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Graphical abstract Abstract
This study improves the exploration of ant colony optimization (ACO) ability by adapfing it

Domolion mode with the Sequential Variable Neighbourhood Search Change Step (SVYNSCS) algorithm as

: post-improvements for solving the Capacitated Vehicle Routing Problem (CVRP) in solid
waste collection methodology. The aim is to reduce the cost of waste collection by
minimizing the route distance and the number of vehicles to serve all containers within the
route. Technically, SYNSCS explores the search space depending on the information
associated with the demands and coordinates of the nodes. Based on the result, the
proposed algorithm demonstrates its superiority over the traditional ACO algorithm by
having 66.7%, 81.81%, 62.5%, and 77.77% in terms of the best solution for four CVRP
benchmark datasets of A, B, E, and P, respectively. Each dataset has different
characteristics, such as the number of containers, vehicle capacity, objective function,
weight of each container, and geographical distribution.

Keywords: Ant colony optimization, capacitated vehicle routing problem, optimization
algorithm, sequential variable neighbourhood search change step, solid waste colection

Abstrak

Kajianinimenambah baik penerokaan keupayaan pengoptimuman koloni semut (ACO)
dengan mengadaptasinya dengan algoritma langkah perubahan carian kejiranan
pembolehubah berurutan (SVYNSCS) sebagai penambahbaikan pasca dalom
menyelesaikan masalah penghalaan kenderaan berkapasiti (CVRP) dalam metodologi
pengumpulan sisa pepejal. Tujuannya untuk mengurangkan kos kutipan sisa dengan
meminimumkan jarak laluan dan bilangan kenderaan untuk melayani semua kontena
dalam laluan. Secara teknikal, SYNSCS meneroka ruang carian bergantung kepada
maklumat yang berkaitan dengan permintaan dan koordinat nod. Berdasarkan
keputusan, algoritma yang dicadangkan mempamerkan keunggulannya berbanding
dengan algoritma ACO tradisional dengan mempunyaqi 66.7%,81.81%, 62.5%,dan 77.77%
darisegipenyelesaian terbaik untuk empat set data penanda aras CVRP masing-masing
A, B, E dan P. Setiap set data mempunyai ciri yang berbeza dari segi bilangan bekas,
kapasiti kenderaan, fungsi objektif, berat setiap bekas dan agihan geografi.

Kata kunci: Pengoptimuman koloni semut, masalah penghalaan kenderaan berkapasii,
algoritma pengoptimuman, langkah perubahan carian kejiranan pembolehubah
berurutan, pengumpulan sisa pepejal
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1.0 INTRODUCTION

The increasing population growth, urbanization, and
economic development lead to an increase in the
amount of waste, while sustainable management sfill
represents a major challenge worldwide [1, 2]. This
issueledto an increase in the generation of Municipal
Solid Waste (MSW) from 1.6 to 3.4 billion fons until the
year 2050 globally [3]. East Asia and the Pacific had
the highest share and amounted to about 23.0% [4].
Thus, local authorities face big challenges in MSW
management in most developing countries [5, 6, 7].

Healthrisk is one of the challenges arising from the
accumulation of waste, affecting public health [8].
Furthermore, itis knownthat failure to freat waste early
at collection points will lead to the deterioration of the
surrounding area and cause social issues [?, 10]. In
addition, 19% of waste ends up in our drains, which
then causes flash floods and drainage blockage,
influencing the sustainability of human life, based on a
study conducted in Kuala Lumpur, Malaysia [11].
These issues may happen because most municipalities
still use a fraditional way to collect solid waste [12].
Therefore, waste collection, among other stages of
municipal waste management (MWM), is one of the
significant strategies for minimizing total costs because
it consumes 60% - 80% of the budgets of other MWM
[13]. According fo that, many strategies are utilized to
tackle waste collection problems, such as spatial
tfreatment controllers, asin the recent simulation study
proposed by Sahib et al. [14]. The development of
vehicle routing systems reduces total transportation
distance and increases waste collection efficiency
[15,16].

However, most routing problems in waste
collectionare dividedinto two essential problems: the
arc routing problem that deals with the waste along
the street and the node routing problem that
considers the nodes’ locations as their priority [17].
Hence, there is a study concerning the use of the
Geographic Information System (GIS) to improve
waste collection [18]. Note that the classic CVRP
involves starting the vehicles to serve all waste in a
certainnetwork and unloading that waste in the same
location (depot) for disposal or transferring it to the
vehicle with a bigger capacity, as shown in Figure 1.

Route

—» Empty vehicle
Loaded vehicle

Figure 1 Pickup and delivery of waste in the same location

In this paper, we will focus on solving the
homogenous Capacitated Vehicle Routing Problem
(CVRP) in the application of waste collection using a
metaheuristic optimization algorithm for the pickup
and delivery of waste in optimal routes. Thus, the

remainder of this paperis organized as follows. Section
2 representsrelated work, and Section 3 represents the
methodology. Section 4 presents the results and
discussion of the findings. Finally, Sectfion 5 gives a
conclusion and future direction.

