) is a combination 

of static, 𝛽0 and dynamic angular misalignments, 

𝜙(𝑡)[14].  

 
𝛽(𝑡) = 𝛽0 + 𝜙(𝑡)       (2) 

 

From the kinematic relationships given in Equation 

1, the angular positions of the yokes on the driving and 

driven sides of the Cardan shaft with the presence of 

dynamic angular misalignments can be expressed as  

 

𝑡𝑎𝑛(𝜑𝑖) =
𝑡𝑎𝑛(Ω0𝑡)

𝑐𝑜𝑠(𝛽𝑜+𝜙)
       (3) 

 

𝑡𝑎𝑛(𝜑𝑜) =
𝑡𝑎𝑛(𝜑𝑜𝑢𝑡)

𝑐𝑜𝑠(𝛽𝑜+𝜙)
       (4) 

 

For transmission system with rigid Cardan shafts, a 

constant output shaft speed is guaranteed if the both 

angular misalignments are identical and configured 

with in-phase position [22, 28]. The Cardan shaft is the 

in-phase position when the yokes of the two universal 

joints are aligned in a plane. A phase angle, 𝛼 is an 

angle between the two planes of the yokes mounted 

on the Cardan shaft. A nonzero phase angle indicates 

an out-of-phase position. In this study, the aim is to 

examine the possibility of an out-of-phase position 

displaced by a phase angle in attenuating the 

vibrations. So, the phase angle,  α is displaced in the 

same direction as the input rotational motion by 

shifting the yoke on the driven side of Cardan shaft as 

shown in Figure 4.  

 

 
Figure 4 Phase angle between the two universal joint yokes 

 

 

Therefore, Equation 4 is rewritten with the presence 

of phase angle as 

 

𝑡𝑎𝑛(𝜑𝑜 − 𝛼) =
𝑡𝑎𝑛(𝜑𝑜𝑢𝑡−𝛿)

𝑐𝑜𝑠(𝛽𝑜+𝜙)
       (5) 

 

where 𝛿 represents a displaced angular position of the 

output shaft’s yoke and is calculated as [26] 

 
𝑡𝑎𝑛(𝛿) = 𝑡𝑎𝑛(𝛼) 𝑐𝑜𝑠(𝛽𝑜)      (6) 

 

Then, the first derivative of Equations 3 and 5 with 

respect to time gives the relationship of angular speed 

at the driving and driven ends of the Cardan shaft, 

which is expressed as [28] 

 

𝜑̇𝑖 = Ω0
𝑐𝑜𝑠(𝛽𝑜+𝜙)

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(Ω0𝑡)
+

𝜙̇
0.5 𝑠𝑖𝑛(2Ω0𝑡) (𝑠𝑖𝑛(𝛽𝑜+𝜙))

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(2Ω0𝑡)
       

(7) 

 

𝜑̇𝑜 = 𝜑̇𝑜𝑢𝑡
𝑐𝑜𝑠(𝛽𝑜+𝜙)

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(𝜑𝑜𝑢𝑡− 𝛿)
+

𝜙̇
0.5 𝑠𝑖𝑛(2𝜑𝑜𝑢𝑡−2𝛼) (𝑠𝑖𝑛(𝛽𝑜+𝜙))

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(𝜑𝑜𝑢𝑡− 𝛿)

̇
    

(8) 

 

The system equations of motion are derived by using 

Lagrange’s equations 

 
𝑑

𝑑𝑡
(

𝜕𝐾

𝜕𝑞̇𝑖
) −

𝜕𝐾

𝜕𝑞𝑖
+

𝜕𝐷

𝜕𝑞̇𝑖
+

𝜕𝑃

𝜕𝑞𝑖
= 𝑄𝑖 , 𝑖 = 1,2, . , 𝑛  (9) 

 

with the system’s generalized coordinate representing 

rotational motion, 𝜑𝑜𝑢𝑡 and lateral motion, 𝜙 is 

described as 

 

