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Graphical abstract Abstract 

This study improves the exploration of ant colony optimization (ACO) ability by adapting it 

with the Sequential Variable Neighbourhood Search Change Step (SVNSCS) algorithm as 

post-improvements for solving the Capacitated Vehicle Routing Problem (CVRP) in solid 

waste collection methodology. The aim is to reduce the cost of waste collection by 

minimizing the route distance and the number of vehicles to serve all containers within the 

route. Technically, SVNSCS explores the search space depending on the information 

associated with the demands and coordinates of the nodes. Based on the result, the 

proposed algorithm demonstrates its superiority over the traditional ACO algorithm by 

having 66.7%, 81.81%, 62.5%, and 77.77% in terms of the best solution for four CVRP 

benchmark datasets of A, B, E, and P, respectively. Each dataset has different 

characteristics, such as the number of containers, vehicle capacity, objective function, 

weight of each container, and geographical distribution. 

Keywords: Ant colony optimization, capacitated vehicle routing problem, optimization 

algorithm, sequential variable neighbourhood search change step, solid waste collection 

Abstrak 

Kajian ini menambah baik penerokaan keupayaan pengoptimuman koloni semut (ACO) 

dengan mengadaptasinya dengan algoritma langkah perubahan carian kejiranan 

pembolehubah berurutan (SVNSCS) sebagai penambahbaikan pasca dalam 

menyelesaikan masalah penghalaan kenderaan berkapasiti (CVRP) dalam metodologi 

pengumpulan sisa pepejal. Tujuannya untuk mengurangkan kos kutipan sisa dengan 

meminimumkan jarak laluan dan bilangan kenderaan untuk melayani semua kontena 

dalam laluan. Secara teknikal, SVNSCS meneroka ruang carian bergantung kepada 

maklumat yang berkaitan dengan permintaan dan koordinat nod. Berdasarkan 

keputusan, algoritma yang dicadangkan mempamerkan keunggulannya berbanding 

dengan algoritma ACO tradisional dengan mempunyai 66.7%, 81.81%, 62.5%, dan 77.77% 

dari segi penyelesaian terbaik untuk empat set data penanda aras CVRP masing-masing 

A, B, E dan P. Setiap set data mempunyai ciri yang berbeza dari segi bilangan bekas, 

kapasiti kenderaan, fungsi objektif, berat setiap bekas dan agihan geografi. 

Kata kunci: Pengoptimuman koloni semut, masalah penghalaan kenderaan berkapasiti, 

algoritma pengoptimuman, langkah perubahan carian kejiranan pembolehubah 

berurutan, pengumpulan sisa pepejal 

© 2025 Penerbit UTM Press. All rights reserved 
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1.0 INTRODUCTION 
 
The increasing population growth, urbanization, and 

economic development lead to an increase in the 

amount of waste, while sustainable management still 
represents a major challenge worldwide [1, 2]. This 

issue led to an increase in the generation of Municipal 

Solid Waste (MSW) from 1.6 to 3.4 billion tons until the 

year 2050 globally [3]. East Asia and the Pacific had 
the highest share and amounted to about 23.0% [4]. 

Thus, local authorities face big challenges in MSW 

management in most developing countries [5, 6, 7]. 
Health risk is one of the challenges arising from the 

accumulation of waste, affecting public health [8]. 

Furthermore, it is known that failure to treat waste early 

at collection points will lead to the deterioration of the 
surrounding area and cause social issues [9, 10]. In 

addition, 19% of waste ends up in our drains, which 

then causes flash floods and drainage blockage, 
influencing the sustainability of human life, based on a 

study conducted in Kuala Lumpur, Malaysia [11]. 

These issues may happen because most municipalities 

still use a traditional way to collect solid waste [12]. 
Therefore, waste collection, among other stages of 

municipal waste management (MWM), is one of the 

significant strategies for minimizing total costs because 
it consumes 60% - 80% of the budgets of other MWM 

[13]. According to that, many strategies are utilized to 

tackle waste collection problems, such as spatial 

treatment controllers, as in the recent simulation study 
proposed by Sahib et al. [14]. The development of 

vehicle routing systems reduces total transportation 

distance and increases waste collection efficiency 
[15, 16].  

However, most routing problems in waste 

collection are divided into two essential problems: the 

arc routing problem that deals with the waste along 
the street and the node routing problem that 

considers the nodes’ locations as their priority [17]. 

Hence, there is a study concerning the use of the 
Geographic Information System (GIS) to improve 

waste collection [18]. Note that the classic CVRP 

involves starting the vehicles to serve all waste in a 

certain network and unloading that waste in the same 
location (depot) for disposal or transferring it to the 

vehicle with a bigger capacity, as shown in Figure 1.  

 

 
 
Figure 1 Pickup and delivery of waste in the same location 

 
 

In this paper, we will focus on solving the 

homogenous Capacitated Vehicle Routing Problem 
(CVRP) in the application of waste collection using a 

metaheuristic optimization algorithm for the pickup 

and delivery of waste in optimal routes. Thus, the 

remainder of this paper is organized as follows. Section 
2 represents related work, and Section 3 represents the 

methodology. Section 4 presents the results and 

discussion of the findings. Finally, Section 5 gives a 

conclusion and future direction. 
 

 

2.0 RELATED WORK 
 
In recent years, optimization algorithms have been 

proposed to solve the Vehicle Route Problem (VRP) [19, 

20]. Using the optimization algorithm in the exploration 
stage, we can examine neighbours in the solution 

iteratively [21, 22]. This section will discuss the 

improvement of metaheuristic methods with local 

search heuristic algorithms for solving CVRP in a waste 
collection system. Regarding a recent survey, we 

focused on metaheuristic methods for solving routing 

problems in waste collection, where two studies utilized 
a Simulated Annealing (SA) with a Heuristic Algorithm 

(HA). Consequently, another study employed the Ant 

Colony Optimization (ACO) algorithm. However, most 

methods considered the Capacitated Arc Routing 
Problem (CARP), except one study utilized ACO to 

minimize the travelling time of the slowest vehicle, 

hence avoiding the vehicle’s accident in the disposal 
station. Note that the latter applied only four nodes in 

the improvement phase, which is insufficient to 

evaluate the proposed system [23, 24, 25, 26]. 

