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Abstract 
 

The incorporation of Distributed Generation (DG) into the Radial Distribution System (RDS) aids 

in resolving power system issues such as power loss. However, finding the ideal location and size 

for DG is challenging yet crucial for maximizing these advantages. Inappropriate location and 

sizing of DG can negatively impact its benefits, highlighting the need for effective optimization 

methods. To address these challenges, metaheuristic methods like Particle Swarm Optimization 

(PSO), Differential Evolution (DE), and Firefly algorithms are particularly useful. This research aims 

to determine the best location and size of DG to minimize active power losses in the RDS. 

Despite the success of DE and PSO in previous works, a gap remains in achieving optimal 

convergence performance and computational efficiency. Building on the success of DE and 

PSO, this study presents a hybrid optimization approach, Adaptive Hybrid Differential Evolution 

and Particle Swarm Optimization (AHDEPSO), to reduce power loss in RDS. This approach 

combines the strengths of DE and PSO, enhancing exploration and exploitation capabilities 

while improving convergence performance. The effectiveness of this approach is 

demonstrated through testing on the IEEE 33 and IEEE 69 bus systems using MATLAB software, 

showing that AHDEPSO can achieve optimal computational time and best fitness function, 

being 38.3% faster than other algorithms. This hybrid approach offers a significant improvement 

over traditional methods, filling the research gap and providing a more efficient solution. 
 

Keywords: Differential Evolution, Particle Swarm Optimization, Data Optimization, DG 

Optimization, Power Loss 

 

Abstrak 
 

Penyelidikan ini mencadangkan kaedah pengoptimuman (Adaptive Hybrid Differential 

Evolution and Particle Swarm Optimization, AHDEPSO) menggunakan teknik penyelesaian 

berdasarkan dua teknik terkenal, Evolusi Pembezaan (DE) dan Pengoptimuman Kawanan 

Partikel (PSO), untuk meminimumkan kehilangan kuasa dalam sistem pengedaran radial (RDS). 

Masalah sistem kuasa seperti kehilangan kuasa dalam RDS dapat diselesaikan dengan 

penyatuan Generasi Teragih (DG) dalam RDS. Lokasi dan saiz DG yang terbaik adalah 

halangan yang sangat mencabar untuk memaksimumkan faedahnya. Penempatan dan 

kapasiti DG yang tidak betul boleh menjejaskan kesan faedah DG. Teknik pengoptimuman 

seperti DE dan PSO sangat membantu menyelesaikan masalah tersebut. HDEPSO dapat 

mengoptimumkan lokasi dan saiz DG. Kelebihan DE dan PSO digabungkan untuk 

meningkatkan algoritma penerokaan dan eksploitasi serta prestasi penumpuan. 

Kebolehlaksanaan kerja ini diuji dan dilaksanakan pada RDS bas IEEE 33 dan IEEE 69 di dalam 

MATLAB serta menunjukkan AHDEPSO ini dapat mencapai solusi yang terbaik dengan 38.3% 

lebih cepat berbanding Teknik yang lain. Pendekatan hibrid ini menawarkan peningkatan 

yang ketara berbanding dengan kaedah tradisional, mengisi jurang penyelidikan dan 

menyediakan penyelesaian yang lebih cekap. 
 

Kata kunci: Evolusi Pembezaan, Pengoptimuman Kawanan Partikel, Pengoptimuman Data, 

Pengoptimuman DG, kehilangan Kuasa 

© 2025 Penerbit UTM Press. All rights reserved 
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1.0 INTRODUCTION 
 

Distribution systems are usually radial in form and 

straightforward to operate. Radial distribution systems 

(RDS) are supplied from a single location via the 

associated transmission network, like a substation that 

receives power from centralized generating plants to 

passively deliver unidirectional power flow to owner-

end customers [1]. However, high R/X ratios in 

distribution lines cause substantial power losses, huge 

voltage fluctuations, and poor voltage stability. This 

causes the RDS to experience a sudden decrease in 

voltage under critical loading situations in several 

industrial zones because of the low value of the 

voltage stability index at the majority of RDS's nodes. 

Due to this problem, embedded generations in a 

distribution system known as scattered generations or 

distributed generations (DG) have been proposed to 

be installed in the distribution network [2, 3]. 

DG is defined as the small-scale energy generation 

that is located near the final user [4]. For instance, co-

generators, solar panels, small-scale wind turbines, 

emergency generators and small-scale hydropower 

plants. It is anticipated that DG will take on a bigger 

role in future electrical power networks. According to 

studies, DG will make up a sizable portion of all future 

generations that join the workforce. They are 

expected to be increasing of the newly installed 

generations [5, 6]. However, the size and location of 

DG must be properly optimized to improve the 

system’s performance.  

Therefore, many researchers introduced effective 

optimization methods to optimize DG size and 

location. There are several ways to tackle the issue, 

including deterministic, heuristic, and metaheuristic 

approaches. Mathematical programming is a subset 

of deterministic optimization and comprises linear 

algebra-heavy methods that often compute the 

gradient and Hessian matrix of response variables [7]. 

The authors in [8] employed a deterministic 

optimization strategy called as mixed-integer conic 

programming (MICP), to determine the ideal type, 

size, and location for RES and ESS in RDS. In [9], the 

authors used a second-order conic programming 

problem to find the system’s optimal DG size and 

location. However, due to the complexity of processes 

in the deterministic approach, the conventional 

optimization methods for addressing process synthesis 

and integrated design may fail to converge 

adequately due to the presence of local minima, 

discontinuities and numerical issues [10]. Some precise 

deterministic approaches may get the best answer 

under certain data formats if the nature and scale of 

the issue allow for easy formulations. For instance, 

nonlinear components are linearized using piecewise 

linear representations in a convex problem 

framework. However, the structure of the issues, in 

general, might be so complicated that it is difficult or 

impractical to utilize approaches that ensure global 

excellence. In addition, the structure is an uncharted 

territory of possible solutions in certain circumstances, 

necessitating a unique strategy for obtaining 

information from the solutions themselves [11]. 