𝑞 = {𝜑𝑜𝑢𝑡 𝜙}𝑇  (10) 

 

The total kinetic energy is expressed as 

 

𝐾 =
1

2
𝐽𝑜𝑢𝑡𝜑̇𝑜𝑢𝑡

2 +
1

2
𝑚𝑔(𝐿𝑠  𝑐𝑜𝑠 𝛽0 𝜙̇)

2
  (11) 

 

The total damping dissipated energy is expressed as 

 

𝐷 =
1

2
𝑐𝑠(𝜑̇𝑜 − 𝜑̇𝑖)2 +

1

2
𝑐𝑣(𝐿𝑠 𝑐𝑜𝑠 𝛽0 𝜙̇)

2
  (12) 

 

Substitute Equations 7 and 8 into Equation 12 results in  

 

𝐷 =
1

2
𝑐𝑠 [(𝜑̇𝑜𝑢𝑡

𝑐𝑜𝑠(𝛽𝑜+𝜙)

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(𝜑𝑜𝑢𝑡− 𝛿)
+

𝜙̇
0.5 𝑠𝑖𝑛(2𝜑𝑜𝑢𝑡−2𝛿) (𝑠𝑖𝑛(𝛽𝑜+𝜙))

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(𝜑𝑜𝑢𝑡− 𝛿)
) −

(13) 
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(Ω0
𝑐𝑜𝑠(𝛽𝑜+𝜙)

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(Ω0𝑡)
+

𝜙̇
0.5 𝑠𝑖𝑛(2Ω0𝑡) (𝑠𝑖𝑛(𝛽𝑜+𝜙))

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(2Ω0𝑡)
)]

2

+
1

2
𝑐𝑣(𝐿𝑠 𝑐𝑜𝑠 𝛽0 𝜙̇)

2
  

 

The total potential energy is expressed as 

 

𝑃 =
1

2
𝑘𝑠(𝜑𝑜 − 𝜑𝑖)2 +

1

2
𝑘𝑣(𝐿𝑠 𝑐𝑜𝑠 𝛽0 𝜙)2  (14) 

 

Substitute Equations 3 and 5 into Equation (14) results 

in  

 

𝑃 =
1

2
𝑘𝑠 (𝑡𝑎𝑛−1 (

𝑡𝑎𝑛(𝜑𝑜𝑢𝑡− 𝛿) 

𝑐𝑜𝑠(𝛽𝑜+𝜙)
) − 𝛼 −

𝑡𝑎𝑛−1 (
𝑡𝑎𝑛(Ω0𝑡) 

𝑐𝑜𝑠(𝛽𝑜+𝜙)
))

2

+
1

2
𝑘𝑣(𝐿𝑠 𝑐𝑜𝑠 𝛽0 𝜙)2  

(15) 

 

Then, the following equations of motion are obtained 

by substituting Equation 11,13 and 15 into Equation 9 

[14]. After some arrangement, the rotational motion is 

expressed as 

 
𝐽𝑜𝑢𝑡𝜑̈𝑜𝑢𝑡 + 𝑐𝑠𝜂2(𝜂2𝜑̇𝑜𝑢𝑡 − 𝜂1Ω0) + 𝑘𝑠𝜂2(𝜑𝑜 −

𝜑𝑖) = 𝑇𝑜𝑢𝑡 − 𝑐𝑠𝜂2𝜙̇(𝜂2𝐴 − 𝜂1𝐴)   

(16) 

 

And for lateral motion 

 

𝑚𝑔(𝐿𝑠 𝑐𝑜𝑠 𝛽0)2𝜙̈ + 𝑐𝑣(𝐿𝑠 𝑐𝑜𝑠 𝛽0)2𝜙̇ +

[𝑘𝑣(𝐿𝑠 𝑐𝑜𝑠 𝛽0)2𝜙] + 𝑐𝑠𝜙̇(𝜂2𝐴 − 𝜂1𝐴)2 = −𝑐𝑠(𝜂2𝐴 −
𝜂1𝐴)(𝜂2𝜑̇𝑜𝑢𝑡 − 𝜂1Ω0) − 𝑘𝑠(𝜑𝑜 − 𝜑𝑖)(𝜂2𝐴 − 𝜂1𝐴)  

