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Abstract 
 

In supervised machine learning, class imbalance is commonly occurring when the 

number of examples that represent one class is much lower than other classes. 

Since an imbalance data may generate suboptimal classification models, it could 

lead to the minority examples are misclassified frequently and hardly achieving 

the best performance. This study proposes an improved support vector machine 

(SVM) method for imbalanced data namely as SVM-GA by optimizing SVM 

algorithm with Genetic Algorithm (GA) over a synthetic minority oversampling 

technique. Besides considering the best sampling method in optimized SVM, the 

experimental result shows that the proposed method improves by 97% compared 

to the baseline model and selected optimized models. The proposed model had 

significant performance by outperformed the baseline model and other models 

based SVM with Grid search and Randomized search in most of the cases, 

especially for the datasets which have extremely rare cases.   

 

Keywords: Machine learning, data classification, sampling method, support 

vector machine, genetic algorithm 

 

Abstrak 
 

Dalam pembelajaran mesin yang diselia, ketidakseimbangan kelas biasanya 

berlaku apabila bilangan contoh yang mewakili satu kelas jauh lebih rendah 

daripada kelas lain. Oleh kerana data ketidakseimbangan boleh menjana model 

klasifikasi suboptimal, ia boleh menyebabkan kelas minoriti sering dikelaskan salah 

dan tidak mencapai prestasi terbaik. Kajian ini mencadangkan kaedah algoritma 

mesin vector sokongan (SVM) yang lebih baik untuk data yang tidak seimbang 

iaitu SVM-GA dengan mengoptimumkan algoritma SVM dengan Algoritma 

Genetik (GA) berbanding teknik oversampling minoriti sintetik. Selain 

mempertimbangkan kaedah pensampelan terbaik dalam SVM yang 

dioptimumkan, hasil eksperimen menunjukkan bahawa kaedah yang 

dicadangkan mencapai 97% berbanding model asas dan model yang 

dioptimumkan terpilih. Model yang dicadangkan mempunyai prestasi yang 

signifikan dengan mengatasi model asas dan model lain berdasarkan SVM 

dengan carian Grid dan carian rawak dalam kebanyakan kes, terutamanya 

untuk set data yang mempunyai kes yang sangat jarang berlaku. 

 

Kata kunci: Pembelajaran mesin, pengkelasan data, kaedah pensampelan, 

mesin vector sokongan, algorithma genetic 
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1.0 INTRODUCTION 
 

Recent developments in science and technology 

have enabled the growth and availability of raw data 

to arise at an explosive rate [1]. Although existing 

knowledge discovery and data engineering 

techniques have shown great success in many real-

world applications, the problem of learning from 

imbalanced data (the imbalanced learning problem) 

is a relatively new challenge that has attracted 

growing attention from both academia and industry 

[2]. The imbalanced class problem refers to a 

classification problem where classes are not equally 

represented and have been described as a situation 

when the number of observations of one class (the 

majority class) far exceeds that of the other class 

(minority class) [3]. 

If the imbalance ratio (IR) > 1.5, the dataset suffers 

from an imbalanced class problem. If IR> 9, a dataset 

is highly imbalanced [4]. Imbalanced class problems in 

the dataset will lead to misclassification errors and bias 

towards the majority class when doing any 

classification [5]. 

The minority class usually represents the most 

important concept to be learned, and it is difficult to 

identify due to possibility of associated with 

exceptional and significant cases [6] because the 

data acquisition of these examples is costly [7]. Thus, 

there is a necessity of providing solutions for class 

imbalance problems in which traditionally solved using 

data level approaches, algorithm level approaches or 

hybrid approaches.  

At the data-level approach, the training instances 

are modified in such a way to produce a more or less 

balanced class distribution that allows classifiers to 

perform similarly to standard classification. On the 

other hand, algorithm-level tackles the issues of the 

imbalanced class problem by adapting base learning 

methods to be more attuned to class imbalance 

issues. Lastly, the hybrid approach tackles the issues at 

both levels; data-level and algorithm-level [4, 8]. 