Meanwhile, heuristic methods are being created in 

a variety of ways, ranging from simple empirical 

algorithms to complex algorithms such as evolutionary 

algorithms. Heuristic optimization may be used to solve 

continuous/integer problems repeatedly. It is typically 

used when no known method ensures obtaining the 

ideal answer at an efficient speed or when a "near-

optimal" solution is enough for practical usage [7]. A 

Heuristic method based on the Genetic Algorithm 

(GA) was used in [12] to optimize the placement and 

size of DG. In addition, a heuristic is a method created 

to solve a problem more rapidly when classical 

approaches are ineffective or take too long to find a 

precise solution. A heuristic's goal is to generate a 

workable solution to the problem at hand in a fair 

amount of time. However, this answer might not be 

the best among all possible solutions to the problem, 

or it might only be a rough approximation [13], [14]. In 

this instance, using metaheuristics is a possible option.  

In the context of heuristic algorithms, the word 

meta signifies "beyond" or "higher level," and 

metaheuristic algorithms often outperform more 

traditional heuristics. Each metaheuristic algorithm 

randomly chooses between local and global 

searches to provide a wide range of solutions. 

Metaheuristics can be divided into two categories 

which are population-based and trajectory-based. 

Despite the widespread usage of metaheuristics, 

there is no consensus in the literature about the 

definitions of heuristics and metaheuristics. Heuristics 

and metaheuristics are terms that some scholars 

interchangeably employ. The current tendency, 

however, is to refer to all stochastic algorithms 

including global search and randomization as 

metaheuristics. An effective approach to switching 

from local to global search is using randomization. 

Because of this, essentially all metaheuristic algorithms 

are always convenient for comprehensive 

optimization and nonlinear modeling [15]. 

Metaheuristics may be an effective method for 

producing acceptable solutions to complicated 

problems via hit-and-miss in an ideal amount of time. 

In [16], researchers developed a three-level 

optimization technique for planned network 

architecture, RES and ESS allocation, and ESS 

optimization in active distribution planning with 

renewable energy sources and energy storage 

systems. In this model, to tackle the presented 

optimization issue, a modified Pareto-based particle 

swarm optimization is used. While researchers in [17] 

employ PSO to optimize DG position and size to 

decrease power loss. In DG optimization, a paper [18] 

suggested an enhanced Harris Hawks Optimizer 

(HHO) employing Particle Swarm Optimization (PSO). 

The suggested method's goal was to decrease power 

loss while increasing the voltage stability index. Then, 

in [19], the Genetic Algorithm (GA) is used to boost 

system performance by optimizing DG location and 

size. This is done to maximize the effectiveness of the  
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system. A brand-new strategy known as multi-

objective opposition-based chaotic differential 

evolution (MOCDE) is designed to forestall the 

occurrence of premature convergence [20]. This 

approach seeks to solve the multi-objective issue by 

reducing the amount of money that is lost each year 

as much as possible. This loss takes into consideration 

the expenses involved with the installation, operation, 

and upkeep of the buses, as well as the power loss and 

voltage fluctuation that occurs across the buses. 

In the literature review, many researchers used 

mathematical methods to find the optimal solution for 

DG planning. When it comes to a more complex 

problem, it can be seen clearly that the metaheuristic 

method is more often used than classical and heuristic 

methods and PSO is the widely used algorithm. The 

PSO algorithm was introduced by Eberhart and 

Kennedy (1995). PSO is an efficient optimization 

method by finding the entire high-dimensional 

problem space [21]. It is straightforward to build, 

requires just a small number of parameters to be set, is 

efficient for global search, is unaffected by the scaling 

of design variables, and is simple to parallelize for 

simultaneous processing [21]. In addition, the 

calculation in PSO is simple and is the main reason it is 

used in many research [22]. Paper [16-18, 23] used the 

PSO optimization method to find the optimal result for 

DG planning and produce an ideal solution for the 

problems. However, PSO is susceptible to local 

optimums in high-proportion spaces and has a poor 

convergence rate throughout the iterative phase [24]. 

There is a method that has important merits for a 

complex problem which is differential evolution (DE) 

where it can use the same setting for a different 

problem. The DE is an effective global optimization 

technique and a straightforward stochastic direct 

search approach with strong convergence features 

[25]. DE can be used to solve a wide range of 

optimization problems, including continuous [26], 

discrete [27], constrained [28], and unconstrained. 

Although DE is good at exploration and diversification 

[22], DE has a weakness when it faces a noisy situation 

[29]. Noise in fitness evaluations can arise from a 

variety of sources, including sensor measurement 

mistakes and randomized simulations. The noise in the 

objective function generates two forms of undesired 

behavior: 1) a candidate solution may be 

underestimated and hence removed, 2) a candidate 

solution may be overestimated and thus saved, and 

thus permitted to lead to wrong search directions. 

Alternatively, a noisy fitness landscape may be 

defined as having misleading optima that mislead the 

algorithm search [30]. Under these situations, 

optimization algorithms are readily misled by noise 

and consequently discover suboptimal solutions. 

Consequently, DE can produce an ideal solution, but 

it takes a longer time to converge. Therefore, many 

researchers improved existing optimization methods 

to obtain a good result for their problem. In another 

word, the improvised method is normally suitable only 

for a particular problem.  

In this research, an integrated approach called 

Adaptive Hybrid Differential Evolution and Particle 

Swarm Optimization (AHDEPSO) is proposed to 

optimize the location and size of DG in distribution 

networks. AHDEPSO is selected over other methods 

due to its ability to overcome the limitations of both 

PSO and DE. This strategy hybridizes DE with the PSO 

component, updating particle velocity and location 

to compensate for the deficiencies of PSO and DE. This 

hybridization combo aids in exploration and increases 

convergence speed. In this hybridization, the PSO 

portion acts to improve exploration and enhance 

algorithm speed. Furthermore, an adaptive scaling 

factor method is introduced to ensure the algorithm 

can reach the optimal solution faster, as it is affected 

by the updated global best from the DE vector. This 

comprehensive approach leverages the strengths of 

both algorithms, making AHDEPSO a robust choice for 

complex optimization problems in power distribution 

networks. 