Other studies improved their performance based on 
the local search strategy. One of these studies 

proposed Iterated Greedy (IG) with Variable 

Neighbourhood Search (VNS) to explore three different 
changes in the structure of the neighbourhoods. The list 

of changes is as follows: insert, exchange, and 2-opt 

under deconstruction and reconstruction solution. The 

authors also presented the greedy-random among 
variants to obtain a high-quality solution in the diversity 

stage. Although the paper is sensitive to the 

performance of the proposed algorithm under the 
intensification stage, the study did not compare the 

outcome with the Best-Known Solution (BKS) and other 

methods. In addition, it considered self-generated data 

only [27]. 
On the contrary, a study compared the proposed 

algorithm with BKS with other optimization methods 

using different dataset classes from the best-known 
datasets. The authors modified the Particle Swarm 

Optimization (PSO) algorithm with local improvement 

using four methods called 2-opt*, Or-opt-1, 2-opt, and 

Or-opt, where these changes are selected randomly 
(next neighbourhood unknown). The aim is to 

determine the best waste collection and route 

optimization solutions. This study considered real-time 
for collecting the waste from Collection Points (CPs) 

under a simulation environment. It was neither focused 

on the efficiency of the proposed algorithm opposite 

each iteration nor the distribution of weight in each 
route [9]. The weights on the edges may also represent 

the distance between two points and the travel time 

[28]. 
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A similar study utilized a modified Backtracking Search 
Algorithm (BSA) with the same local improvement 

methods [29]. A hybrid metaheuristic algorithm also 

considered the SA algorithm and improved the 

solution by employing the VNS algorithm. Note that 
the VNS used local methods, including insert and 

removal methods, and the objective was to select the 

appropriate bins for the best route. This study 
generates real data randomly to evaluate the entire 

system since the next neighbourhood procedure 

depends on improvements. In other words, if the 
runtime is less or equal to 2 hours, the algorithm will 

move to the next procedure or stop [30]. 

A study in [31] proposed a population-based 

hybrid metaheuristic approach consisting of a Large 
Neighbourhood Search (LNS) and various 

improvement algorithms to solve the Rollon–Rolloff 

vehicle routing problem. The objective is to determine 
routes that minimize the number of required tractors 

and the minimum amount of total nonproductive 

(deadhead) time to serve all given customer 
demands. A modified version of the sweep nearest 

algorithm was proposed to overcome the weaknesses 

of grouping stops. The generated solutions are 
improved by four local search improvement 

algorithms, including four times of m-n exchange 

improvement (inter-route), crossover exchange 
improvement (inter-route), route reduction 

improvement (inter-route), and 2-opt edge exchange 

improvement (intra-route).  
A hybrid ant colony-variable neighbourhood 

search algorithm was used in [32] to solve multi -depot 

green vehicle routing problems. Three vehicle routing 
models were developed focusing on multi -depot, 

emission, and total cost reduction. The ACO variable 

neighbourhood search (ACO-VNS) algorithm was 
tested on randomly generated small and large-scale 

instances, and the comparison was made with 

standard ACO. An improvement of 8% was observed 
in total cost when a comparison was made between 

the two algorithms on large-scale data. 

However, from the authors’ knowledge, there is no 
study focused on adapting an ACO with a VNS 

algorithm in terms of the Sequential Variable 

Neighbourhood Search Change Step (SVNSCS) for 
solving the CVRP, specifically addressing the issues of 

selecting the first node randomly in each route that 

belongs to the individual solution. It is considered a 

critical issue that must be highlighted, in addition to 
eliminating the sub-tour constructed (a route with a 

single node).  

The aims of our paper will fill this research gap to 
improve its exploration ability and examine the 

performance of the basic ACO after improving the 

efficiency of the waste collection system. In addition, 

the result of the proposed algorithm is compared 
against the basic ACO algorithm and Best-Known 

Solution (BKS). The concept of contribution parts is 

inspired by the original paper organized by Hansen et 
al. [33], highlighted in the hierarchical scheme shown 

in Figure 2. 

This study summarized the main contributions as 
follows: (1) adapting the standard ACO algorithm for 

solving Capacitated Vehicle Routing Problem (CVRP) 

in the solid waste collection system, in which the 

amount of waste per container and the tightness 
(percentage of waste amounts in the vehicle) have 

been calculated to follow up the profit of waste 

collected by vehicles, (2) designing a sub-tour 
elimination technique that may be generated in the 

solution thus reducing waste collection cost, (3)  

improvement of the best solution of ACO by post-
optimization using SVNSCS algorithm. The waste 

collection system will choose the best route, in which 

its total amount of waste is set to be < 85% of the rest 

tightness of the vehicle to narrow the search space 
and speed up convergence, as well as the 

application of the SVNSCS algorithm to improve the 

cost of the route in terms of reducing route distance. 
 

 
 

Figure 2 Ingredients of variable neighbourhood search 
 

 

3.0 METHODOLOGY 
 
3.1 Mathematical Model 

 

The CVRP problem can be illustrated schematically, as 

shown in Figure 3. The CVRP distribution, G = (N, E) 
where N represents a set of nodes graphically 

distributed, 𝑁 = {𝐶0, 𝐶1, ⋯ , 𝐶𝑛}. The index of the depot is 

0, while the other index represents the containers, 

which are from 1 to n. E is a set of edges called 𝑉 =
{𝐸0 , 𝐸1 , ⋯ , 𝐸𝑛 }  in which each edge (𝑖, 𝑗) ∈ 𝐸 =
{(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗}  and it has a positive trip cost named 

𝐶𝑖𝑗 [34].   