However, the preprocess in data level approaches 

such as oversampling technique to make the data 

distribution balanced to reduce the impact of the 

skewed class distribution in the subsequent classifier 

learning stage has drawbacks of generating 

meaningless samples, and computationally costly for 

some large datasets. In contrast, under-sampling has 

higher efficiency but may lose a few patterns and 

hence cause other unexpected mistakes. 

On the other hand, at the algorithm-level the 

research interest in machine learning with unbalanced 

data has shown a growth trend and presently become 

interested discussion topics for the classification 

domain. In addition, researchers have used 

intelligence-based optimization algorithms such as 

Particle Swarm Optimization (PSO) and Support Vector 

Machine (SVM) due to their global parallelism with 

acceptable running time. Although some approaches 

based on imbalanced data have found more success 

to some degree and turned out to be increasingly 

popular, there are still some limitations for the models 

sorely relied on one technique.  

Researchers has commonly used SVM to tackle the 

classification of highly imbalanced data in real world 

applications due to superior performance in practical 

applications, i.e, medical diagnostics [9], human 

activity [10], financial market [11], time series [12], 

autonomous vehicle [13], text information filtering [14] , 

etc. SVM, a technique widely recognized for 

optimizing anticipated solutions, was first proposed by 

Vapnik et al. [16] as a kernel-based machine learning 

model for classification and regression tasks [15, 16]. 

The SVM's remarkable capacity for generalization, as 

well as its discriminative power and optimal solution, 

has recently gained significant attention from the data 

mining, pattern recognition, and machine learning 

communities [17].  

With its exceptional ability to solve practical binary 

classification problems, SVM has been demonstrated 

to outperform other supervised learning methods [18, 

19]. Because of its solid theoretical foundation and 

impressive generalization capabilities, SVM has 

become one of the most commonly used classification 

methods in recent years. The introduction of GA in 

intelligent optimization algorithm has significant role in 

optimization problems since the approach does not 

require too much information, and not easily fall into 

the local optimum like PSO [20]. 

Since GA is performed by parallel search instead of 

a point-to-point search, the effective areas exploration 

in the space through the population provides not easy 

to fall into a local minimum. As example, Yan et al. [21] 

proposed a GA optimized SVM for NOMA-based 

downlink satellite networks by fixed crossover rate and 

mutation rate in optimal parameters 𝐶 and gamma of 

GA selection. The study proved that the proposed 

method was better than the traditional SVM with 

randomly selected parameters and had applicability 

for NOMA scheme.  

Meanwhile, Abdullah et al. [22] used a GA to 

optimize SVM parameters for an acute leukemia 

diagnosis by not only chose 𝐶, 𝑔𝑎𝑚𝑚𝑎 as the body of 

an individual of GA, but also included the feature 

mask of datasets. The study concluded that the 

proposed model had high accuracy and suitable for 

implementation in medical application of acute 

leukemia. Similar work proposed by Yao et al. [23] that 

optimized SVM based on modified GA for fast 

classification of tea leaves has also proved superior 

comparison towards SVM optimized by PSO and CV 

and provided a promising way for the classification of 

tea products.  

According to a review conducted by Sourabh et 

al. [24], the Genetic Algorithm (GA) remains relevant 

despite being an older algorithm, as it has great 

potential for improvement and state-of-the-art 

methods. GA's versatility and adaptability to a wide 

range of scenarios have enabled it to maintain its 

effectiveness in converging well. Hence, GA is still 

considered a valuable tool for various applications. 

Although a significant result has been presented by 
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Klempka et al. [25] in SVM parameters optimization 

with grid search, the work was having limitation to 

converge at a slower speed particularly for large 

dataset and consumed higher running time. A 

combination of GA optimization algorithm rather than 

a single SVM is expected to provide better results as 

they can incorporate learning more stable and greatly 

faster than grid search [26]. Alternatively, heuristics 

methods such as genetic and evolutionary algorithms 

are faster and more efficient to approximate the 

solution of computationally expensive problems. It has 

been applied in solving numerical problems and 

prediction [26, 27]. 