 

 

2.0 METHODOLOGY 
 

In this research, the main objective is to minimize 

power loss. The optimum power loss benefits have 

been analyzed by optimal placements and sizes of 

DG units RDSs. DG optimal sizes can be installed at the 

proper location in the IEEE Bus system as Figure 1 and 

Figure 2. This research only considered active power 

DG to be optimized to reduce active power loss in the 

system. In addition, three and five units of DGs are 

applied in the IEEE-33 bus and IEEE-69 bus systems, 

respectively. 

The system is simulated using MATLAB with IEEE-33 

bus and IEEE-69 bus systems. Through this test system, 

the optimal size and location of DGs are optimized by 

using the proposed AHDEPSO algorithm to minimize 

the system power loss. To achieve the objective, the 

problem is first formulated followed by the modeling 

of the proposed AHDEPSO algorithm. The AHDEPSO is 

then integrated with the optimization problem. The 

proposed methods are compared with several 

methods which are DE, PSO and FA to observe the 

effectiveness of the method in terms of mean, 

standard deviation, worst of the fitness value and the 

convergence rate of the algorithm. 

 

2.1 Distribution System Configuration 

 

In this research, the IEEE 33-Bus and IEEE 69-Bus test 

systems are employed to validate the proposed 

optimization approach. These test systems are well-

known benchmarks in power system studies, providing 

a reliable platform for evaluating the performance of 

optimization algorithms. 

The IEEE 33-Bus system consists of 33 buses and 32 

branches, while the IEEE 69-Bus system includes 69 

buses and 68 branches. These systems simulate real-

world scenarios of power distribution networks, with 

specific data for buses and branches, including load 
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demand, generation capacity, and network 

configuration. Figure 1 and Figure 2 shows the 

configuration of the IEEE 33-Bus and IEEE 69-Bus test 

systems. 

 
 

Figure 1 IEEE 33 bus radial system [31] 

 

 
 

Figure 2 IEEE 69 bus radial system [32] 

 

 

Table 1 and Table 2 present the detailed bus data 

for both test systems. This data includes parameters 

such as bus numbers, load demands, generation 

capacities, and other relevant details necessary for 

performing accurate simulations and analysis. 

 
Table 1 Bus data and line data of IEEE 33 bus [33] 

 

No of 

Branch 

Bus To 

Bus 

R (Ω) X (Ω) Bus Load 

P (kW)  Q (kW) 

1 1 2 0.0922 0.0477 0 0 

2 2 3 0.493 0.2511 100 60 

3 3 4 0.366 0.1864 90 40 

4 4 5 0.3811 0.1941 120 80 

5 5 6 0.819 0.707 60 30 

No of 

Branch 

Bus To 

Bus 

R (Ω) X (Ω) Bus Load 

P (kW)  Q (kW) 

6 6 7 0.1872 0.6188 60 20 

7 7 8 0.7114 1.2351 200 100 

8 8 9 1.03 0.74 200 100 

9 9 10 1.04 0.74 60 20 

10 10 11 0.1966 0.065 60 20 

11 11 12 0.3744 0.1238 45 30 

12 12 13 1.468 1.155 60 35 

13 13 14 0.5416 0.7129 60 35 

14 14 15 0.591 0.526 120 80 

15 15 16 0.7463 0.545 60 10 

16 16 17 1.289 1.721 60 20 

17 17 18 0.732 0.574 60 20 

18 2 19 0.164 0.1565 90 40 

19 19 20 1.5042 1.3554 90 40 

20 20 21 0.4095 0.4784 90 40 

21 21 22 0.7089 0.9373 90 40 

22 3 23 0.4512 0.3083 90 40 

23 23 24 0.898 0.7091 90 50 

24 24 25 0.896 0.7011 420 200 

25 6 26 0.203 0.1034 420 200 

26 26 27 0.2842 0.1447 60 25 

27 27 28 1.059 0.9337 60 25 

28 28 29 0.8042 0.7006 60 20 

29 29 30 0.5075 0.2585 120 70 

30 30 31 0.9744 0.963 200 600 

31 31 32 0.3105 0.3619 150 70 

32 32 33 0.341 0.5302 210 100 

33 
    

60 40 

 

Table 2 Bus data and line data of IEEE 69 

 

No of 

Branch Bus 

To 

Bus R (Ω) X (Ω) 

Bus Load 

P (kW) Q (kW) 

1 1 2 0.0005 0.0012 0 0 

2 2 3 0.0005 0.0012 0 0 

3 3 4 0.0015 0.0036 0 0 

4 4 5 0.0251 0.0294 0 0 

5 5 6 0.366 0.1864 0 0 

6 6 7 0.3811 0.1941 2.6 2.2 

7 7 8 0.0922 0.047 40.4 30 

8 8 9 0.0493 0.0251 75 54 

9 9 10 0.819 0.2707 30 22 

10 10 11 0.1872 0.0691 28 19 

11 11 12 0.7114 0.2351 145 104 
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No of 

Branch Bus 

To 

Bus R (Ω) X (Ω) 

Bus Load 

P (kW) Q (kW) 