2.0 RELATED WORK

In recent years, optimization algorithms have been
proposed to solve the VehicleRoute Problem (VRP) [19,
20]. Using the optimization algorithm in the exploration
stage, we can examine neighbours in the solufion
iteratively [21, 22]. This section will discuss the
improvement of metaheuristic methods with locd
search heuristic algorithms for solving CVRP in a waste
collection system. Regarding a recent survey, we
focused on metaheuristic methods for solving routing
problemsinwaste collection, where two studies utilized
a Simulated Annealing (SA) with a Heuristic Algorithm
(HA). Consequently, another study employed the Ant
Colony Optimization (ACO) algorithm. However, most
methods considered the Capacitated Arc Routing
Problem (CARP), except one study ufilized ACO fo
minimize the fravelling time of the slowest vehicle,
hence avoiding the vehicle's accident in the disposal
station. Note that the latter applied only four nodes in
the improvement phase, which is insufficient to
evaluate the proposed system [23, 24, 25, 26].

Other studiesimproved their performance based on
the local search strategy. One of these studies
proposed Iterated Greedy (IG) with Varidble
Neighbourhood Search (VNS) to explore three different
changesin the structure of the neighbourhoods. The list
of changes is as follows: insert, exchange, and 2-opt
under deconstruction and reconstruction solution. The
authors also presented the greedy-random among
variants to obtaina high-quality solutionin the diversity
stage. Although the paper is sensitive to the
performance of the proposed algorithm under the
intensification stage, the study did not compare the
outcome withthe Best-Known Solution (BKS) and other
methods. Inaddition, it considered self-generated data
only [27].

On the conftrary, a study compared the proposed
algorithm with BKS with other optimization methods
using different dataset classes from the best-known
datfasets. The authors modified the Particle Swam
Optimization (PSO) algorithm with local improvement
using four methods called 2-opt*, Or-opt-1, 2-opt, and
Or-opt, where these changes are selected randomly
(next neighbourhood unknown). The aim is to
determine the best waste collection and route
optimization solutions. This study considered real-{ime
for collecting the waste from Collection Points (CPs)
under a simulation environment. It was neither focused
on the efficiency of the proposed algorithm opposite
each iteration nor the distribution of weight in each
route [?]. The weights on the edges may alsorepresent
the distance between two points and the fravel ime
[28].
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A similar study utilized amodified Backtracking Search
Algorithm (BSA) with the same local improvement
methods [29]. A hybrid metaheuristic algorithm also
considered the SA algorithm and improved the
solution by employing the VNS algorithm. Note that
the VNS used local methods, including insert and
removal methods, and the objective was to selectthe
appropriate bins for the best route. This study
generates real data randomly to evaluate the entire
system since the next neighbourhood procedure
depends on improvements. In other words, if the
runtime is less or equal fo 2 hours, the algorithm wil
move to the next procedure or stop [30].

A study in [31] proposed a population-based
hybrid metaheuristic approach consisting of a Large
Neighbourhood  Search  (LNS) and  various
improvement algorithms to solve the Rollon-Rolloff
vehicle routing problem.The objectiveis to determine
routes that minimize the number of required fractors
and the minimum amount of fotal nonproductive
(deadhead) time fo serve all given customer
demands. A modified version of the sweep nearest
algorithm was proposed fo overcome the weaknesses
of grouping stops. The generated solutions are
improved by four local search improvement
algorithms, including four times of m-n exchange
improvement (infer-route), crossover exchange
improvement (inter-route), route reduction
improvement (inter-route), and 2-opt edge exchange
improvement (intra-route).

A hybrid ant colony-variable neighbourhood
search algorithm was used in [32] to solve multi-depot
green vehiclerouting problems.Three vehiclerouting
models were developed focusing on multi-depot,
emission, and fotal cost reduction. The ACO variable
neighbourhood search (ACO-VNS) algorithm was
tested on randomly generated small and large-scale
instances, and the comparison was made with
standard ACO. An improvement of 8% was observed
in total cost when a comparisonwas made between
the two algorithms on large-scale data.

However, from the authors’ knowledge, there isno
study focused on adapting an ACO with a VNS
algorithm in terms of the Sequential Variable
Neighbourhood Search Change Step (SVNSCS) for
solving the CVRP, specifically addressing the issues of
selecting the first node randomly in each route that
belongs to the individual solution. It is considered a
critical issue that must be highlighted, in addition to
eliminating the sub-tour constructed (a route with a
single node).

The aims of our paper will fill this research gap fo
improve ifs exploration ability and examine the
performance of the basic ACO after improving the
efficiency of the waste collection system. In addition,
the result of the proposed algorithm is compared
against the basic ACO algorithm and Best-Known
Solution (BKS). The concept of contribution parts is
inspired by the original paper organized by Hansen et
al. [33], highlighted in the hierarchical scheme shown
inFigure 2.

This study summarized the main contributions as
follows: (1) adapting the standard ACO algorithm for
solving Capacitated Vehicle Routing Problem (CVRP)
in the solid waste collection system, in which the
amount of waste per container and the tightness
(percentage of waste amounts in the vehicle) have
been calculated to follow up the profit of waste
collected by vehicles, (2) designing a sub-tour
elimination technique that may be generated in the
solution thus reducing waste collection cost, (3)
improvement of the best solution of ACO by post-
opfimization using SVNSCS algorithm. The waste
collection system will choose the best route, in which
its total amount of waste is set to be < 85% of the rest
fightness of the vehicle to narrow the search space
and speed up convergence, as well as the
application of the SVNSCS algorithm to improve the
cost of the route in terms of reducing route distance.