As example, the data level approaches such as 

Synthetic Minority Oversampling Technique (SMOTE) 

[28] are easy to implement and flexible but may suffer 

from problems of overfitting. To counter the limitations, 

an improved algorithm for SMOTE have been 

proposed such as Borderline-SMOTE algorithm [29] and 

adaptive synthetic sampling algorithm (ADASYN) [30]. 

Meanwhile, other methods that combined both 

oversampling and under-sampling techniques are the 

SMOTE+Tomek [31] algorithm and SMOTE+ENN [31] to 

generate synthetic samples and employed Tomek 

algorithm to clean up the noise. 

As summarized in Table 1, although the techniques 

performed well at specific research problem for 

imbalance data, most of the instances exist flaws and 

inadequacies including but not limited to overfitting, 

unimpressive improvement and high complexity [31]. 

Similarly, there are some disadvantages in SVM 

parameters optimization methods such as being time-

consuming and CPU intensive. Most importantly, the 

SVM parameters optimization methods mainly work on 

balanced datasets. Therefore, the combination of 

sampling methods and optimized SVM with GA would 

be more preferred due to the simplicity and flexibility 

of sampling methods as well as the advantages of GA. 
 

Table 1 GA for SVM parameters optimization approaches. 
 

Techniques Dataset Findings 

GA & 

optimized SVM  

[21] 

Simulation 

data 

Effective user 

classification in NOMA 

based satellite systems 

GA & SVM 

parameter 

optimization 

and feature 

selection [22] 

Medical 

images 

Accuracy: 99.1870% 

Sensitivity: 98.1481 

Precision: 99.4845 

F-measure: 98.8118 

Modified GA 

optimized SVM 

for rapid 

classification of 

tea leaves [23] 

Chinese 

tea 

samples 

from the 

local 

market. 

Accuracy of training 

set and test set is 

99.73% and 98.4% 

respectively 

Comparison of 

using GA and 

cuckoo search 

for multicriteria 

optimization 

with limitation 

[25] 

Simulation 

data 

Optimization methods 

(GA and CS) found 

acceptable solutions; 

however, CS was the 

slower algorithm  

Techniques Dataset Findings 

SVM 

parameter 

optimization 

using Grid 

Search and GA 

[26] 

Datasets 

from UCI 

and 

BioInformati

cs Group 

Seville 

SVM parameter 

optimization using GA 

is more than 15.9 times 

faster and more 

stable than using grid 

search 

 

 

Therefore, using one technique alone to cope with 

imbalanced data problems is insufficient but 

combining techniques for imbalanced data with 

Support Vector Machine (SVM) parameters 

optimization techniques are very spare to improve the 

performance of proposed approach. To the best of 

our knowledge, no prior work on improved sampling 

method for imbalanced dataset and optimized SVM-

GA incorporated sampling-based machine learning 

techniques to improve the classification accuracy of 

minority class as well as the overall performance, 

which is the novelty of this current study. 

 

 

2.0 METHODOLOGY 
 

Figure 1 shows a schematic representation of the 

proposed method namely as SMOTE-SVM-GA which 

were divided into four stages: problem modelling and 

formulation, selection of best sampling method, 

implementation of optimized SVM with Genetic 

Algorithm and result comparisons.  

 

 
 

Figure 1 Proposed research framework of SMOTE-SVM-GA 

 

 

The proposed approach was implemented using 

Python 3.7 on macOS with 16 GB RAM and Intel Core 

i7 and Python as programing language whilst Scikit-

learn was used for preprocessing and evaluation 

metrics. 

 

2.1 Dataset 

 

The experiments used 10 different highly imbalanced 

datasets including abalone19, abalone9-18, ecoli4, 

glass2, glass5, page-blocks-1-3vs4, shuttle-c0-vs-c4, 

vowel0, yeast5 and yeast6 from KEEL [32] data 

repository. The collection of datasets in the KEEL 

repository is highly recommended for examining 
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imbalanced classification problems and is still widely 

used to this day [34].  