12 12 13 1.03 0.34 145 104 

13 13 14 1.044 0.345 8 5 

14 14 15 1.058 0.3496 8 5.5 

15 15 16 0.1966 0.065 0 0 

16 16 17 0.3744 0.1238 45.5 30 

17 17 18 0.0047 0.0016 60 35 

18 18 19 0.3276 0.1083 60 35 

19 19 20 0.2106 0.069 0 0 

20 20 21 0.3416 0.1129 1 0.6 

21 21 22 0.014 0.0046 114 81 

22 22 23 0.1591 0.0526 5 3.5 

23 23 24 0.3463 0.1145 0 0 

24 24 25 0.7488 0.2745 28 20 

25 25 26 0.3089 0.1021 0 0 

26 26 27 0.1732 0.0572 14 10 

27 3 28 0.0044 0.0108 14 10 

28 28 29 0.064 0.1565 26 18.6 

29 29 30 0.3978 0.1315 26 18.6 

30 30 31 0.0702 0.0232 0 0 

31 31 32 0.351 0.116 0 0 

32 32 33 0.839 0.2816 0 0 

33 33 34 1.708 0.5646 14 10 

34 34 35 1.474 0.4673 19.5 14 

35 3 36 0.0044 0.0108 6 4 

36 36 37 0.064 0.1565 26 18.55 

37 37 38 0.1053 0.123 26 18.55 

38 38 39 0.0304 0.0355 0 0 

39 39 40 0.0018 0.0021 24 17 

40 40 41 0.7283 0.8509 24 17 

41 41 42 0.31 0.3623 1.2 1 

42 42 43 0.041 0.0478 0 0 

43 43 44 0.0092 0.0116 6 4.3 

44 44 45 0.1089 0.1373 0 0 

45 45 46 0.0009 0.0012 39.22 26.3 

46 4 47 0.0034 0.0084 39.22 26.3 

47 47 48 0.0851 0.2083 0 0 

48 48 49 0.2898 0.7091 79 56.4 

49 49 50 0.0822 0.2011 384.7 274.5 

50 8 51 0.0928 0.0473 384.7 274.5 

51 51 52 0.3319 0.1114 40.5 28.3 

52 9 53 0.174 0.0886 3.6 2.7 

53 53 54 0.203 0.1034 4.35 3.5 

54 54 55 0.2842 0.1447 26.4 19 

No of 

Branch Bus 

To 

Bus R (Ω) X (Ω) 

Bus Load 

P (kW) Q (kW) 

55 55 56 0.2813 0.1433 24 17.2 

56 56 57 1.59 0.5337 0 0 

57 57 58 0.7837 0.263 0 0 

58 58 59 0.3042 0.1006 0 0 

59 59 60 0.3861 0.1172 100 72 

60 60 61 0.5075 0.2585 0 0 

61 61 62 0.0974 0.0496 1244 888 

62 62 63 0.145 0.0738 32 23 

63 63 64 0.7105 0.3619 0 0 

64 64 65 1.041 0.5302 227 162 

65 11 66 0.2012 0.0611 59 42 

66 66 67 0.0047 0.0014 18 13 

67 12 68 0.7394 0.2444 18 13 

68 68 69 0.0047 0.0016 28 20 

69     28 20 

 

 

2.2 Problem Formulation 

 

The variable to be optimized is the location and size of 

DG. 
 

2.2.1 Objective Function 
 

The objective of this research is to minimize power loss. 

 

a) Power Loss: 

 

Equation (1) is used to determine real power loss. The 

system's total active power loss is calculated by 

adding all of the power losses between branch x and 

y bus [34]. 

 

    

𝑃𝑙𝑜𝑠𝑠(𝑥,𝑦)=∑
𝑃𝑥

2+𝑄𝑥
2

|𝑉𝑥|2  × 𝑅𝑥 (1) 

 

Where: 

𝑃𝑥 and 𝑄𝑥 active and reactive power at 𝑥 bus   

respectively. 

𝑅𝑖 is the resistance between bus 𝑥 and 𝑦. 

𝑉𝑥 is the bus 𝑥𝑡ℎ voltage. 

 

2.2.2 Constraint 

 

The optimization process must meet several constrain 

such as: 

 

a) Voltage constraint 

 

Following the DG output adjustment, the voltage 

value for all buses in the distribution network must 

operate within the allowed limit, which is ±5% of the 

rated value [35]. 
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0.95𝑝. 𝑢 ≤ 𝑉𝑚 ≤ 1.05 𝑝. 𝑢 (2) 

  

 

b) Generator operation constraint: 

 

𝑃𝑚𝑖𝑛 ≤  𝑃DGi  ≤ 𝑃𝑚𝑎𝑥; 0≤𝑃DGi ≤2𝑀𝑊 (3) 

 

 

All DG units must operate between minimum DG 

output, 𝑃𝑚𝑖𝑛 and maximum DG output, 𝑃𝑚𝑎𝑥. 

Therefore, DG sizing results must not exceed this limit 

during initialization or updating in optimization. 

 

c) Power balance constraint: 

 

∑ PDG  𝑘
𝑖=1  +  PGrid  =  P Load + PLoss (4) 

 

Where PDG is the real power generated by DG, PGrid 

is real power injected from the grid to the system, P Load 

is demand real power and PLoss is the real power loss 

in the system. 

The total power generated in the network which is 

from DG units and the grid must be equal to the 

summation of total load and the total power loss. 

 

d) Reverse Power Flow 

 

PDG <  P Load (5) 

 

It is essential that the power produced by DG does 

not go above the local load to avoid reverse power 

flow (RPF), which refers to the flow of electricity in the 

opposite direction of what is typical. 

 

2.3 Adaptive Hybrid Differential Evolution Particle 

Swarm Optimization 

 

A hybrid metaheuristic strategy is employed in this 

research to handle the power loss issue in a distribution 

system. The suggested technique intends to hybridize 

PSO part with DE called AHDEPSO, to increase the 

speed of convergence and the optimal fitness value. 

DE takes longer time to converge although it has high 

capability in local search. Meanwhile, PSO converges 

than other algorithms and tends to be trapped in local 

optima and gives premature convergence.  

AHDEPSO starts with an initialization and the 

evaluation of the population. Next, a normal DE 

method and advances to the production of the trial 

vector. If the experimental course outperforms the 

associated target course in terms of fitness, it is added 

to the DE contestant occupant. Simultaneously, the 

location and velocity update equations are then used 

by the PSO component to build a new PSO contestant 

occupant from the contestant occupant. From this, 

AHDEPSO will have two contestant occupants then 

will be evaluated to find the fitness function. This two-

fitness function will give AHDEPSO more diversity to find 

the global best from DE and PSO vector. The 

population for the following production will be chosen 

from the best target contestant from the DE and PSO 

contestant occupant. The process is iterated in the 

goal of finding better answers or achieving optimum 

values. The velocity and position update techniques 

work together to let the PSO algorithm traverse the 

search space more efficiently and converge quicker. 

The velocity update approach directs particles to the 

best solution identified thus far by any particle in the 

swarm, whereas the position update method directs 

particles to a wide range of viable solutions and keeps 

them from being stuck in local optima. Finally, the 

large scaling factor is set in the initial stage to increase 

the exploration. The scaling factor is then self-updated 

based on latest global best due to the DE vector. The 

scaling factor shrinks down so that the search will focus 

on that location to get the best solution.  The 

suggested AHDEPSO algorithm's primary structure is 

shown in Algorithm 1 in Figure 3. 