Basic VNS Varicble Neighborhood
olgorifhm Search {VNS)
|
I 1 1
Ingredients of Shaking Neighborhood improvement
VNS procedurs change step procedurs
Sequential Sequential
. . - : iable
Contribution Variable Neighborhood iy
Search Change Step NelghLocr ?od
[SVNSCS) e
procedure

Figure 2 Ingredients of variable neighbourhood search

3.0 METHODOLOGY
3.1 Mathematical Model

The CVRP problem canbeillustrated schematically, as
shown in Figure 3. The CVRP distribution, G = (N, E)
where N represents a set of nodes graphically
distributed, N = {Cy, C,*++,C,,}. The index of the depotis
0, while the other index represents the contfainers,
which are from 1 to n. E is a sef of edges calledV =
{Ey,E1,+, E,} in which each edge (i,j) €E=
{(i,)):i,j eV, i+ j} andithas a positive trip cost named
Cij [34].

D P2 Ps s

Rl cs|cr | cs| ¢

(a) (b)
Figure 3 Representation of CVRP based on (a) graphical
solution with N =9 customers distributed over k = 3routes, and
(b) individual matrix [35]
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From a practical perspective, the weights onthe edges
represent the fravel distance from container (i) to
container (j), where (i #j). Each containeri e v' =
V\{0} has a demand gq; where {i = 1,2,...,n}. For a
single depot0, having aset of homogeneous vehiclesK
with capacity limit Q, we assume the number of vehicles
inside the depot is not specified. Moreover, a sub-four
elimination technique has been designed to avoid the
high cost of adapting the basic ACO in classical CVRP.
The sub-tour means that one vehicle serves only one or
two containers in a single route. However, to formulate
the waste collection system, first, we must know that the
whole system is subject to the decision variable (X;y).
Xijx =1 if vehicle k travels from a container (i) to
confainer (j) under the threshold control (TC)
component; otherwise, X;;, = 0.Thus, the vehicle does
nottravel onthe plannedroute, asshownin Equation (1).
Xij
_ }{1, ifvehicle served the edge (i,j)under condition TC component

0, Otherwise

(1)

Where

TC component = AWR < 85% out of Ck

AWR = Total amount of waste in the assigned route

c* =Vehicle Capacity.

The objective function and the constraints of the
problem have been formulated as follows.

Minimize X0 X0 0 X ko dyj Xy (2)
0 dyp - diy
g = | O - da (3)

le dZN dNN

Subject to:
Z?]:lz:ﬁ:lxojk =1 (4)
>N 1ok =0,k €1, 2..K} (5)
ke XoXyr =11 € {1,2 .Nhi#j (6)
Tho SN o X =1,j € {L2..N}i # j (7)
T oXN0Q Xij <Q .k €{12,..K} 8)
I aXie =X X =Yy i €{12,..N}Lk €{1,2,..K (9)
i oZik=1jie — Lo Zi=1dije = ¢jpJ €{12,..1} (10)

Naxl =3 xf<1fori=0andk € {1,2,... k} fori
Oandk € {1,2,... k} (
TLXE <1ke{12,..k (
wNoxk <1,ke{12,..k} (

1
1
1
1

E2ON=

The objective function is to minimize the tofal
distance vehicles fravel to serve all containers in the
network, as shown in Equation (2). Here, d;; is a
symmetricalmatrixor asquare matrix of size (N x N), then
(dij = dj;), to determine the costof distance whetherthe
vehicle has travelled from container (i) to container (j)
based on the logicalcomponent (X; ;) as Equation (3).

It should be noted that strategic systems such as
waste collection systems are often subject to constraints.

Inthis study, vehicle K willstartitsroute from the depot (0)
according to Equation (4). Each vehicle should start ifs
work empty, as Equation (5) indicates. Each container
can pick up the waste from it by one vehicle, as shown
in Equation (6) and Equation (7). Nevertheless, Equation
(8) ensures that the total amount of waste in each
container cannot exceed the vehicle capacity Q.
Equation (?) ensures the continuity condition. Equation
(10) ensures that the vehicle empties the container
visited. Equation (11) guarantees that each vehicle tour
starts from the depot and ends at the same depot.
Equation (12) ensures the distance between pair
containersis the same. Equation (13) and Equation (14)
ensure each vehiclecanbe used once or not be used.

3.2 Tightness Model

The fightness factors Tjk is a significant variable
depending on the profitof waste quantityin theroute P;,
whichis amaximize the sum of product and the quantity
of waste in each container g; in the route with the
decision variable X;j, in case the waste amountis a non-
negative value based on Equation (15).

Py = maxZ?lejy:lZﬁ:lqj Xije >0,j €{2,...N}  (15)
Where: N: Number of containers in the route.

The tightness factors in the route (Tj") canbe determined
by dividing the profit value (P;) overthe vehicle capacity
(€*), as shown in Equation (16).