As summarized in Table 2, the datasets were 

composed by two classes (relative lack of minority 

sample data and the absolute lack of minority sample 

data) and vary in their degree of numbers of samples, 

number of attributes, and imbalance ratio. Relative 

lack defines that the minority sample is not small in 

absolute number like dataset shuttle-c0-vs-c4, but its 

number of samples is small compared to the majority. 

In this case, the data is also not conducive for 

discrimination of the minority class since the majority 

class sample will blur the boundary of the minority class 

sample, and difficult to distinguish the minority class 

sample from the majority class.  

In the table, the No. of Instances represents the 

total sample size of the data. The number of attributes 

represents the total number of features or columns in 

the data, while Majority/Minority indicates the total 

sample of class labels which represents majority 

samples and minority samples. Lastly, IR is imbalance 

ratio, required to understand the severity of the 

imbalanced class problem, whether it’s highly 

imbalanced or low imbalanced. The formula to 

calculate the value of IR is defined in Equation 1: 

 

  (1) 

 

where, if IR>1.5, the dataset is consider as imbalanced 

and if IR>9 it is consider as highly imbalanced [4]. The 

dataset in Table 2 is sorted based on the IR value from 

smallest to largest. 

 
Table 2 Description and characteristics of highly imbalanced 

datasets 
 

Dataset 
No. of 

Instances 

No. of 

Attributes 

Minority/ 

Majority 
IR 

vowel10 988 13 90/898 9.98 

Glass2 214 9 197/17 11.59 

Shuttle-

c0-vs-c4 
1829 9 1706/123 13.87 

Ecoli4 336 7 314/20 15.70 

Page-

blocks-

1-3vs4 

472 10 444/28 15.86 

Abalon

e9-18 
731 8 689/42 16.40 

Glass5 214 9 205/9 22.78 

yeast5 1484 8 1440/44 32.73 

yeast6 1484 8 1449/35 41.40 

abalon

e19 
4174 8 4124/32 129.44 

 

 

2.2 Selection of Sampling Methods 

 

Eight common sampling methods in scikit-learn were 

applied to the imbalance dataset for selecting the 

most effective sampling method. The sampling 

methods are SMOTE, BorderlineSMOTE, ADASYN, ENN, 

TomekLinks, Nearmiss-3, SMOTEENN and SMOTETomek. 

These sampling methods and SVM have been used to 

perform the prediction of imbalanced datasets along 

with a baseline model SVM performed at the initial 

dataset without any resampling. Selection of most 

effective sampling method made based on metric 

performance evaluation of ROC curve, PR curve and 

AUC. 

 

2.3 Optimized SVM-GA Algorithm 

 

Based on the basis of genetic biology and evolution 

theory, the GA starts the entire search process from 

the initial population of P (i=1,2,...,n). The initial 

population is randomly generated, and each 

individual in the population is a possible solution to the 

problem. These individuals continue to evolve in the 

iterative process and finally, the best solution comes 

out after specific iterations [24, 35]. The process of 

evolution is mainly achieved through operations such 

as selection, crossover, and mutation along with some 

parameter settings as depicted in Figure 2.  

Genotype Representation is the first problem to be 

solved in GA since improper representation can result 

in poor performance. Due to the random nature of 

GA, searching effect is very poor for complex 

problems and therefore for problem that involved 

continuous variables rather than discrete variables, 

real value representation is the most natural. If the 

problem refers to direction and similar problems, 

integer representation is suitable [36]. 

 

 
 

Figure 2 Design procedure of proposed SVM-GA 

 

 

If the solution requires order and does not contain 

duplicate values, permutation representation is 

preferred. In this work, given that parameters of SVM 

are continuous variables and to speed up the 

converge time of population, real value 

representation is selected. Each variable consists of 

two positions; the value of parameter 𝐶 is in one 

position while 𝑔𝑎𝑚𝑚𝑎 is in another position. 