 

 
Figure 3 Adaptive Hybrid Differential Evolution Particle 

Swarm Optimization algorithm 

Record P(x) and G(x) 

Record Global Best, G(X) 

Obtain Optimal Size and 

Location of DG 

Check 

Stopping 

Criteria 

No 

Mutation, Z(x) Update Velocity, 

V(x) 

Crossover, 

U(x) 
Update Position, 

Y(x) 

Selection 

If G(X+1) 

< G(X) 

Fmax=Fmax(X+1)) 

Yes 

Yes 

Start 

Read Bus & Line Data      

Set Parameter 

Initialization                             

Randomize size & location of DG 

Evaluation 

End 

No 

DE 

PSO 
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The following are the primary stages of the suggested 

algorithm: 

The algorithm will read the bus and line data for the 

IEEE-33 and IEEE-69 bus system to be used as the 

system. Then the parameter is set up before the 

initialization. 

 

2.3.1 Initialization 

 

The size and location of the DG is randomized for the 

algorithm creates an initial set of population (NP) that 

includes the position and size of the DG. Then, each 

set of NPs is used in the objective function (OF) to find 

the power loss, a solution 𝑋𝑔 is produced (t). The 

power flow method used in the given algorithm is the 

Newton-Raphson (NR) method. As a result, the OF and 

solution vector may be written as in Equations (6), (7), 

(8) and (9). 
 

𝑂𝐹 = Minimize 𝑃𝑙𝑜𝑠𝑠(𝑥,𝑦) (6) 

Minimize 𝑃𝑙𝑜𝑠𝑠(𝑥,𝑦)=∑
𝑃𝑥

2+𝑄𝑥
2

|𝑉𝑥|2  × 𝑅𝑥  (7) 

𝑁𝑃(𝑡) = [𝑋1(𝑡), 𝑋2(𝑡), … 𝑋𝑁𝑃(𝑡)] (8) 

𝑋𝑔(𝑡) = [𝑋𝑔,1(𝑡) , 𝑋𝑔,2(𝑡), …  𝑋𝑔,𝐷(𝑡)] (9) 
 

From the initial solution, personal best, 𝑃𝑝  and 

global best, 𝑃𝐺 will be determined. 

 

2.3.2 Update Personal and Global Best 

 

After the initialization, the personal and global best will 

be recorded. P(X), Represents the best position and 

cost that a particle has achieved so far. While, G(X), 

Represents the best position and cost achieved by 

any particle in the swarm. 

 

2.3.3 Mutation 

 

Equations (10) and (11) produce a mutant vector Zg(t) 

from the vector Xg(t), j = 1,2,3, NP.  
 

𝑍𝑔(𝑡) = [𝑧𝑔,1(𝑡) , 𝑧𝑔,2(𝑡), …  𝑧𝑔,𝐷(𝑡)] (10) 

𝑧𝑔,𝑗(𝑡) = [𝑋𝑔,𝑣1(𝑡) + 𝐹 (𝑋𝑔,𝑣2(𝑡) - 𝑋𝑔,𝑣3(𝑡))] (11) 
 

In differential iteration, F is a scaling factor in the 

range [0 1] to govern exploration and exploitation. The 

vector indices v1, v2, and v3 were picked at random. 

 

2.3.4 Crossover 

 

To increase the variety of the population vectors, the 

crossover mechanism is implemented. Equation (12) 

and (13) may be used to construct a trial vector Ug(t). 
 

𝑈𝑔(𝑡) =  𝑢𝑔,1(𝑡), 𝑢𝑔,2(𝑡) … , 𝑢𝑔,𝐷(𝑡) (12) 

𝑢𝑔,𝑗(𝑡) =  {
𝑧𝑔,𝑗(𝑡) 𝑖𝑓𝑟𝑎𝑛𝑑𝑜𝑚[0,1] ≤ 𝐶𝑅

𝑋𝑔,ℎ(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

(13) 

 

2.3.5 Updating the Vlocity and Position of the 

Particle 

 

To improve the exploitation capability of DE, the 

velocity and position update method inspired from 

PSO is integrated with DE. Equation (14) is be used to 

create the velocity vector. 

 
𝑉𝐺(𝑡) = 𝑤(𝑉𝐺(𝑡 − 1)+ 𝐶1𝑟1(𝑃𝐺(𝑡)- 𝑈𝐺(𝑡)) +   𝐶2𝑟2(𝑃𝑝(𝑡) −

 𝑈𝐺(𝑡)) 
(14) 

 

where 𝑉𝐺 is the velocity of vector 𝐺, 𝑃𝐺 is the global 

best position of all vectors and 𝑃𝑝 is the personal best 

position of vector g. 𝐶1 and 𝐶2 are the weights for the 

personal and global best positions, respectively; 

𝑟1 and 𝑟2 are random values ranging from 0 to 1, and 

w is the inertial weight. Equation (15) will be used to 

update each trial vector. 

 

𝑌𝐺(𝑡) = 𝑈𝐺(𝑡) + 𝑉𝐺(𝑡) (15) 

 

Where 𝑌𝐺 is the position of vector 𝑔. 

 

2.3.6 Evaluation 

 

The new population set is produced after it go through 

the PSO and DE part which is  𝑈𝑔(𝑡) and 𝑌𝐺(𝑡) 

respectively. These vectors will be evaluated in the OF 

as stated in Equation (6). The solution obtained then is 

used in the selection process. 

 

2.3.6 Selection 

 

Power loss will be used as a selection factor for the 

following generation's population. The size and 

location of DG produced are included in the power 

flow analysis to obtain the fitness value (power loss). 