 

 
Figure 3 Representation of CVRP based on (a) graphical 
solution with N = 9 customers distributed over k = 3 routes, and 

(b) individual matrix [35] 
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From a practical perspective, the weights on the edges 
represent the travel distance from container (i) to 

container (j), where (𝒊 ≠ 𝒋) . Each container 𝒊 ∈ 𝑽′ =

𝑽\{𝟎}  has a demand 𝒒𝒊  where {𝒊 =  𝟏, 𝟐, . . . , 𝒏} . For a 

single depot 0, having a set of homogeneous vehicles K 
with capacity limit Q, we assume the number of vehicles 

inside the depot is not specified. Moreover, a sub-tour 

elimination technique has been designed to avoid the 
high cost of adapting the basic ACO in classical CVRP. 

The sub-tour means that one vehicle serves only one or 

two containers in a single route. However, to formulate 

the waste collection system, first, we must know that the 

whole system is subject to the decision variable (𝑿𝒊𝒋𝒌). 

𝑿𝒊𝒋𝒌 = 𝟏  if vehicle k travels from a container (𝒊) to 

container (𝒋)  under the threshold control (TC) 

component; otherwise, 𝑿𝒊𝒋𝒌 = 𝟎. Thus, the vehicle does 

not travel on the planned route, as shown in Equation (1). 
𝑿𝒊𝒋𝒌

= {𝟏, if vehicle served the edge (𝒊,𝒋)under condition TC component
𝟎,                                                                                                    Otherwise

 

(1) 

Where  

TC component = AWR  85% out of Ck 
AWR = Total amount of waste in the assigned route 

𝐶𝑘 = Vehicle Capacity. 
 

The objective function and the constraints of the 
problem have been formulated as follows.  

 

Minimize ∑ ∑ ∑ 𝑑𝑖𝑗
𝑘
𝑘=1

𝑁
𝑗=0

𝑁
𝑖=0 𝑋𝑖𝑗𝑘                                   (2) 

 

𝑑𝑖𝑗 = [

0 𝑑12 … 𝑑1𝑁

𝑑12 0 … 𝑑2𝑁

⋮
𝑑1𝑁

⋮
𝑑2𝑁

⋱
…

⋮
𝑑𝑁𝑁

]                                                        (3) 

 

Subject to: 
∑ ∑ 𝑋0𝑗𝑘 = 1𝑘

𝑘=1
𝑁
𝑗=1                                                            (4) 

∑ 𝑞0𝑗𝑘
𝑁
𝑗=1 = 0, 𝑘 ∈ {1, 2 … 𝐾}                                            (5) 

∑ ∑ 𝑋𝑖𝑗𝑘
𝑁
𝑗=0

𝑘
𝑘=1 = 1, 𝑖 ∈  {1, 2 … 𝑁}: 𝑖 ≠  𝑗                          (6) 

∑ ∑ 𝑋𝑖𝑗𝑘
𝑁
𝑖=0

𝑘
𝑘=1 = 1, 𝑗 ∈  {1, 2 … 𝑁}: 𝑖 ≠  𝑗                          (7) 

∑ ∑ 𝑄𝑗
𝑁
𝑗=0

𝑁
𝑖=0 𝑋𝑖𝑗𝑘 ≤ 𝑄 , 𝑘 ∈ {1,2,… 𝐾}                                (8) 

∑ 𝑋𝑖𝑗𝑘
𝑁
𝑗=1 = ∑ 𝑋𝑗𝑖𝑘

𝑁
𝑗=1 = 𝑌𝑖𝑘, 𝑖 ∈ {1,2, … 𝑁}, 𝑘 ∈ {1,2, … 𝐾    (9) 

∑ ∑ 𝑞𝑗𝑖𝑘 
𝐾
𝑘=1

𝑁
𝑖=0 − ∑ ∑ 𝑞𝑖𝑗𝑘 

𝐾
𝑘=1 = 𝑐𝑗, 𝑗 ∈ {1,2, … 𝑛}𝑁

𝑖=0          (10) 

∑ 𝑋𝑖𝑗
𝑘𝑁

𝑗=1 = ∑ 𝑋𝑗𝑖
𝑘𝑁

𝑗=1 ≤ 1, for 𝑖 = 0 and 𝑘 ∈  {1, 2, …  𝑘} for 𝑖 =

0 and 𝑘 ∈  {1,2, …  𝑘}                                                      (11) 

𝑑𝑖𝑠𝑡𝑖𝑗 = 𝑑𝑖𝑠𝑡𝑗𝑖                                                                  (12) 

∑ 𝑋0𝑗
𝑘𝑁

𝑗=1  ≤ 1, 𝑘 ∈ {1,2, … 𝑘                                             (13) 

∑ 𝑋𝑖0
𝑘𝑁

𝑖=1  ≤ 1, 𝑘 ∈ {1,2, … 𝑘}                                             (14) 

 

The objective function is to minimize the total 
distance vehicles travel to serve all containers in the 

network, as shown in Equation (2). Here, 𝑑𝑖𝑗  is a 

symmetrical matrix or a square matrix of size (N × N), then 

(𝑑𝑖𝑗 = 𝑑𝑗𝑖), to determine the cost of distance whether the 

vehicle has travelled from container (i) to container (j) 

based on the logical component (𝑋𝑖𝑗𝑘) as Equation (3).  

It should be noted that strategic systems such as 

waste collection systems are often subject to constraints. 