Population since population setting is also 

important, the population was setting as 20 in terms of 

the trade-off between time and performance and 

initial the population with random real values between 

10-3 and 103 to justify if the population is too large, the 
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GA will be slow; if it is too small, it will not be enough to 

obtain a good mating [36]. 

Fitness Function the fitness function takes the 

candidate solution of the problem as input and 

outputs the best individual since the function act 

differently on different problems. It not only should be 

appropriate to the problem but also refers to the 

calculation efficiency. In this work, the GA generates 

different SVM algorithms through different individuals 

(C, gamma) to run on the new generated dataset. 

The F1-measure of each SVM corresponds to the fitness 

of the individual of all the 10 datasets. Since fitness 

evaluation is computational and costly, the 

multiprocessing and concurrent libraries were used in 

parallel as reasonable approach.  

Parent Selection includes fitness proportional 

selection, ranking selection, uniform parent selection, 

and tournament selection. In this study, the selection 

pressure was selected due to its simplicity and easy to 

control the tournament size, K of tournament selection 

[37]. The function randomly selects K individual from 

the population and choose the best as a parent whilst 

the remained parent was selected in the same 

process [35]. In this study, the tournament size is set by 

the remainder after the population size is divided by 5. 

Crossover and Mutation crossover rate and mutation 

rate are important research factors for optimizing GA 

to get the global optimal value to avoid the problems 

of premature maturity and falling into the local 

optimum [35, 38]. In this work, the crossover and 

mutation were set as Equation 2 and Equation 3 

respectively. 

 

  (2) 

 

  (3) 

 

Besides, the Whole Arithmetic Recombination is set 

as the crossover operators, child1 and child2 as 

expressed in Equation 4 and Equation 5, given that α is 

operator variable whilst x1 and x2 are input training 

respectively. To jump out of the local optimum and 

explore the entire parameter space unbiasedly, the 

mutation operator is implemented by Uniform 

Mutation which randomly selects a real value in a 

range from a distribution [35]. 

 

  (4) 

 

  (5) 

 

 

Survivor Selection. elitism selection is considered in 

this study as survivor selection due to its capability to 

selects the fittest in every iteration and discards other 

individuals as loss prevention of the current fittest of in 

the population. From a review by [38], out of eight 

selection methods available, three of it are elitist 

based method that always include the best individual 

in the new population. When using an elitist method, 

the best fitness in the population cannot decrease 

over time [38, 39, 40]. 

Termination Condition. the maximum generation of 

the GA was setting at 1600 that defined as stoppable 

cycles for the repeating algorithm [35, 41]. The overall 

summarization parameter settings of the GA are shown 

in Table 3. 

 
Table 3 Overall parameter settings of GA 

 

Parameter Value 

Genotype 

Representation 

Real value representation 

Population Size 20 

Fitness Function Mean of F1-measure on 10 

datasets 

Parent Selection Tournament selection 

Crossover Dynamic, Whole Arithmetic 

Combination 

Mutation Dynamic, uniform mutation 

Survivor Selection Elitism selection 

Termination Condition 1600 generations 

 

 

2.4 Optimized SVM With Other Techniques 

 

The grid search and randomized search were 

implemented for optimizing the parameters of SVM. In 

grid search, the range of the required parameter 

changes were initially set, and next changed these 

parameter values in the space according to their 

combination. Each of which gets the value of the 

objective function. Finally, the approximate optimum 

of the objective function is found by searching the 

entire parameter settings space. Meanwhile, the 

randomized search is similar to the grid search, but 

instead of trying all possible parameter combinations, 

it samples a fixed number of parameter settings from 

the specified distribution. The number of parameter 

settings that were sampled is given by n_iter of 300 

[42]. 

 

 

3.0 RESULTS AND DISCUSSION 
 

The performance based on the metrics of F1-measure, 

ROC curve and PR curve were used to evaluate 

effectiveness of the proposed model’s predictions 

compared to baseline model and other models. 