The minimum power loss is chosen as the best fitness 

function in this algorithm. Equation (16) is used to pick 

the vector for the following generation 

 

𝑋𝐺(𝑡 + 1) {
𝑈𝐺(𝑡), 𝑖𝑓  𝑓(𝑈𝐺(𝑡)) < 𝑓(𝑌𝐺(𝑡)) 𝑎𝑛𝑑 𝑓(𝑈𝐺(𝑡)) < 𝑓(𝑋𝐺(𝑡))

𝑌𝐺(𝑡), 𝑖𝑓  𝑓(𝑌𝐺(𝑡)) < 𝑓(𝑈𝐺(𝑡)) 𝑎𝑛𝑑 𝑓(𝑌𝐺(𝑡)) < 𝑓(𝑋𝐺(𝑡))
 (16) 

 

From Equation (16), the global best will be 

replaced with DE population when objective function 

from DE vector is lower than global best before and 

PSO objective function, 𝑓(𝑌𝐺(𝑡)) . While the PSO 

population will replace global best when PSO fitness 

function is lower from global best before and DE fitness 

function. 

 

2.3.7 Adaptive Scaling Factor 

 

After the new global best is updated, the algorithm will 

update the new scaling factor, 𝐹𝑚𝑎𝑥 . Initially, F is 

randomized from 0 to 1. The scaling factor is then 

adaptively updating the new value itself when the 

global best is updated. The limit scaling factor will 

change to [0 𝐹𝑚𝑎𝑥 ]. This 𝐹𝑚𝑎𝑥  is produced by 

randomized value in the iteration before. These shrunk 

values of scaling factor will help the algorithm to 

exploit more at that solution area. 

 

𝐹𝑚𝑎𝑥+1 =  {
𝐹𝑚𝑎𝑥−1 , 𝑖𝑓 𝑋𝐺(𝑡 + 1) =  𝑈𝐺(𝑡)

𝐹𝑚𝑎𝑥 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

(17) 
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Where 𝐹𝑚𝑎𝑥−1 is the value of scaling factor randomized 

in the iteration before and 𝐹𝑚𝑎𝑥+1 is the new values of 

max limit scaling factor that will be used for the next 

iteration to randomize it. 

 

 

3.0 RESULTS AND DISCUSSION 
 

The effectiveness of the HDEPSO algorithm is 

evaluated on the IEEE 33 and IEEE 69 bus to obtain the 

minimum power loss in the system. AHDEPSO 

performance is compared with former PSO, former DE, 

Firefly, Fixed HDEPSO and Range HDEPSO algorithms 

to observe the capability of exploration and 

exploitation of each algorithm. To investigate the 

impact of scaling factor on the optimal solution, fixed 

scaling factor and randomized scaling factor are 

applied in AHDESPO, named fixed HDEPSO and range 

HDEPSO  

This research measures performance by obtaining 

the power loss by each algorithm. The mean, standard 

deviation and worst of the fitness value are calculated 

to analysis the algorithm performance. The time to 

converge and the convergence rate were also 

recorded to analysis the algorithm convergence 

behaviors. PSO convergence time was set as 

reference for the convergence rate. Table 3 shows the 

parameter values for the algorithms [36-38]and 30 

trials are executed for each. 

 
Table 3 Parameter settings for the optimization algorithms 

 

Algorithms Parameter Value 

AHDEPSO Inertia Weight 1 

 Damping Ratio 0.99 

 Fmax 1 

 Fmin 0 

 C 0.8 

   
PSO Inertia Weight 1 

 Damping Ratio 0.99 

   
DE F 0.7 

 C 0.8 

FA gamma 1 

 beta 2 

 alpha 0.2 

 alpha_damp 0.98 

 

 

The population size and number of iterations for all 

algorithms were set to 20 and 200, respectively.  

 

3.1 Analysis of Proposed Optimization Method on 

IEEE-33 Bus 

 

Table 4 shows the results of AHDEPSO, fixed HDEPSO, 

range DEPSO DE, PSO, DE, and FA for optimizing 3 DG 

units in IEEE 33-bus system. The result included best, 

worst, mean, and standard deviation (SD) values of 

the fitness value across 30 trials. The best, worst, and 

average values produced by AHDEPSO outperform 

those obtained by other techniques. The mean value, 

often known as the average, represents the center 

tendency of the algorithm's results while the standard 

deviation is a measure of the dispersion or spread of 

the algorithm's results. It indicates the amount by 

which solutions depart from the mean value. A smaller 

standard deviation implies that the answers are 

densely grouped around the mean value, while a 

larger standard deviation suggests that the solutions 

are more dispersed. 
 

Table 4 Statistical results of the fitness functions for IEEE 33 

bus 
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Best (MW) 0.08501 0.0832 0.0827 0.0824 0.0823 0.0823 

Worst (MW) 0.1053 0.085 0.1058 0.083 0.0828 0.085

9 

Mean (MW) 0.0935 0.0835 0.0929 0.0826 0.0826 0.084

5 

SD 0.00526 5.75E-

04 

0.0086

2 

1.90E-04   1.50E-04 7.10E

-15 

Convergence 

Time (s) 

15.64 

(35th) 

13.22 

(37th) 

4.43 

(4th) 

35.23 

(149th) 

40.77 

(168th) 

14.34 

(40th) 

Convergence 

Rate % 

- 15% 71.68% -125.25%  -

160.68

%  

8.31

%  

 

 

The value of SD for PSO and Firefly are the greatest 

which is led to wide dispersed of the solutions found by 

the algorithms and indicate that PSO and FA have 

high in exploration. The former DE has lower SD than 

Fixed HDEPSO and Range HDEPSO. This shows that DE 

has lower exploration in this case. In this case, 

AHDEPSO shows the lowest SD from another algorithm. 

It is because with the implementation of PSO update 

velocity and position method encourages the 

algorithm to optimize faster. 

FA algorithm exploits better than others where it 

gives the fitness value, 0.0827 MW lower than PSO and 

DE. PSO give the largest fitness value, 0.08501 MW 

followed by DE, 0.0832 MW. Even though DE gives 15% 

converge faster than PSO, the exploitation in DE is not 

the best as the fitness value is not the lowest. While the 

Fixed HDEPSO gives the second lowest value of fitness 

value and Range HDEPSO and AHDEPSO provides the 

lowest value of fitness function. The result shows that 

Fixed HDEPSO is good in exploitation followed by 

Range HDEPSO and AHDEPSO is the best in 

exploitation. This exploitation is affected by the scaling 

factor which motivates the algorithm to exploit better 

to find the fitness value. 