In this study, vehicle K will start its route from the depot (0) 
according to Equation (4). Each vehicle should start its 

work empty, as Equation (5) indicates. Each container 

can pick up the waste from it by one vehicle, as shown 

in Equation (6) and Equation (7). Nevertheless, Equation 
(8) ensures that the total amount of waste in each 

container cannot exceed the vehicle capacity Q. 

Equation (9) ensures the continuity condition. Equation 
(10) ensures that the vehicle empties the container 

visited. Equation (11) guarantees that each vehicle tour 

starts from the depot and ends at the same depot. 
Equation (12) ensures the distance between pair 

containers is the same. Equation (13) and Equation (14) 

ensure each vehicle can be used once or not be used. 

 
3.2 Tightness Model 

 

The tightness factors 𝑇𝑗
𝑘  is a significant variable 

depending on the profit of waste quantity in the route  𝑃𝑗, 

which is a maximize the sum of product and the quantity 

of waste in each container 𝑞𝑗  in the route with the 

decision variable 𝑋𝑖𝑗𝑘 in case the waste amount is a non-

negative value based on Equation (15). 

 

𝑃𝑗𝑘 = 𝑚𝑎𝑥 ∑ ∑ ∑ 𝑞𝑗
𝑘
𝑘=1

𝑁
𝑗=1

𝑁
𝑖=1 . 𝑋𝑖𝑗𝑘 > 0, 𝑗 ∈ {2, . . . 𝑁}       (15) 

 

Where: 𝑁:  Number of containers in the route. 

 

The tightness factors in the route (𝑇𝑗
𝑘) can be determined 

by dividing the profit value (𝑃𝑗) over the vehicle capacity 

(𝐶𝑘), as shown in Equation (16). 

 
𝑇𝑗

𝑘 = (𝑃𝑗 𝐶𝑘⁄ ) > 0, 𝑗 ∈ {2, … 𝑁}, 𝑘 ∈ 𝐾                              (16) 

 

The average tightness for all routes (𝑇𝑎𝑣𝑔
𝐾 ) in the improved 

solution can be calculated based on Equation (17). 

 

𝑇𝑎𝑣𝑔
𝐾 = (∑

𝑇𝑗
𝑘

𝑐𝑜𝑢𝑛𝑡 𝑜𝑓 𝑇𝑗
𝑘), 𝑗 ∈ {2, … 𝑁}, 𝑘 ∈ 𝐾                               (17) 

 

A study on the capacity constraint of the waste-lifting 
vehicle results in two types of benefits. The first is related 

to the performance efficiency aspect of the proposed 

algorithm in increasing the convergence by narrowing 

the search space and thus reducing the execution time. 
Second, it relates to the technical aspect of the service 

vehicles used to measure the impact of high waste 

loading in the vehicle against fuel consumption. As a 
result, the solid waste collection system consists of a pre-

processing module used for coding the text document 

of the benchmark dataset in instructions known as 

“regular expression operations.” Apart from that, it is 
configured to be able to read by Python code as well as 

a processing module that manages reading the dataset 

and parameters of the proposed algorithm and then 
processing the data inside it. The next section will focus 

on the processing module and all models employed 

according to the framework of the ACO algorithm, with 

the proposed algorithm shown in Figure 4. 
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Figure 4 Framework of the proposed algorithm for reconstructing the route of waste collecting vehicle 
 

 

3.3 Development of ACO 
 

ACO is a nature-inspired and population-based 

metaheuristic, which was first proposed by Dorigo in 

1992 and was modified in 2002 by Parpinelli et al. [36]. 
Typically, ACO is a swarm intelligence method 

inspired by the social behaviour of ant colonies for 

solving optimization problems [32, 37]. When ants are 
finding the food and return to the nest, they will follow 

the shortest path. Naturally, ants deposit pheromones 

on the ground during their journey to identify the routes 

other colony members should follow. The high quantity 
of the pheromones dropped by ants represents the 

inverse of the longest distance by vehicle during the 

waste collection. Although ACO is robust and can 
explore a solution, the convergence is still slow and 

down into the local optimum [38]. Therefore, 

improvement is required. As a result, all steps of the 

development and improvement of ACO in the next 
subsection will be structured, as shown in Figure 5. 

 

3.3.1 Initialization of Parameters 
 

Consider the first step of a reading model in the 

processing module. This section must set the number of 
ants, maximum iteration number, parameter control  

and 𝜷  as well as the threshold of demands for the 

sensitive response of the proposed algorithm in the 

exploitation stage in addition to the evaporation value 
that is set among duration [0,1] as shown in step 1. 

 

3.3.2 Tabu Search Algorithm 

 
This section explains the concept of the Tabu Search 

(TS) technique and reinforcement with some 

mathematical models. In contrast, the TS is a 
metaheuristic method introduced by Glover in 1990 

that represents one of the local search heuristic 

algorithms capable of escaping local optima through 

a Tabu list and neighbourhood generation [39]. 
The Tabu list technique is important in clustering the 

routes and removing the containers not visited in the 

candidate containers list. This technique prevents the 
vehicle from visiting any container again, based on 

Equation 8. Instead, the search will choose a certain 

container and stop according to the amount of waste 

collected without exceeding vehicle capacity, as 
shown in Equation 6. 

This process is done when selecting a certain 

container and assuming its demand exceeds vehicle 
capacity (violation of the constraint capacity). The TS 

will also remove that container to the next route while 

keeping the obtained route inside the main path. 