(17) 

 

Meanwhile, an angle of twist is the consequence of 

the angular deformation between two points placed 

on the Cardan shaft’s opposite ends and given as [29] 

 
𝜃𝑠 = 𝜑𝑜 − 𝜑𝑖  (18) 

 

Differentiating Equation 18 with respect to time yields 

[21] 

 

𝜃̇𝑠 =  (𝜂2𝜑̇𝑜𝑢𝑡 − 𝜂1Ω0) + 𝜙̇(𝜂2𝐴 − 𝜂1𝐴)  (19) 

 

where 

 

𝜂1 =
𝑐𝑜𝑠(𝛽𝑜+𝜙)

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(Ω0𝑡)
   

𝜂2 =
𝑐𝑜𝑠(𝛽𝑜+𝜙)

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(𝜑𝑜𝑢𝑡− 𝛿)
   

𝜂1𝐴 =
0.5 𝑠𝑖𝑛(2Ω0𝑡) (𝑠𝑖𝑛(𝛽𝑜+𝜙))

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(2Ω0𝑡)
   

𝜂2𝐴 =
0.5 𝑠𝑖𝑛(2𝜑𝑜𝑢𝑡−2𝛿) (𝑠𝑖𝑛(𝛽𝑜+𝜙))

1−𝑠𝑖𝑛2(𝛽𝑜+𝜙) 𝑐𝑜𝑠2(𝜑𝑜𝑢𝑡− 𝛿)
  (20) 

 

2.3 Numerical Method and Model Parameters 

 

Table 1 contains a representative set of parameter 

values chosen for this study. Assuming all shafts are 

perfectly aligned, which is 𝛽o = 0, the system’s natural 

frequencies can be calculated as 𝜔𝑡 = (
𝑘𝑠

𝐽𝑜𝑢𝑡
)

1

2
 and 

𝜔𝑙 = (
𝑘𝑣

𝑚𝑔
)

1

2
. Based on the given data, the natural 

frequency of torsional and lateral vibrations is 143 

rad/s and 80 rad/s, respectively. 

 

Table 1 Parameter values of the power transmission system 

 
Parameters Description Symbol Value Unit 

Rotational inertia of the 

driven side 

𝐽𝑜𝑢𝑡 0.0045 kg.m2 

Suspended mass 𝑚𝑔 4.09 kg 

Cardan shaft outer 

diameter 

𝑑𝑜 0.010 m 

Cardan shaft length 𝐿𝑠 0.325 m 

Cardan shaft torsional 

stiffness 

𝑘𝑠 92.20 Nm.rad-1 

Cardan shaft material’s 

viscous damping 

coefficient 

𝜉𝑠 0.002  s 

Load torque 𝑇𝑜𝑢𝑡 5 Nm 

Support structures 

stiffness 

𝑘𝑣 26331 N.m-1 

Support structures viscous 

damping coefficient 

𝜉𝑣 0.002 s 

 

 

Equations 16, 17 and 19 are arranged into a system 

of three first-order ordinary differential equations for 

numerical simulations. 