In terms of speed, FA shows its ability to converge 

fastest than others. However, the FA gives the 

premature convergence as it converges at 4th 

iteration with 4.43 seconds and indirectly it cannot be 

considered as stable algorithm to optimize this problem. 
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Meanwhile, DE is the most stable algorithm in terms of 

speed as DE converges fastest than HDEPSO variant. 

Fixed HDEPSO and Range HDEPSO obtained the 

slowest speed which -125.25% and -160.68%, 

respectively and this shows both algorithm is the low in 

achieving convergence. The proposed algorithm only 

improved the convergence rate by 8.31%. However, 

the stability of DE and AHDEPSO can be compared with 

the solution quality to indicate which is the most stable. 

In addition, the fitness value gained by AHDEPSO is 

better than DE, this can be concluded that the solution 

quality of AHDEPSO is better than DE and AHDEPSO is 

more stable than DE. The impact of the scaling factor 

also can be seen clearly as only randomized scaling 

factor is not guarantee the HDEPSO to be a stable 

algorithm and increase the speed of convergence. By 

capping the scaling factor, it helps AHDEPSO to 

increase the convergence speed as well as to make 

the algorithm stable. 

The value of the fitness function at the best solution 

found by the algorithm can be used as an indicator of 

accuracy. A smaller value indicates that the solution is 

closer to the true optimal solution and therefore more 

accurate. PSO show the least accuracy as gained the 

highest value of fitness value. FA shows a better 

accuracy than DE, but FA gives the premature 

convergence as it converges too early. The fixed 

HDEPSO algorithm obtained the second-best fitness 

value while Range HDEPSO and AHDEPSO produced 

the same best fitness value. However, AHDEPSO shows 

a better accuracy than Range HDEPSO as the 

convergence rate is better than Range HDESPO. 

Based on the Table 5, the optimal locations and sizes 

of DG for the IEEE-33 bus system were evaluated using 

various algorithms, including PSO, DE, FF, Fixed HDEPSO, 

Range HDEPSO, and AHDEPSO. PSO suggests placing 

DGs at buses 7, 14, and 29, each with a size of 2 MW, 

indicating a straightforward distribution strategy with 

larger capacities at fewer locations. In contrast, DE 

proposes a more varied approach with DGs at buses 

16, 24, and 31, with sizes of 0.82 MW, 1.32 MW, and 0.95 

MW, respectively, aiming for a balanced power loss 

reduction across the network. Similarly, FF distributes 

DGs at buses 27, 23, and 21, with sizes of 0.97 MW, 1.05 

MW, and 1.11 MW, indicating a different optimization 

approach for power flow and loss reduction. 

 
Table 5 Optimal Location and Size of DG for IEEE-33 Bus 
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Optimal Solution 

DG Location (Bus No.) 7 16 27 14 24 24 

14 24 23 29 29 29 

29 31 21 24 14 14 

DG Size (MW) 2 0.82 0.97 0.79 1.21 1.22 

2 1.32 1.05 1.27 1.27 1.21 

2 0.95 1.11 1.11 0.82 0.83 

Fixed HDEPSO suggests placing DGs at buses 14, 29, 

and 24, with sizes of 0.79 MW, 1.27 MW, and 1.11 MW, 

combining elements of DE and PSO for effective 

power loss reduction. Range HDEPSO also combines 

elements of DE and PSO but suggests slightly different 

DG sizes and locations, with DGs at buses 24, 29, and 

14, and sizes of 1.21 MW, 1.27 MW, and 0.82 MW. The 

hybrid nature of these algorithms aims to balance the 

power loss reduction and the efficient power 

distribution across the network. 

AHDEPSO, being the most advanced hybrid 

algorithm, suggests DGs at the same locations as 

Range HDEPSO but with sizes of 1.22 MW, 1.21 MW, 

and 0.83 MW, indicating a fine-tuned optimization 

solution for minimal power loss. Overall, the hybrid 

algorithms, especially AHDEPSO, offer a refined 

approach for optimizing DG placement and sizing, 

effectively balancing power distribution and loss 

reduction. The adaptive nature of AHDEPSO highlights 

its potential superiority in achieving the most efficient 

reduction of power loss due to its refined approach in 

DG placement and sizing. 

As seen from Figure 4, there are various 

optimization algorithms that tend to minimize the 

objective function related to power loss in the 

distribution network over 200 iterations. Among these 

algorithms are DE, PSO, AHDEPSO as well as Firefly, 

Fixed HDEPSO, and Range HDEPSO. Being the most 

efficient amongst all tested algorithms, AHDEPSO 

exhibits steady-state behaviour of objective function 

values resulting in a minimum power loss of 0.0823 MW. 

Although it reaches its final value by the fourth 

iteration, Firefly does not improve beyond that and 

has a larger power loss than AHDEPSO. In comparison 

with DE and PSO which quickly converge too but 

cannot achieve the efficiency of AHDEPSO, with final 

power losses of 0.0832 MW and 0.08501 MW 

respectively. 

 

 
Figure 4 Iteration of the six algorithms for IEEE 33 bus 

 

 

While Fixed HDEPSO and Range HDEPSO do show 

some improvements at reducing power loss, they 

cannot match the performance of AHDEPSO. The 

convergence patterns for these methods indicate 

some progress over time; however, this progress is 

insufficient when compared to low-power losses 

demonstrated by AHDEPSO algorithm. Moreover, 

AHDEPSO has very low standard deviation in terms of 
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performance implying robustness and stability during 

optimization process.  

The performance of the AHDEPSO algorithm was 

evaluated against other optimization techniques, 

including DE, PSO, Firefly, Fixed HDEPSO, and Range 

HDEPSO, to assess how well they maintain bus voltage 

levels in a distribution network. Figure 5 illustrates the 

voltage profiles across various bus numbers for each 

algorithm. 

 

 
Figure 5 Bus Voltage for the six algorithms for IEEE-33 bus 
 

 

This algorithm AHDEPSO is the first to hold a higher 

voltage level at most buses which indicates its stability 

unlike DE and PSO that have wide voltage drops, 

especially around bus numbers 10 and 25. The 

reduced voltage drops and the smoother curve under 

AHDEPSO’s case shows that it performs better in terms 

of power losses reduction and voltage stabilization. 