T} =(P/C*)>0,j€{2,..NLkeK (16)

The average tightness for allroutes (Ta’f,g) inthe improved
solution can be calculated based on Equation (17).

k

Tk
Tavg = Comiorr J € 2o Nh k€K (17

count of

A study on the capacity constraint of the wastedifing
vehicle results in two types of benefits. The firstis related
to the performance efficiency aspect of the proposed
algorithm in increasing the convergence by narrowing
the search space and thus reducing the execution time.
Second, it relates to the technicadl aspect of the service
vehicles used to measure the impact of high waste
loading in the vehicle against fuel consumption. As a
result, the solid waste collection system consists of a pre-
processing module used for coding the text document
of the benchmark dafaset in instructions known as
“regular expression operations.” Apart from that, it is
configuredto be able toread by Python code as well as
a processing module that managesreading the dataset
and parameters of the proposed algorithm and then
processing the data inside if. The next section will focus
on the processing module and all models employed
according fo the framework of the ACO algorithm, with
the proposed algorithm shown in Figure 4.
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Preprocessing module
P~ B

Processing module

Construction intial solution model (O/

Reading model (I/P)

Demolition and reconstruction of solution model (O/P)

L —
—
— b} Routes [[i0,i1,i2,i3,4,5,i6], [10,i7,i8,i%,110][i0,i11,112,113] [i0,i14,115,14 117,11 8]]
) P ) Ssquential Variabls
DescripHon ok fter Routes ::'W Her. | Neighborhood Search Change | [
dataset file + gparamelers of control ¢ Step (SWNSCS) ¢
+ gparameters of control 0l 23451610] a
+ I Evaporafion rale | PIEEMEEE | dleHy [0.1.273 14516 10]
+ ' Quanlity of phermone P S —— o
+ Max_iteration 2 | P7BERI a2 2 [11,0,i213 i45i6]
* Max_population P .
+ Threshold_demand 3 | Baraang S | i1 2 10i214,15.]
10,114,i15,11 &i17,118] 4
4 | oisisnenzig |4 ([ [ ET——
th - din)
" " s [i1.i2 3i410.15.]
Ly Dalaset file b
s 12 31415,0,i6]
* Distance matrix B .
* Pheromone matix Ne feasible solutien 7 [i1,2.131475,i6,0]
+ Best known solufion
» Vehicle capacity nm
» Containers /nades
coordinates -
*Waste amount per node &0
0

0 90 179 o (d'i=di)

NO # \>
Eliminate sub-tour Rofafion YES (d'3=< d'l}/
Keeping old route

60
@ Reconshuction solution
0 o—-

0 90 179 [[i1,i2,i0,i3,i4,i5,8].........]]
—Jump to next iteration

Figure 4 Framework of the proposed algorithm for reconstructing the route of waste collecting vehicle

3.3 Development of ACO mathematical models. In confrast, the TS is a

ACO is a nature-inspired and population-based
metaheuristic, which was first proposed by Dorigo in
1992 and was modifiedin 2002 by Parpinelli et al. [36].
Typically, ACO is a swarm infelligence method
inspired by the social behaviour of ant colonies for
solving optimization problems [32, 37]. When ants are
finding the food and return to the nest, they will follow
the shortest path. Naturally, ants deposit pheromones
on the ground during their journey to identify the routes
other colony members should follow. The high quantity
of the pheromones dropped by ants represents the
inverse of the longest distance by vehicle during the
waste collection. Although ACO is robust and can
explore a solution, the convergence is still slow and
down into the local optimum [38]. Therefore,
improvement is required. As a result, all steps of the
development and improvement of ACO in the next
subsection will be structured, as shown in Figure 5.

3.3.1 Initialization of Parameters

Consider the first step of a reading model in the
processing module. This sectionmust set the number of
ants, maximum iteration number, parameter control a
and B as well as the threshold of demands for the
sensitive response of the proposed algorithm in the
exploitationstage in additionto the evaporation value
that is set among duration [0,1] as showninstep 1.

3.3.2 Tabu Search Algorithm

This section explains the concept of the Tabu Search
(TS) technique and reinforcement with some

metahevuristic method infroduced by Gloverin 1990
that represents one of the local search heurisfic
algorithms capable of escapinglocal optima through
a Tabu list and neighbourhood generation [39].

The Tabu listtechnique isimportantin clustering the
routes and removing the containers not visited in the
candidate containers list. This technique prevents the
vehicle from visiting any container again, based on
Equation 8. Instead, the search will choose a certain
container and stop according tfo the amount of waste
collected without exceeding vehicle capacity, as
shown in Equation 6.

This process is done when selecting a certain
container and assuming its demand exceeds vehicle
capacity (violationof the constraint capacity). The TS
will alsoremove that container to the next route while
keeping the obtained route inside the main path.
After the TS starts again to choose randomly another
first container, this technique is iterated until other
containers are chosen, as in Step 2 in Figure 5.