After the TS starts again to choose randomly another 
first container, this technique is iterated until other 

containers are chosen, as in Step 2 in Figure 5. 
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Figure 5 Flowchart of adapting ACO with SVNSCS algorithm 
 

 
3.3.3 Exploration Initial Solution 

 

Typically, the initial solution to the routing problem 
consists of a set of routes with a fixed limited number 

of containers. Furthermore, each solution is 

constructed based on the TS technique with assisting 

a probability distribution, as shown in Step 3. Note that 
all containers are selected relative to the first 

randomly selected container. This technique adopted 

a roulette wheel probability equation as in Equation 

(18). The highest probability (𝑃𝑖,𝑗
𝑘 ) of selecting the next 

container is the closest waste container. 

 

𝑃𝑖,𝑗
𝑘 = {

(ℑ𝑖𝑗)𝛼(ղ𝑖𝑗)𝛽

∑ (ℑ𝑖𝑗)𝛼(ղ𝑖𝑗)𝛽
𝑖∈𝑁

𝑖
𝑘

,    if 𝑗 ∈ 𝑁𝑖
𝑘

0                                 ,otherwise

                 (18) 

 

Where the term ℑ𝑖𝑗 = pheromone intensity in edges (i, 

j). The term 𝑁𝑖
𝑘 =  the feasible neighbourhood of ant k 

at the container (i). The ղ𝑖𝑗  refers to the distance 

between the containers (i,j). Meanwhile, 𝛼 and 𝛽 both 

represent the effect of controlling the pheromone 

intensity allocated on edge (i, j) and the desirability of 

edge (i, j), respectively [40]. The shortest path distance 

in edges (i,j) can be calculated based on the visibility 

value ղ𝑖𝑗 in Equation (19) [41]. 

 

ղ𝑖𝑗 =1/ (𝐷(𝑖,𝑗))                                                               (19) 

 

𝐷(𝑖,𝑗): Distance between 𝐶𝑖 𝑎𝑛𝑑 𝐶𝑗 

 

3.3.4 Calculate Routes Distance 

 
The total distance in each route depends on the 

distance matrix (symmetric matrix) to side the initial 

pheromone matrix, which represents the most 

important variables for exploring the best route. Here, 
the distance between container (i) and container (j) is 

calculated using Equation 20. 

 

Edges (𝑖,𝑗) = 𝑑𝑖𝑗 = √(𝑥𝑖−𝑥𝑗)2+(𝑦𝑖−𝑦𝑗)2                       (20) 

Where 
𝑥: Location of container source. 

𝑦: Location of container target 

 

In Algorithm 1, two (for loops), as shown in Step 4 
and Step 6, are known as the indexes of each route 

individually and indexes of all routes in the solution, 

respectively. In Step 5, node 1 refers to the depot, 
while Step 8 is a procedure of summing the distances 

from the depot to the last item in the sub-list. Finally, 

Step 9 is the second formula to calculate the distance 

between the last item in the sub-list (individual route) 
and the depot. 

 
Algorithm 1 Pseudocode of calculating distance 

1 Input: solution, edges, demands, Vehicle_Capacity 
2 Output: distance for one solution 
3 Procedure CalculateDistance (solution, edges,  

demand, Vehicle_Capacity) 
4     for i := solution  do    
5          a  1  # refer to the depot. 

6         for j := i do 
7                b j  
8                 su su+ edges[(min(a,b), max(a,b))]  
9                 s_p1(edges[(min(a,b), max(a,b))]) 

10                 a  b             
11               b1 
12         End for 
13     End for 
14   return su 

 

 

In Algorithm 2, we calculate each route’s 
summation of demands (waste amount). Therefore, 

only one (for loop) is necessary to determine the 

vehicle capacity’s tightness. 
 
Algorithm 2 Pseudocode of calculating tightness 

1  Input: edges, demands, Vehicle_Capacity 

2  Output: tightness and amount of waste. 
3  for j :=  i  do             
4         Demands(demand[j])  
5  wasteCollectionsum (Demands) 
6  TwasteCollection/Vehicle_Capacity  
7   print “Route Tightness,” T  
8   tT 
9  End for 

 
 

3.3.5 Update of Pheromones 

 
We create solutions for each iteration based on a 

pheromones update, where the evaporation and 

intensification procedures are based on the 

information from high-goodness solutions. The 
pheromone update aims to increase the 
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concentration on the regions containing high-quality 
solutions, and it is worth mentioning the update of the 

best route.  

Typically, ρ refers to the random number, uniformly 

selected in the interval [0, 1], where the update is 
stored inside the pheromones matrix without being 

adopted to give decisions based on Equation (21). 

 

𝜏𝑗
𝑛𝑒𝑤   ρ + 𝜏𝑗

𝑜𝑙𝑑 + ∑ 𝛥𝜏𝑗
(𝑘)

                                            (21) 

 

Step 6 in Figure 5 represents the ascending-sort 

technique to obtain the best solution for each 
iteration (generation). According to that, the 

evaluation stage regarding selecting the best solution 

is compared with the previous one, based on Step 7 in 
Figure 5. 
 

3.3.6 Selecting the Initial Best Solution 

 
In this section, the proposed algorithm depends on the 

initial best solution, as in Step 8 in Figure 5, which 

consists of a set of routes. Each route includes a group 
of containers distributed between the vehicles 

according to the vehicle capacity, in which each 

container has a certain non-negative demand. 
 
3.3.7 Eliminate Sub-Tour 

 

The local search method eliminates the sub-tour, 
avoiding extra travel costs. Typically, the sub-tour 

includes one or two containers [42]. Step 9 in Figure 5 

uses the neighbourhood operator technique, as 

shown in Algorithm 3. 

Steps 1 - 6 in Algorithm 3 are coded to recognize 

the sub-tour through reading the best initial solution. 
As of Step 3, it is used to reverse all elements of the sub-

list to the left side to check if any sub-list has one or two 

containers (sub-tour). 
Subsequently, remove the specified sub-tour and 

insert it in a closed route with smaller containers based 

on Steps 7 - 17. After that, the algorithm will keep the 

new results (a) in a buffer (p), delete them from the 
base solution, and then merge its elements inside a 

sub-list with smaller containers. 