 

3.1 Results of Best Sampling Methods 

 

As summarized in Table 4, SMOTE and SMOTE+Tomek 

have the same value of AUC and rank first in seven 

datasets. Although the baseline model is also the 

number one in seven datasets, it is inferior to these two 

models. Considering the overall performance as well 

as time expenditure of these models from the two 

curves and according to the popular Occam's razor 

principle in machine learning which says that simple 

theories are better than complex ones with other 
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things equal, SMOTE is selected as the most effective 

sampling method among these methods. 

 

3.2 Results of Proposed Model and Baseline Models  

 

Based on result showing in Figure 3, the proposed 

model (SVM+GA) when integrated with SMOTE is 

superior to other models by achieving the highest F1-

measure for seven datasets. Most obviously, it greatly 

improves the classification performance for glass2 and 

glass5 datasets, which gets 0.625 and 1 from F1-score 

while the baseline model gets zero scores at these two 

datasets. The reason we can infer is that these two 

datasets both have rare cases with a small size which 

may lead to small disjuncts. 

From the results, compared to the classification 

without oversampling, the classification combined with 

oversampling is significantly better when the number 

of clusters of the minority class increases. Out of all 

oversampling techniques, it is interesting to note that 

the performance of SMOTE outperformed all the other 

methods because of its good performance in the 

majority of the datasets. 

 

 
 
Figure 3 Performances of proposed and baseline models on 

10 datasets 

 
Table 4 Result s of ROC (AUC) and time of all SVMs-based sampling methods and a baseline SVM model without any resampling 

in 10 datasets 

 
Dataset 

 

SMOTE Borderline 

SMOTE 

ADASYN ENN TomekLinks NearMiss SMOTE+ENN SMOTE+Tomek baseModel 

AUC t(s) AUC t(s) AUC t(s) AUC t(s) AUC t(s) AUC t(s) AUC t(s) AUC t(s) AUC t(s) 

abalone19 0.81 0.07 0.77 0.07 0.80 0.07 0.72 0.02 0.70 0.02 0.67 0.01 0.80 0.06 0.81 0.07 0.75 0.01 

Abalone9-

18 

0.84 2.29 0.61 1.29 0.82 2.20 0.82 0.13 0.79 0.12 0.64 0.01 0.85 1.64 0.84 2.34 0.88 0.09 

Ecoli4 0.98 0.01 0.98 0.01 0.97 0.01 0.99 0.01 0.99 0.01 0.99 0.01 0.98 0.01 0.98 0.01 0.99 0.00 

Glass2 0.67 0.01 0.63 0.01 0.63 0.01 0.73 0.01 0.66 0.01 0.69 0.01 0.65 0.01 0.67 0.01 0.62 0.01 

Glass5 0.99 0.01 0.99 0.01 0.99 0.01 0.98 0.01 0.99 0.01 0.28 0.01 0.98 0.01 0.99 0.01 0.99 0.00 

Page-

blocks-1-

3vs4 

0.99 0.04 0.99 0.02 0.99 0.01 0.99 0.01 0.99 0.01 0.82 0.01 0.99 0.02 0.99 0.02 0.99 0.00 

Shuttle-c0-

vs-c4 

1.00 0.02 1.00 0.01 1.00 0.02 1.00 0.01 1.00 0.01 1.00 0.01 1.00 0.03 1.00 0.03 1.00 0.01 

vowel10 0.99 0.06 0.99 0.06 0.99 0.05 0.99 0.02 0.99 0.02 0.02 0.01 0.99 0.05 0.99 0.07 0.99 0.01 

yeast5 0.89 0.08 0.87 0.07 0.89 0.11 0.85 0.02 0.88 0.02 0.83 0.01 0.88 0.08 0.89 0.10 0.87 0.01 

yeast6 0.59 0.09 0.35 0.07 0.58 0.10 0.53 0.02 0.56 0.02 0.20 0.01 0.51 0.07 0.59 0.10 0.56 0.01 

 

 

3.3 Results of Proposed Model and Baseline Models  

 

Based on results tabulated in Table 5, the proposed 

model improves the prediction capability of a 

traditional SVM in terms of F1-measure, indicating a 

good classification performance on highly 

imbalanced data. The proposed model allows itself 

to recognize minority samples, even when the 

traditional SVM failed to recognize any minority 

sample (as in the case of abalone19, abalone9-18, 

glass2, glass5, yeast5 and yeast6 dataset). 