656 Sahib et al. / Jurnal Teknologi (Sciences & Engineering) 87:4 (2025) 651-662

IFFeasible selution
==ma ierstion

r _____________ Irificlize the pararmeters 1
1 Improvement part | .
s clgorithm 2
(service eoch condciner
onze with respect CYRP|
¥
ALO algerthm
besad on Reuletts whesl
8 probooiity 3
|_ - - _I for Explorciion inficl
9 solutions
| |
| |
| | Celeulate routes distance 4
10 | Sequential varialle |
noighbourhood change step
| |
| :
|
11 | Evolugtion best solution |
| with previcus one | Ferting solutions by &
| | ascendng malhed
| 1o # feasible zolution | L 2
| - ==rrewt ileralion | Evalugien Dest solution 7
| | with previcus ang
| |
| |
! I

ves
H el -1

Figure 5 Flowchart of adapting ACO with SYVNSCS algorithm

3.3.3 Exploration Initial Solution

Typically, the initial solution to the routing problem
consists of a set of routes with a fixed limited number
of containers. Furthermore, each solufion s
constructed based on the TS technique with assisting
a probability distribution, as shown in Step 3. Note that
all containers are selected relative to the first
randomly selected container. This technique adopted
a roulette wheel probability equation as in Equation
(18). The highest probability (P;) of selecting the next
container is the closest waste container.

(S (i )?
Pl =1 ZinkEip ™’
0 ,otherwise

ifj € N} (8)

Where the term 3;; = pheromone intensity in edges (i,
j). The term N¥ = the feasible neighbourhood of ant k
at the container (i). The n;; refers to the distance
between the containers (i,j). Meanwhile, a and B both
represent the effect of controlling the pheromone
intensity allocated on edge (i, j) and the desirability of
edge (i, j),respectively [40]. The shortest path distance
in edges (i,j) can be calculated based on the visibility
value n;; in Equation (19) [41].

Nij z]/(D(i,j)) (19)
D j): Distance between C; and (;

3.3.4 Calculate Routes Distance

The total distance in each route depends on the
distance matrix (symmetric matrix) to side the initial

pheromone matrix, which represents the most
important variables for exploring the best route. Here,
the distance between container (i) and container (j) is
calculated using Equation 20.

Edges () = dj; = J(xi—xj)2+(Yi—yj)2 (20)
Where
x: Location of container source.
y: Location of container target

In Algorithm 1, two (for loops), as shown in Step 4
and Step 6, are known as the indexes of each route
individually and indexes of all routes in the solution,
respectively. In Step 5, node 1 refers to the depot,
while Step 8 is a procedure of summing the distances
from the depot to the last item in the sub-list. Finally,
Step 9 is the second formulato calculate the distance
between the last item in the sub-list (individual route)
and the depot.

Algorithm 1 Pseudocode of calculating distance

1 Input: solution, edges, demands, Vehicle_Capacity
2 Output: distance for one solution

3 Procedure CalculateDistance (solution, edges,

demand, Vehicle_Capacity)

4 for i := solution do

5 a € 1 #refertothe depot.

6 forj:=ido

7 b &j

8 su €su+ edges[(min(a,b), max(a,b))]

9 s_pl<(edges[(min(a.b), max(a,b))])
10 a€b
11 b<1
12 End for
13 End for
14  return su

In Algorithm 2, we calculate each route’s
summation of demands (waste amount). Therefore,
only one (for loop) is necessary to determine the
vehicle capacity’s tightness.

Algorithm 2 Pseudocode of calculating tightness

1 Input: edges, demands, Vehicle_Capaciy
2 Output: tightness and amount of waste.
3 forj:=i do

4 Demands< (demand(j])

5 wasteCollection€sum (Demands)

6 T<wasteCollection/Vehicle_Capacity
7 print “Route Tightness,” T
8 t€T
9 Endfor

3.3.5 Update of Pheromones

We create solutions for each iteration based on a
pheromones update, where the evaporation and
intensification procedures are based on the
information from high-goodness solutions. The
pheromone update aims to increase the
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concentration on the regions containing high-quality
solutfions, and it is worth mentioning the update of the
best route.

Typically, p refers to the random number, uniformly
selected in the interval [0, 1], where the update is
stored inside the pheromones matrix without being
adopted to give decisions based on Equation (21).

T p+ TJPld + ZAT]-(k) (21)

Step 6 in Figure 5 represents the ascending-sort
fechnique fo obtfain the best solution for each
iteration (generation). According to that, the
evaluationstage regarding selecting the best solution
iscomparedwiththe previous one, based on Step 7 in
Figure 5.

3.3.6 Selecting the Initial Best Solution

In this section, the proposed algorithm depends on the
initial best solution, as in Step 8 in Figure 5, which
consists of a set of routes. Each route includes a group
of containers distributed between the vehicles
according to the vehicle capacity, in which each
contfainer has a certain non-negative demand.

3.3.7 Eliminate Sub-Tour

The local search method eliminates the sub-tour,
avoiding exira travel costs. Typically, the sub-tour
includes one or two containers [42]. Step 9 in Figure 5
uses the neighbourhood operator technique, as
shownin Algorithm 3.

Steps 1 - 6 in Algorithm 3 are coded fo recognize
the sub-four through reading the best initial solution.
As of Step 3, itisused toreverse all elements of the sub-
listto the leftside to checkif any sub-list has one or two
containers (sub-tour).

Subsequently, remove the specified sub-tour and
insertitin a closedroute withsmaller containers based
on Steps 7 - 17. After that, the algorithm will keep the
new results (a) in a buffer (p), delete them from the
base solution, and then merge ifs elements inside a
sub-list with smaller containers.