Exploration techniques improve the search space 
[43]. Consequently, the improvement involves 

reducing the distance of waste vehicles during travel 

from source to destination. This research improves the 

search space by employing the Sequential Variable 
Neighborhood Search Change Step (SVNSCS) 

algorithm to explore solution space and decide which 

neighbourhood will be explored as the next. 
Moreover, some solutions will be accepted as new 

incumbent solutions. In other words, the search is 

resumed in the first neighbourhood structure of the 

new incumbent solution if there is a feasible solution. 
Otherwise, the search will continue in the next 

neighbourhood (according to the defined order). 

 
 

Algorithm 3 Pseudocode of technique to eliminate sub-tour 
problem 
 

1  Input. Initial best solution 
2   Output. Best solution with no sub-tour. 
3   Procedure subtour (BestSolution) 
4       BestSolution.reverse()  
5       for a := BestSolution  do # seek any sub tour in route 
6             if length(a)==1 or length(a)==2 then          
7                   pa 
8                   del BestSolution [0] 
9                   for b := BestSolution do  
10                         if length(b)==2 then                
11                               b. extend(p) # Expand sub-list 
12                               BestSolution.reverse()  

13                                break 
14                          End if 
15                          Else if length(b)==3 then                
16                                       b. extend(p) 
17                                       BestSolution.reverse() 
18                                       break 
19                    End for 
20            return BestSolution 
21           End if 
22        End for 
23  End procedure 

 
 

The approach of the Sequential Variable 

Neighbourhood Search Change Step is given in Figure 

4. The algorithm proposes an exchange for each pair 
of container locations. It moves sequentially from the 

first index of the sub-list to the last index in the same 

sub-list in terms of search space exploration until a 
feasible solution is found, which means it gives the 

shortest route to the best container locations. 

Correspondingly, the proposed algorithm will 

return the order of the sub-list to the old route using the 
rotation technique to ensure the route is not 

corrupted. That condition is used for evaluation values 

of individual route distance [44]. With old individual 
route distance, the features of swapping each pair of 

containers sequentially make it useful in a narrow area 

of the search. Other than that, the parallel leads to 

accelerating the search process. Finally, the best 
solution will be selected based on the ascending 

order selection technique. The proposed algorithm 

stops after reaching the maximum iteration number, 
as in steps (10 -11) in Figure 5. 
 

 

4.0 RESULTS AND DISCUSSION 
 

The ACO-SVNSCS algorithm has been examined in 

terms of performance and effectiveness with several 

CVRP benchmark datasets with different container 

sizes [45, 46]. This paper has evaluated the 
performance of the ACO-SVNSCS algorithm based on 

four benchmark CVRP datasets, categorized into 

classes A, B, P, and E. The first three classes were 
authored by Augerat, whereas class E was established 

by Christofides and Eilon [47].  
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Here, we have taken the dimension as the number of 
containers in each dataset. The parameters of the 

proposed algorithm are considered based on trial and 

error and listed as follows: the maximum number of 

ants, maximum iterations number, , , and ρ are 50, 
250, 1, 4, and 0.9, respectively. The simulation was 

coded in the Spyder environment (anaconda3 / 3.8 

pythons), and all tests were performed on core i5 at 
2.3 GHz with 4 GB RAM under the Microsoft Windows 

8.1 operation system. All the simulation datasets 

utilized to evaluate the proposed algorithm can be 
found at http://vrp.atd-lab.inf.puc-rio.br/index.php/en/. In 

this paper, the simulation results of the proposed 

algorithm tested 37 instances of benchmark datasets 

that have solved the CVRP, as shown in Table 1. 
 

4.1 Evaluation Methods 

 
In the literature, several methods are used to evaluate 

the algorithms. The quality of the solution is measured 

as a difference between the optimal value of the Best-

Known Solution (BKS) and the best solution value 
(BestSol) obtained [48, 49]. In this paper, we 

considered this method for evaluating each instance 

in the dataset category based on Equation 22. 
 

Percentage difference (∆%) = 
(BestSol−BKS)

BKS
× 100 (22) 

 
The algorithm’s performance can also be measured in 

terms of benchmark category [9]. The percentage of 

the average best solution can be measured based on 
Equation 23. 

 

Avg. (%) =
∑ BestSol

𝑇𝑖𝑛𝑠 
× 100                      (23)                                                                                                     

Where 
Avg.: Average of the best solution on benchmark class 

𝑇𝑖𝑛𝑠  : Total number of instances. 

 
Table 1 Dimensions of dataset instances class 

 

Class Number of instances Problem dimension 

A 9 32-69 
B 11 31-78 
E 8 22-101 
P 9 55-101 

Sum  37  

 

 
4.2 Analysis of the Performance of ACO-SVSNCS 

 

We performed experiments to investigate the 

contribution of local search improvement algorithms 
and ACO mechanisms to solution quality. In this 

research, both evaluation methods mentioned above 

have been considered for the experiment with the 
proposed algorithm’s influence in minimizing travel 

distance. Tables 2 – 5 demonstrate the results of the 

comparison of ACO-SVNSCS in different benchmarks 

of categories A, B, E, and P. Based on that, all these 
tables first consist of evaluation parameters, which, in 

turn, involve four columns, and the first column include 
different dataset instances (e.g., A-n32-k5, A-n33-k5, 

etc.). Moreover, it has a specific number of containers 

distributed in scattered form, associated with 

demands (waste amount) for each container. 
The second column represents the dimensions of 

the instance (problem size), and the third column is the 

number of vehicles (k). Apart from that, BKS for each 
instance can be obtained from the dataset. 