 

𝑋̇1 = 𝑋2    

𝑋̇2 = [𝑇𝑜𝑢𝑡 − 𝑐𝑠𝜂2𝑋𝑋4(𝜂2𝐴𝑋 − 𝜂1𝐴𝑋) −
𝑐𝑠𝜂2𝑋(𝜂2𝑋𝑋2 − 𝜂1𝑋Ω0) − 𝑘𝑠𝜂2𝑋𝑋5]/𝐽𝑜𝑢𝑡   

 

𝑋̇3 = 𝑋4   

𝑋̇4 = −[𝑐𝑠(𝜂2𝐴𝑋 − 𝜂1𝐴𝑋)(𝜂2𝑋𝑋2 − 𝜂1𝑋Ω0) −
𝑘𝑠(𝑋5)(𝜂2𝐴𝑋 − 𝜂1𝐴𝑋) − 𝑐𝑣(𝐿𝑠 𝑐𝑜𝑠 𝛽0)2𝑋4 −
𝑘𝑣(𝐿𝑠 𝑐𝑜𝑠 𝛽0)2𝑋3 − 𝑐𝑠𝑋4(𝜂2𝐴𝑋 − 𝜂1𝐴𝑋)2]/
𝑚𝑔(𝐿𝑠 𝑐𝑜𝑠 𝛽0)2   

 

𝑋̇5 = (𝜂2𝑋𝑋2 − 𝜂1𝑋Ω0) + 𝑋4(𝜂2𝐴𝑋 − 𝜂1𝐴𝑋)  (21) 

 

where 

 
[𝑋1 𝑋2 𝑋3 𝑋4 𝑋5]𝑇 =
[𝜑𝑜𝑢𝑡 𝜑̇𝑜𝑢𝑡 𝜙 𝜙̇ 𝜃𝑠]𝑇  

 

𝜂1𝑋 =
𝑐𝑜𝑠(𝛽𝑜+𝑋3)

1−𝑠𝑖𝑛2(𝛽𝑜+𝑋3) 𝑐𝑜𝑠2(Ω0𝑡)
   

𝜂2𝑋 =
𝑐𝑜𝑠(𝛽𝑜+𝑋3)

1−𝑠𝑖𝑛2(𝛽𝑜+𝑋3) 𝑐𝑜𝑠2(𝑋1− 𝛿)
    

𝜂1𝐴𝑋 =
0.5 𝑠𝑖𝑛(2Ω0𝑡) (𝑠𝑖𝑛(𝛽𝑜+𝑋3))

1−𝑠𝑖𝑛2(𝛽𝑜+𝑋3) 𝑐𝑜𝑠2(2Ω0𝑡)
   

𝜂2𝐴𝑋 =
0.5 𝑠𝑖𝑛(2𝑋1−2𝛿) (𝑠𝑖𝑛(𝛽𝑜+𝑋3))

1−𝑠𝑖𝑛2(𝛽𝑜+𝑋3) 𝑐𝑜𝑠2(𝑋1− 𝛿)
  (22) 

 

Equation 21 is solved numerically by applying the 

Runge-Kutta algorithm in MATLAB. The maximum and 

minimum values of the responses are calculated for 

each input rotational speed, which ranges from Ωo= 

100 to 1500 rpm. Numerical simulations are carried out 

for static angular misalignments ranging from 5° to 25°. 

The simulation is started with an in-phase position. A 

critical speed is indicated by significant increases in 

vibration amplitude. Then, the maximum twist at 

critical speed is used to rearrange the phase angle. 

An attenuation percentage of the vibrations due to 
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the phase angle effects is investigated using a relative 

attenuation, 𝜖. The relative attenuation is defined as 

 

𝜖 =
1

𝑁
∑ (

𝐴𝑂,𝑖−𝐴𝑃,𝑖

𝐴𝑂,𝑖
)𝑁

𝑖=1 × 100%    (23) 

 

where 𝐴𝑂,𝑖, and 𝐴𝑃,𝑖 are the maximum amplitudes of 

the in-phase and out-of-phase positions, respectively. 

N is the number of input rotational speeds. 