Exploration techniques improve the search space
[43]. Consequently, the improvement involves
reducing the distance of waste vehicles during travel
from source to destination. This researchimproves the
search space by employing the Sequential Variable
Neighborhood Search Change Step (SVNSCS)
algorithm to explore solution space and decide which
neighbourhood will be explored as the next.
Moreover, some solutions will be accepted as new
incumbent solutions. In other words, the search is
resumed in the first neighbourhood structure of the
new incumbent solution if there is a feasible solution.
Otherwise, the search will continue in the next
neighbourhood (according to the defined order).

Algorithm 3 Pseudocode of technique to eliminate sub-tour
problem

Input. Initial best solution

1

2 Output. Best solution with no sub-tour.

3 Procedure subtour (BestSolution)

4 BestSolution.reverse()

5 for a := BestSolution do # seek any sub tourin route
6 if length(a)==1 orlength(a)==2 then
7 p<a

8 del BestSolution [0]

9 for b := BestSolution do

10 if length(b)==2 then

11 b. extend(p) # Expand sub-list
12 BestSolution.reverse()

13 break

14 End if

15 Else if length(b)==3 then

16 b. extend(p)

17 BestSolution.reverse()
18 break

19 End for

20 return BestSolution

21 End if

22 End for

23 End procedure

The approach of the Sequential Variable
Neighbourhood Search Change Step is givenin Figure
4. The algorithm proposes an exchange foreach pair
of container locations. It moves sequentially from the
firstindex of the sub-list to the lastindex in the same
sub-list in terms of search space exploration until a
feasible solution is found, which means it gives the
shortest route to the best container locations.

Correspondingly, the proposed algorithm wil
returnthe order of the sub-list to the old route using the
rotation technique fo ensure the route is not
corrupted. That conditionis used for evaluation values
of individual route distance [44]. With old individud
route distance, the featfures of swapping each pair of
containers sequentially make it useful ina narrow area
of the search. Other than that, the parallel leads to
accelerating the search process. Finally, the best
solution will be selected based on the ascending
order selection technique. The proposed algorithm
stops after reaching the maximum iteration number,
asinsteps (10-11)in Figure 5.

4.0 RESULTS AND DISCUSSION

The ACO-SVNSCS algorithm has been examined in
terms of performance and effectiveness with severd
CVRP benchmark datasetfs with different container
sizes [45, 46]. This paper has evaluated the
performance of the ACO-SVNSCS algorithm based on
four benchmark CVRP datasetfs, categorized into
classes A, B, P, and E. The first three classes were
authored by Augerat, whereas class Ewas established
by Christofides and Eilon [47].
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Here, we have taken the dimension as the number of
contfainers in each dataset. The parameters of the
proposed algorithm are considered based ontrial and
error and listed as follows: the maximum number of
ants, maximum iterations number, o, B, and p are 50,
250, 1, 4, and 0.9, respectively. The simulation was
coded in the Spyder environment (anaconda3 / 3.8
pythons), and all tests were performed on core i5 at
2.3 GHz with 4 GB RAM under the Microsoft Windows
8.1 operation system. All the simulation datasets
utilized to evaluate the proposed algorithm can be
found at http://vrp.atd-lab inf.puc-rio.br/index.php/en/. In
this paper, the simulation results of the proposed
algorithm fested 37 instances of benchmark datasets
that have solved the CVRP, as shown in Table 1.

4.1 Evaluation Methods

In the literature, several methods are used to evaluate
the algorithms.The quality of the solution is measured
as a difference between the opfimal value of the Best-
Known Solution (BKS) and the best solution value
(BestSol) obtained [48, 49]. In this paper, we
considered this method for evaluating each instance
in the dataset category based on Equation 22.

_ (BestSol-BKS)

Percentage difference (A%) BKS

x100 (22)

The algorithm’s performance can also be measuredin
terms of benchmark category [?]. The percentage of
the average best solutioncan be measured basedon
Equation 23.

BestSol
2 BestSol
Tins

Avg. (%) = 100 (23)

Where
Avg.: Average of the best solution on benchmark class
Tins - Total number of instances.

Table 1 Dimensions of dataset instances class

Class Number of instances  Problem dimension
A 9 32-69
B 11 31-78
E 8 22-101
P 9 55-101
Sum 37

4.2 Analysis of the Performance of ACO-SVSNCS

We performed experiments to investigate the
confribution of local search improvement algorithms
and ACO mechanisms to solufion quality. In this
research, both evaluationmethods mentioned above
have been considered for the experiment with the
proposed algorithm’s influence in minimizing travel
distance. Tables 2 — 5 demonstrate the results of the
comparison of ACO-SVNSCS in different benchmarks
of categories A, B, E, and P. Based on that, all these
tables first consist of evaluation parameters, which, in

turn, involve four columns, and the first columninclude
different dataset instances (e.g.. A-n32-k5, A-n33-k5,
etc.). Moreover,ithas a specific number of containers
distributed in scaftered form, associated with
demands (waste amount) for each container.

The second column represents the dimensions of
the instance (problem size), and the third columnis the
number of vehicles (k). Apart from that, BKS for each
instance can be obtained from the dataset.
Meanwhile, the next columns indicate that the
comparison between the basic ACO with the
proposed algorithm in terms of best values has been
minimized, in which the average best value (Avg.)
and the percentage difference (A%) discovered an
improvement value that shows the difference
between the basic best value and the proposed best
values. Moreover, another column was assigned to
calculate theruntime ineach instance fo measure the
proposed algorithm efficiency by calculating the
fightness that represents the tolerance of the vehicle’s
capacity when filled by the waste load.