Meanwhile, the next columns indicate that the 

comparison between the basic ACO with the 
proposed algorithm in terms of best values has been 

minimized, in which the average best value (Avg.) 

and the percentage difference (%) discovered an 

improvement value that shows the difference 
between the basic best value and the proposed best 

values. Moreover, another column was assigned to 

calculate the runtime in each instance to measure the 
proposed algorithm efficiency by calculating the 

tightness that represents the tolerance of the vehicle’s 

capacity when filled by the waste load.  

In Table 2, the performance of ACO-SVNSCS has 
been evaluated in terms of BKS. The best solution 

values of ACO-SVNSCS were near to the BKS value, 

and the best solution of ACO-SVNSCS increased (worst 
values) with increasing the size of the problem in 

special cases such as A-n46-k7, A-n54-k7, A-n63-k9, 

and A-n69-k9. Regarding the second evaluation 

method, the ACO-SVNSCS algorithm outperformed 
the basic ACO in 6 out of 9 instances highlighted in the 

bold font by reducing the number of vehicles in two 

instances, A-n32-k5 and A-n39-k5. This outcome will 
reduce the transportation cost caused by utilizing 

extra vehicles to service the containers. However, the 

asterisk symbol beside the bold font refers to the 

instances that reduced the number of vehicles. The 
ACO-SVNSCS fails in improving three instances, A-n33-

k5, A-n44-k6, and A-n54-k7, which means the best 

solution value of the proposed algorithm obtained is 
similar to the best solution of the basic ACO algorithm. 

Eventually, the percentage value of outperforming 

the proposed algorithm compared to the basic 

algorithm is 66.7%. 
Table 3 shows the evaluation of the proposed 

algorithm in benchmark B. ACO-SVNSCS is near to 

finding BKS in 9 out of 11 instances where it succeeds 
in improving the best solution at the rate of 81.81%. 

Apart from that, the number of vehicles has been 

reduced only in one instance, B-n38-k6. In 

comparison, ACO-SVNSCS fails to optimize the solution 
in two instances, represented by B-n31-k5 and B-n50-

k7. 

Table 4 presents the evaluation of the proposed 
algorithm in benchmark E. The ACO-SVNSCS algorithm 

also succeeds in improving the best solution. With the 

same number of vehicles (K) at the average of 62.5%, 

finding the best solution near BKS is comprised of 5 out 
of 8 instances. Still, three instances, E-n22-k4, E-n33- k4 

and E-n76-k8, did not optimize. 

 

 

http://vrp.atd-lab.inf.puc-rio.br/index.php/en/
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Table 2 Results of comparison between basic ACO algorithm with a proposed algorithm based on benchmark A 

 
Table 3 Results of comparison between basic ACO algorithm with a proposed algorithm based on benchmark B 

 

 
Table 4 Results of comparison between basic ACO algorithm with a proposed algorithm based on benchmark  E

 

 
Table 5 Results of comparison between basic ACO algorithm with a proposed algorithm based on benchmark P

Evaluation parameters ACO ACO-SVNSCS  

Imp. 

 

Runtime (s) 

 

Tig. Instances Dim K BKS Best  Avg. (%) Best  Avg. (%) 

A-n32-k5 32 5 784 846 846 7.9 785* 794.7 0.1 61 100.3 1.0 

A-n33-k5 33 5 661 681 681 3.0 681 696.8 3.0 0 45.2 0.89 

A-n33-k6 33 6 742 761 762.73 2.6 761.0 813.8 2.6 0.22 66.7 0.75 

A-n39-k5 39 6 831 882 884 6.1 867* 867 4.3 15 98.55 1.0 

A-n44-k6 44 6 937 975 984.19 4.1 975 975 4.1 0 172.2 0.95 

A-n46-k7 46 7 914 1014 1025.0 10.9 1007 1045.1 10.2 7 96.02 0.86 

A-n54-k7 54 7 1167 1256 1256 7.6 1256 1256 7.6 0 183.5 0.95 

A-n63-k9 63 9 1616 1756 1777.5 8.7 1742 1770.5 7.8 14 127.3 0.97 

A-n69-k9 69 9 1159 1264 1279.2 9.1 1242 1242 7.2 22 246.7 0.93 

count       6      

Avg.       66.7 %      

Tig. Tightness; Imp. Improvement value  

  

Evaluation parameters ACO ACO- SVNSCS  

Imp. 

 

Runtime (s) 

 

Tig. Instances Dim K BKS Best  Avg. (%) Best  Avg. (%) 

B-n31-k5 31 5 672 679 680.4 1.06 679 681 1.16 0 88.01 0.82 

B-n38-k6 38 6 805 843 836.8 4.73 783* 874 -2.66 59.4 65.8 0.85 

B-n45-k5 45 5 751 788 790.13 4.93 762 762 1.46 26 150.01 0.97 

B-n43-k6 43 6 742 755 761 1.75 754 756 1.62 1 167.7 0.86 

B-n44-k7 44 7 909 967 979 6.38 966 966 6.27 1 79.07 0.91 

B-n51-k7 51 7 1032 1085 1089 5.14 1084 1087.8 5.04 1 129.32 0.97 

B-n50-k7 50 7 741 798 805 7.69 798 858.4 7.69 0 19.3 0.86 

B-n52-k7 52 7 747 779 787 4.28 776 776.7 3.88 3 20.1 0.86 

B-n56-k7 56 7 707 768 775 8.63 767 777 8.49 1 22.3 0.88 

B-n66-k9 66 9 1316 1422 1431 8.05 1398 1398 6.23 24 27.7 0.95 

B-n78-k10 78 10 1221 1331 1343 9.05 1328 1334.2 8.76 3.5 35.6 0.93 

count       9      

Avg.       81.81%      

Tig. Tightness; Imp. Improvement value 

Evaluation parameters ACO ACO- SVNSCS  

Imp. 