 

 

3.0 RESULTS AND DISCUSSION 
 

3.1 Vibration Responses of the In-Phase Position 

 

To study torsional and lateral vibrations, the 

response of the transmission system is numerically 

calculated using Equation 21. The derived equations 

of motion include the value of the phase angle. In this 

section, the torsional and lateral vibrations of the in-

phase position are studied first. Figure 5 shows the time 

domain of the steady-state responses for the 𝛽o = 15° 
and Ω0 = 600 𝑟𝑝𝑚. The maximum twist is 3.667° while 

the maximum dynamic angular misalignment is 13.4 x 

10-3 °. Both torsional and lateral vibrations are periodic 

and dominated by a frequency component of twice 

the input rotational speed or second-order 

component, 1200 rpm or 20 Hz, as shown in Figure 6. In 

addition, there is a small peak of the fourth-order 

component at 24 Hz. Previous researches [14, 17, 25] 

have shown that when the angular misalignment is less 

than 30°, second-order vibration has a significant 

effect on vibration responses than fourth-order 

vibration. Furthermore, the approximation of the 

universal joint's kinematic relationship given in 

Equation 1 by using Taylor- McLaurin series up to 

second-order terms while ignoring the higher order 

terms is feasible[19, 30]. For this reason, the amplitude 

of second-order vibration is selected to characterize 

the dynamics of the system.Figure 7 shows the 

vibration responses as the input rotational speed 

varies for a static angular misalignment of 15°. A 

significant increase in torsional and lateral vibration 

amplitudes is observed when the input rotational 

speed is close to 684 rpm and 381 rpm, respectively. 

The vibration amplitudes have reached a peak value 

of 3.86° of twist and 10.2 x 10-3 ° of dynamic 

misalignment angle. The system suffers a resonance 

because the frequency of the second-order 

excitation brought on by the universal joint coincides 

with the torsional and lateral natural frequencies of 

the system, which are 143 rad/s (1368 rpm) and 80 

rad/s (762 rpm). 

 

   

 
(a)  

 
(b)  

 

Figure 5 Time domain response at 𝛽𝑜 = 15° and Ω0 = 600 𝑟𝑝𝑚: 

(a) torsional vibration and (b) lateral vibration 

 

 
(a)  

 
(b)  

Figure 6 Frequency domain response at 𝛽𝑜 = 15° and Ω0 =
600 𝑟𝑝𝑚: (a) torsional vibration and (b) lateral vibration 
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(a)  

 
(b)  

Figure 7 Variation of the steady-state responses at 𝛽𝑜 = 15°: 
(a) torsional vibration and (b) lateral vibration 

 

 
A numerical study was carried out in the range of 

5° to 25° to investigate the effects of static angular 

misalignment. Table 2 depicts the maximum vibration 

amplitudes for five different values of static angular 

misalignments. From Equation 1, the vibration 

amplitudes are proportional to the angular 

misalignment of the universal joint. It is worth noting 

that as the static angular misalignment increases, so 

do the amplitudes of both torsional and lateral 

vibration [13, 22]. 

 
Table 2 Maximum amplitude of the steady-state response for 

the in-phase position 

 
Static 

angular 

misalignmen

t 

Torsional Lateral 

Critica

l 

speed 

(rpm) 

Maximu

m twist 

(deg) 

Critica

l 

speed 

(rpm) 

Maximu

m 

dynamic 

angle 

(10-3 deg) 

5° 684 3.19 381 3.08 

10° 684 3.44 381 6.39 

15° 684 3.87 381 10.22 

20° 684 4.48 381 14.96 

25° 684 5.29 381 21.29 

 

 

3.2 Vibration Responses of the Out-of-Phase Position 

 

In attenuating the vibrations, the phase angle, 𝛼 is 

arranged as equal to the maximum twist that occurs 

during the in-phase position. The displaced angular 

position of the output shaft’s yoke, 𝛿 is calculated 

using Equation 6 and given in Table 3. 