In Table 2, the performance of ACO-SVNSCS has
been evaluated in terms of BKS. The best solution
values of ACO-SVNSCS were near to the BKS value,
and the best solution of ACO-SVNSCS increased (worst
values) with increasing the size of the problem in
special cases such as A-n46-k7, A-n54-k7, A-né3-k9,
and A-n69-k?. Regarding the second evaluation
method, the ACO-SVNSCS algorithm outperformed
the basic ACO in é out of ? instances highlightedin the
bold font by reducing the number of vehicles in two
instances, A-n32-k5 and A-n39-k5. This outcome will
reduce the transportation cost caused by utilizing
exira vehiclesto service the containers. However, the
asterisk symbol beside the bold font refers to the
instances that reduced the number of vehicles. The
ACO-SVNSCS failsinimproving three instances, A-n33-
k5, A-n44-k6, and A-n54-k7, which means the best
solution value of the proposed algorithm obtained is
similar to the best solution of the basic ACO algorithm.
Eventually, the percentage value of outperforming
the proposed algorithm compared to the basic
algorithm is 66.7%.

Table 3 shows the evaluation of the proposed
algorithm in benchmark B. ACO-SVNSCS is near to
finding BKS in 9 out of 11 instances where it succeeds
in improving the best solution at the rate of 81.81%.
Apart from that, the number of vehicles has been
reduced only in one instance, B-n38-ké. In
comparison, ACO-SVNSCS fails fo optimize the solution
in two instances, represented by B-n31-k5 and B-n50-
k7.

Table 4 presents the evaluation of the proposed
algorithm inbenchmark E. The ACO-SVNSCS algorithm
also succeedsin improving the best solution. With the
same number of vehicles (K) af the average of 62.5%,
finding the best solutionnear BKS is comprised of 5 out
of 8 instances. Still, three instances, E-n22-k4, E-n33- k4
and E-n76-k8, did not optimize.
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Table 2 Results of comparison between basic ACO algorithm with a proposed algorithm based on benchmark A

Evaluation parameters ACO ACO-SVNSCS

Instances Dim K BKS Best Avg. (A%) Best Avg. (A%) Imp. Runtime (s) Tig.
A-n32-k5 32 5 784 846 846 7.9 785* 794.7 0.1 61 100.3 1.0
A-n33-kS 33 5 661 681 681 3.0 681 696.8 3.0 0 45.2 0.89
A-n33-ké 33 6 742 761 762.73 2.6 761.0 813.8 2.6 0.22 66.7 0.75
A-n39-k5 39 6 831 882 884 6.1 867* 867 4.3 15 98.55 1.0
A-n44-ké 44 6 937 975 984.19 4.1 975 975 4.1 0 172.2 0.95
A-n46-k7 46 7 914 1014 1025.0 10.9 1007 1045.1 10.2 7 96.02 0.86
A-n54-k7 54 7 1167 1256 1256 7.6 1256 1256 7.6 0 183.5 0.95
A-né63-k9 63 9 1616 1756 1777.5 8.7 1742 1770.5 7.8 14 127.3 0.97
A-né69-k9 69 9 1159 1264 1279.2 9.1 1242 1242 7.2 22 246.7 0.93
count 6

Avg. 66.7 %

Tig. Tightness; Imp. Improvement value

Table 3 Results of comparison between basic ACO algorithm with a proposed algorithm based on benchmark B

Evaluation parameters ACO ACO- SVNSCS

Instances Dim K BKS Best Avg. (A%) Best Avg. (A%) Imp. Runtime (s) Tig.

B-n31-k5 31 5 672 679 680.4 1.06 679 681 1.16 0 88.01 0.82
B-n38-ké 38 6 805 843 836.8 4.73 783* 874 -2.66 59.4 65.8 0.85
B-n45-k5 45 5 751 788 790.13  4.93 762 762 1.46 26 150.01 0.97
B-n43-ké 43 6 742 755 761 1.75 754 756 1.62 167.7 0.86
B-n44-k7 44 7 9209 967 979 6.38 966 966 6.27 1 79.07 0.91
B-n51-k7 51 7 1032 1085 1089 5.14 1084 1087.8 5.04 1 129.32 0.97
B-n50-k7 50 7 741 798 805 7.69 798 858.4 7.69 0 19.3 0.86
B-n52-k7 52 7 747 779 787 4.28 776 776.7 3.88 3 20.1 0.86
B-n56-k7 56 7 707 768 775 8.63 767 777 8.49 1 22.3 0.88
B-n66-k9 66 9 1316 1422 1431 8.05 1398 1398 6.23 24 27.7 0.95
B-n78-k10 78 10 1221 1331 1343 9.05 1328 1334.2 8.76 3.5 35.6 0.93
count 9

Avg. 81.81%

Tig. Tightness; Imp. Improvement value

Table 4 Results of comparison between basic ACO algorithm with a proposed algorithm based on benchmark E