  
Table 5 Comparisons of F1-Measure Results between Models 
 

Dataset Baseli

ne 

mode

l 

SMOT

E 

+SVM 

SMOT

E 

+SVM 

+RSb 

SMOT

E 

+SVM 

+GSc 

Proposed 

model 

abalone19 0.000  0.045  0.171  0.160  0.040  

Abalone9-18 0.000  0.182  0.211  0.211  0.417  

Dataset Baseli

ne 

mode

l 

SMOT

E 

+SVM 

SMOT

E 

+SVM 

+RSb 

SMOT

E 

+SVM 

+GSc 

Proposed 

model 

Ecoli4 0.800  0.737  0.706  0.333  0.800  

Glass2 0000  0.176  0.154  0.154  0.625  

Glass5 0000  0.667  0.667  0.667  1.000  

Page-blocks-1-

3vs4 

0.667  0.706  0.769  0.667  0.933  

Shuttle-c0-vs-

c4 

1.000  1.000  1.000  1.000  1.000  

vowel10 0.986  0.972  0.955  1.000  1.000  

yeast5 0.000  0.576  0.581  0.647  0.618  

yeast6 0. 000  0.353  0.500  0.500  0.360  

 

 

In addition, the overall average F1-measure results 

of different datasets are tabulated in Table 6. The 

proposed model improved with a range of 

improvement by 0.108 to 0.334 in terms of overall 

average F1-measure at an acceptable time 
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expenditure as compared to other models. This 

indicates that ability to produce a better percentage 

of F1-measure means to increase the ability in 

producing an accurate prediction of imbalanced 

data and significantly solves imbalanced data 

problems encountered in real scenarios.  

From Table 6, the proposed model able to reach 

highest performance in the condition of highly 

imbalanced class problem. Compared to previous 

work, the model able to classify well between both 

class and reduce the bias on the performance, 

where it performs fairly well for both classes. 

 
Table 6 Comparisons of overall average F1-measure results 

 

Method  Average 

F1-

measure 

Time (s) 

Proposed-model 

(SMOTE+SVM+GA) 

0.679 5933.28 

Baseline model  0.345 0.05 

SMOTE+SVM  0.541 0.71 

SMOTE+SVM+RandomizedSearch  0.571 413.79 

SMOTE+SVM+GridSearch  0.534 14177.01 

 

 

Besides, the baseline model produces an inferior 

performance despite the least time expenditure. 

Other three models provide similar performances with 

a medium improvement for baseline model while 

grid search requires an intolerable time expenditure. 

 

 

4.0 CONCLUSION 
 

In this study, the traditional SVM with multiple different 

sampling methods performed prediction on ten 

highly imbalanced datasets. They are evaluated on 

the basis of the comprehensive results of the F1- 

measure and time expenditure. 

As such, the most effective sampling method was 

obtained. And then, this most effective sampling 

method was combined with an optimized SVM with 

Genetic Algorithm (SVM-GA) for addressing the same 

datasets as mentioned before.  

The proposed model had outperformed the 

baseline model and other models based SVM with 

Grid search and Randomized search in most of the 

cases, especially for the datasets which have 

extremely rare cases. However, there were few 

datasets did not perform well and achieved a lower 

detection rate.  

In this study, there are also some limitations in 

terms of the number of samples and number of 

attributes. The datasets used mostly have less than 

5000 sample size and lesser number of features. The 

proposed model might not work well in more 

complex environment. In future, the model should be 

evaluated in a more complex datasets to measure 

the effectiveness of the proposed model in more 

complex environment.  
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