 
Table 3 Phase angle and angular position of the output 

shaft’s yoke 

 

Static angular  

misalignment 

    𝜶  

(deg) 

𝜹 

 (deg) 

5° 3.19 3.1 

10° 3.44 3.3 

15° 3.87 3.7 

20° 4.47 4.2 

25° 5.29 4.7 

 

 

Figure 8 to Figure 12 compares the vibration responses 

between in-phase and out-of-phase positions. The solid line 

represents the in-phase position, while the dotted line 

represents the out-of-phase position. The torsional and lateral 

vibrations were significantly attenuated for all considered 

angular misalignments, especially at their corresponding 

critical speed. The figures also showed that, the existing of 

phase angle not alter the natural frequencies of the system 

at static angular misalignment lower than 25°.  Therefore, the 

system is able to maintain the natural frequencies within the 

designed range. 

 
 

 
 

Figure 8 Comparison between in-phase and out-of-phase 

positions at 𝛽𝑜 = 5°: (a) torsional vibration and (b) lateral 

vibration 
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Figure 9 Comparison between in-phase and out-of-phase 

positions at 𝛽𝑜 = 10°: (a) torsional vibration and (b) lateral 

vibration 

 

 
 

 
 

 
Figure 10 Comparison between in-phase and out-of-phase 

positions at 𝛽𝑜 = 15°: (a) torsional vibration and (b) lateral 

vibration 

 

 

 
 

 
 

Figure 11 Comparison between in-phase and out-of-phase 

positions at 𝛽𝑜 = 20°: (a) torsional vibration and (b) lateral 

vibration 

 

 
 

 
 

 
Figure 12 Comparison between in-phase and out-of-phase 

positions at 𝛽𝑜 = 25°: (a) torsional vibration and (b) lateral 

vibration 
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Relative attenuation is calculated to further 

demonstrate the phase angle's effects in attenuating 

vibrations. Figure 13 shows the calculated relative 

attenuation for all considered values of static angular 

misalignments. The red line represents the torsional 

vibration, while the blue line represents the lateral 

vibration. The figure shows that as the static angular 

misalignment angle increases, the relative 

attenuation increases for torsional vibration and 

decreases for lateral vibration. It can be seen that for 

a static angular misalignment angle of less than 15°, 

the effect of the phase angle on the twist was not too 

significant. However, at a large static angular 

misalignment of more than 20°, the phase angle 

attenuated the torsional vibration by more than 10 

percent. For lateral vibration, the phase angle almost 

eliminated the lateral vibration at static angular 

misalignment of less than 20°.  Even though there is a 

decreasing trend of relative attenuation, the lateral 

vibration was significantly attenuated for static 

angular misalignment greater than 20°. It is proved 

that a proper phase angle arrangement can 

attenuate the torsional and lateral vibrations of the 

transmission system. 

 

 
 

Figure 13 The relative attenuation at different values of static 

angular misalignments 

 

 

4.0 CONCLUSION 
 

This article studies the torsional and lateral vibrations of 

a transmission system employing a Cardan shaft under 

the effects of a nonzero phase angle. The model and 

analysis developed in this study incorporates the 

torsional damping effect into the governing equation 

of lateral vibration as well as the full kinematics 

relationship of the universal joint. The phase angle was 

defined as the angle between the two planes of the 

universal joint yokes mounted on the Cardan shaft. 

This study utilized the phase angle to attenuate the 

system’s torsional and lateral vibrations. Numerical 

simulations were carried out for static angular 

misalignments up to 25 degrees. The torsional and 

lateral vibrations were indicated by the angle of twist 

and dynamic angular misalignment, respectively. The 

results showed that for static angular misalignment 

greater than 20 degrees, the proposed phase angle 

arrangement could attenuate torsional vibration by 

more than 10 percent while significantly reducing 

lateral vibration. Therefore, the phase angle must be 

taken into account when designing a transmission 

system. These quantities become more important with 

larger static angular misalignment. The findings 

presented in this study may contribute in improving 

understanding of how phase angle arrangement 

affect both torsional and lateral vibrations in power 

transmission system employing cardan shaft. This is the 

motivation for future study to validate with 

experimental work before applying in real rotating 

machinery. 
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