Evaluation parameters ACO ACO- SVNSCS

Instances Dim K BKS Best Avg. (A%) Best Avg. (A%) Imp. Runtime (s) Tig.
E-n22-k4 22 4 375 401 401.59 6.9 401 431.42 6.9 0 44.72 0.93
E-n33-k4 33 4 835 874 881.04 4.7 874 874 4.7 0 11.17 0.91
E-n51-k5 51 5 521 611 624.33 17.3 604 604.68 15.9 7 128.9 0.97
E-n76-k7 76 7 682 797 819 16.9 796 796.14 16.7 1 33.77 0.88
E-n76-k8 76 8 735 855 863.1 16.3 855 855.35 16.3 0 44.73 0.94
E-n76-k10 76 10 830 931 958.2 12.2 921 932.1 11.0 10 32.67 0.97
En76-k14 76 14 1021 1119 1133.4 9.6 1109 1139.1 8.6 10 214.32 0.9
E-n101-k8 101 8 817 1000 1017.69 22.4 999.69 999.82 22.4 0.31 49.88 0.91
count 5

Avg. 62.5%

Tig. Tightness; Imp. Improvement value

Table 5 Results of comparison between basic ACO algorithm with a proposed algorithm based on benchmark P

Evaluation parameters ACO ACO- SVNSCS

Instances Dim K BKS Best Avg. (A%) Best Avg. (A% Imp. Runtime (s) Tig.

p-n55k15 55 15 989 999 1016.5 1.01 988%* 988.4 -0.1 11 21.75 0.93
p-n60-k10 60 10 744 830.23 838.41 11.59 787 790.46 5.8 43.2 23.90 0.94
p-né0-k15 60 15 968 1042 1056.1 7.64 1016 1026.2 5.0 26 24.42 0.94
P-n45-k5 45 5 510 577 587.3 13.14 577 600.5 13.1 0 21.9 0.92
P-n65-k10 65 10 792 889 908.9 12.25 871 874.8 10.0 18 26.61 0.93
P-n76-k4 76 4 593 690 701.7 16.36 678 678.35 14.3 12 38.55 0.94
P-n70-k10 70 10 827 931.6 949 .44 12.65 930.1 944.9 12.5 1.5 35.42 0.97
P-n76-k5 76 5 627 733 754.9 16.91 727 727.7 15.9 6 41.85 0.97
p-n101-k4 101 4 681 821 840.1 20.56 821 834.2 20.6 0 240 0.91
count 7

Avg. 77.7%

Tig. Tightness; Imp. Improvement value
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Figure é Improvement for each instance in terms of benchmark: (a) Class A, (b) Class B, (c) Class E, (d) Class P

For benchmark P, Table 5 shows that the
improvementis77.77%, involving 7 out of 9. However,
in one of the instances, p-n55-k15 increased by one
vehicle, and the ACO-SVNSCS fails in an improved
solution for two instances, P-n45-k5 and P-n101-k4,
compared to the basic ACO. Otherwise, it was

characterized by agood improvementin the instance
P-né60-k10.

4.3 Performance Improvement

The improvement values (Imp) can be calculated by
the difference between the best value of the basic
ACO algorithm (f(S)) and the best solution of the
proposed algorithm (f(S')), as shown in Equation (24).

Imp =£(S) — £(S) (24)
The improvement values of the proposed algorithm

have been superior statistically over the basic ACO, as
shown in Figure 6(a), (b), (c), and (d).

Concerning performance analysis for the
algorithm proposed, it clearly shows that the
improvements outperformed the basic ACO

algorithm, as shown in Table 6.

Table é Percentage of Improvement for ACO- SVNSCS

Benchmarks Improvement (%)
A 66.7
B 81.81
E 62.5
P 77.77

5.0 CONCLUSION AND FUTURE DIRECTION

Estimating and controlling waste collection costs is
important in setting up a cost-effective system. It has
become a critical problem in most local waste
management companies that aspire to provide the
best services to their citizens. This paper has adopted
a new Sequential Variable Neighborhood Search
Change Step with Ant Colony Optimization (ACO-
SVNSCS) to minimize route distance and the number
of vehicles used for service containers in a certain
network to solve the capacitated vehicle routing
problem. A comparative analysis was made between
the proposed algorithm and standard ACO. The
proposed algorithm succeeds in solving small,
medium, and large-scale problems. From observation,
in the instances containing a single sub-tour, such as
A-n32-k5 and A-n39-k5, the distance improvement will
be large because the number of vehicles that served
containers has been reduced by eliminating the sub-
tour, leading to a reductionintransportation costs and
workers' wages. Another finding was the difficulty in
the working strategy of basic ACO, which happens
when the algorithm starts choosing the first container
at the beginning of each route. ACO-SVNSCS is a
competitive algorithm interms of improving the basic
ACO by enhancing the exploration of the search
space by addressing problems in 6, 9, 5, and 7
instances out of 9, 11, 8, and 10 with improvement
around 66.7%, 81.81%, 62.5% and 77.77%for dataset A,
B, E, and P, respectively.
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The tightness value was very close in all instances,
which may be seen at http://vrp.atd-lab.inf.puc-
rio.br/index.php/en/. Concerning future directions, a
hybridization of the ACO algorithm with the some
Sequential Variable Neighborhood Search Change
Step (SVNSCS) algorithm or with other Variable
Neighborhood Searches (VNS), such as Cyclic
neighbourhood change step, Pipe neighbourhood
change step, and the skewed neighbourhood
change step can be employed to measure the run
time and the convergence of the proposed algorithm
for proving the efficiency.
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