 

Runtime (s) 

 

Tig. Instances Dim K BKS Best  Avg. (%) Best  Avg. (%) 

E-n22-k4 22 4 375 401 401.59 6.9 401 431.42 6.9 0 44.72 0.93 

E-n33-k4 33 4 835 874 881.04 4.7 874 874 4.7 0 11.17 0.91 

E-n51-k5 51 5 521 611 624.33 17.3 604 604.68 15.9 7 128.9 0.97 

E-n76-k7 76 7 682 797 819 16.9 796 796.14 16.7 1 33.77 0.88 

E-n76-k8 76 8 735 855 863.1 16.3 855 855.35 16.3 0 44.73 0.94 

E-n76-k10 76 10 830 931 958.2 12.2 921 932.1 11.0 10 32.67 0.97 

E-n76-k14 76 14 1021 1119 1133.4 9.6 1109 1139.1 8.6 10 214.32 0.9 

E-n101-k8 101 8 817 1000 1017.69 22.4 999.69 999.82 22.4 0.31 49.88 0.91 

count       5      

Avg.       62.5%      

Tig. Tightness; Imp. Improvement value 

Evaluation parameters ACO ACO- SVNSCS  

Imp. 

 

Runtime (s) 

 

Tig. Instances Dim K BKS Best  Avg. (%) Best  Avg. (%) 

p-n55-k15 55 15 989 999 1016.5 1.01 988** 988.4 -0.1 11 21.75 0.93 

p-n60-k10 60 10 744 830.23 838.41 11.59 787 790.46 5.8 43.2 23.90 0.94 

p-n60-k15 60 15 968 1042 1056.1 7.64 1016 1026.2 5.0 26 24.42 0.94 

P-n45-k5 45 5 510 577 587.3 13.14 577 600.5 13.1 0 21.9 0.92 

P-n65-k10 65 10 792 889 908.9 12.25 871 874.8 10.0 18 26.61 0.93 

P-n76-k4 76 4 593 690 701.7 16.36 678 678.35 14.3 12 38.55 0.94 

P-n70-k10 70 10 827 931.6 949.44 12.65 930.1 944.9 12.5 1.5 35.42 0.97 

P-n76-k5 76 5 627 733 754.9 16.91 727 727.7 15.9 6 41.85 0.97 

p-n101-k4 101 4 681 821 840.1 20.56 821 834.2 20.6 0 240 0.91 

count       7      

Avg.       77.7%      

Tig. Tightness; Imp. Improvement value 
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Figure 6 Improvement for each instance in terms of benchmark: (a) Class A, (b) Class B, (c) Class E, (d) Class P  

 

 
For benchmark P, Table 5 shows that the 

improvement is 77.77%, involving 7 out of 9. However, 

in one of the instances, p-n55-k15 increased by one 
vehicle, and the ACO-SVNSCS fails in an improved 

solution for two instances, P-n45-k5 and P-n101-k4, 

compared to the basic ACO. Otherwise, it was 

characterized by a good improvement in the instance 
P-n60-k10. 

 

4.3 Performance Improvement 
 

The improvement values (Imp) can be calculated by 

the difference between the best value of the basic 

ACO algorithm (f(S)) and the best solution of the 
proposed algorithm (f(S’)), as shown in Equation (24). 
 

Imp = f(S) − f(S')                                       (24)   
 

The improvement values of the proposed algorithm 

have been superior statistically over the basic ACO, as 
shown in Figure 6(a), (b), (c), and (d). 

Concerning performance analysis for the 

algorithm proposed, it clearly shows that the 
improvements outperformed the basic ACO 

algorithm, as shown in Table 6. 

 
Table 6 Percentage of Improvement for ACO- SVNSCS 

 

Benchmarks Improvement (%) 
A 66.7 

B 81.81 
E 62.5 
P 77.77 

5.0 CONCLUSION AND FUTURE DIRECTION 
 

Estimating and controlling waste collection costs is 

important in setting up a cost-effective system. It has 
become a critical problem in most local waste 

management companies that aspire to provide the 

best services to their citizens. This paper has adopted 

a new Sequential Variable Neighborhood Search 
Change Step with Ant Colony Optimization (ACO- 

SVNSCS) to minimize route distance and the number 

of vehicles used for service containers in a certain 
network to solve the capacitated vehicle routing 

problem. A comparative analysis was made between 

the proposed algorithm and standard ACO. The 

proposed algorithm succeeds in solving small, 
medium, and large-scale problems. From observation, 

in the instances containing a single sub-tour, such as 

A-n32-k5 and A-n39-k5, the distance improvement will 
be large because the number of vehicles that served 

containers has been reduced by eliminating the sub-

tour, leading to a reduction in transportation costs and 

workers’ wages. Another finding was the difficulty in 
the working strategy of basic ACO, which happens 

when the algorithm starts choosing the first container 

at the beginning of each route. ACO-SVNSCS is a 
competitive algorithm in terms of improving the basic 

ACO by enhancing the exploration of the search 

space by addressing problems in 6, 9, 5, and 7 

instances out of 9, 11, 8, and 10 with improvement 
around 66.7%, 81.81%, 62.5% and 77.77% for dataset A, 

B, E, and P, respectively.  
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The tightness value was very close in all instances, 
which may be seen at http://vrp.atd-lab.inf.puc-

rio.br/index.php/en/. Concerning future directions, a 

hybridization of the ACO algorithm with the same 

Sequential Variable Neighborhood Search Change 
Step (SVNSCS) algorithm or with other Variable 

Neighborhood Searches (VNS), such as Cyclic 

neighbourhood change step, Pipe neighbourhood 
change step, and the skewed neighbourhood 

change step can be employed to measure the run 

time and the convergence of the proposed algorithm 
for proving the efficiency. 
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