Crucially, AHDEPSO’s algorithm makes certain that 

the voltages are kept within acceptable range from 

0.95 p.u to 1.05 p.u as per operational requirements. 

Conversely, other algorithms show voltage levels 

approaching or falling below this lower limit indicating 

possible difficulties in maintaining reasonable voltages 

during changing load conditions. 

AHDEPSO achieves superior results due to its hybrid 

nature which combines the exploratory potential of 

DE with the exploitative power of PSO hence yielding 

a more robust optimization process altogether. This 

study therefore supports AHDEPSO as an appropriate 

selection for DG optimization in distribution networks 

with improved overall system reliability and voltage 

regulation also confirmed by the survey findings.  
 

3.2 Analysis of Proposed Optimization Method on 

IEEE-69 Bus 

 

Table 5 shows the results of AHDEPSO, HDEPSO, PSO, 

DE, and FA to optimize 5 DG units in IEEE 69-bus system. 

The AHDEPSO algorithm also outperforms other 

algorithms where minimum fitness value is produced 

compared to others.  

For a large and more complicated system, 

AHDEPSO has the capability of computing 38.3% 

faster than other algorithms and at the same time 

produces the lowest fitness value. The SD for AHDEPSO 

is the lowest (0.00036), indicating the highest precision 

and least variability in the solutions found by the 

algorithm. This shows that AHDEPSO has the lowest 

exploration level due to its highly clustered solutions. 

The low SD is attributed to the implementation of the 

PSO update velocity and position method, which 

leads this algorithm to the optimal solution faster. The 

PSO algorithm has the second-lowest SD (0.00060), 

which suggests it also has a low exploration level. This 

is followed by DE (0.00080), HDEPSO (0.00120), and FF 

(0.00270). The relatively higher SD for DE indicates a 

higher exploration level compared to HDEPSO and FF, 

with FF having the highest exploration level among the 

algorithms. 

 
Table 5 Statistical results of the fitness functions for IEEE 69 bus 
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Best (MW) 0.0768 0.0720 0.0808 0.0733 0.0699 

Worst (MW) 0.0805 0.0780 0.1058 0.0820 0.0701 

Mean (MW) 0.0795 0.0755 0.0929 0.0786 0.0715 

SD 0.0006 0.0008 0.0027 0.0012 0.0003

6 

Convergenc

e Time (s) 

18.08 

(45th) 

30.32 

(162nd) 

14.95 

(6th) 

18.94 

(119th) 

11.16 

(70rd) 

Convergenc

e Rate % 

- -67.7% 17%  -4%  38.3%  

 

 

The results shown in Table 5 indicate that HDEPSO 

exploits better than others, giving a fitness value 

(0.0733 MW) lower than PSO (0.0768 MW), DE (0.0720 

MW), and FF (0.0808 MW). FF gives the largest fitness 

value (0.0929 MW), followed by PSO (0.0795 MW). 

Even though DE provides a fitness value better than 

PSO and FF, its exploitation is not the best as the fitness 

value is not the lowest. HDEPSO gives the second-

lowest fitness value, with AHDEPSO providing the 

lowest fitness function value (0.0699 MW). This shows 

that AHDEPSO is the best in exploitation, followed by 

HDEPSO. This exploitation is influenced by the scaling 

factor, which helps the algorithm exploit better to find 

the optimal fitness value. 

In terms of speed, AHDEPSO converges the fastest 

among the algorithms, with a convergence time of 

11.16 seconds at the 70th iteration and a 

convergence rate of 38.3%. FF follows, converging in 

14.95 seconds at the 6th iteration. However, FF suffers 

from premature convergence, making it less stable for 

optimizing this problem. DE is the least stable algorithm 

in terms of speed, with a convergence time of 30.32 

seconds at the 162nd iteration. HDEPSO obtained the 

third-fastest convergence speed (18.94 seconds at 

the 119th iteration) and is the second most stable due 

to FF's premature convergence. The proposed 

AHDEPSO algorithm improved the convergence rate 

by 38.3%. 

In terms of solution quality, AHDEPSO provides the 

most stable solution, achieving the best fitness value. 

In a larger system, the impact of adapting the scaling 
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factor becomes more apparent in maintaining the 

balance between exploration and exploitation. Even 

though AHDEPSO has a low exploration level due to its 

low SD, this algorithm has the highest accuracy, 

consistently maintaining the best fitness value. The PSO 

update velocity and position method helps AHDEPSO 

quickly reach the optimal solution area, enhancing 

early exploration. Furthermore, the shrinking scaling 

factor helps consistently achieve the best fitness 

value. 

FF gives the lowest accuracy compared to DE, 

PSO, and HDEPSO. The DE algorithm offers a more 

accurate solution than PSO but cannot match the 

solution quality of HDEPSO and AHDEPSO, as DE’s 

fitness value is lower. Additionally, AHDEPSO provides 

the lowest fitness function value compared to other 

algorithms. Although FF converges first in calculating 

the objective function, there are no changes in value 

from the 4th iteration onward. DE and PSO tend to 

converge early but still cannot provide the lowest 

fitness value like AHDEPSO. 

Different algorithms such as DE, HDEPSO, PSO, FF 

and AHDEPSO were used to determine the optimal 

locations as well as sizes for DGs in IEEE-69 bus system 

as per Table 6. 

 
Table 6 Optimal Location and Size of DG for IEEE-69 Bus 
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Optimal Solution 

DG Location (Bus No.) 51 37 47 53 61 

60 68 35 47 61 

50 50 41 68 10 

61 66 56 50 2 

50 64 51 61 18 

DG Size (MW) 0.93 0.51 0.73 0.50 0.50 

0.50 1.29 1.87 1.99 1.65 

1.45 0.71 1.15 0.63 0.50 

1.27 0.52 1.88 1.00 1.34 

0.72 0.50 0.84 1.52 0.50 

 

 

For PSO however, it proposes positioning of DGs at 

buses 51, 50, 60, 61 and 50 with their sizes being 0.93 

MW, 1.45 MW ,0.5MW ,1.27MW and 0.72 MW 

respectively. This approach suggests a combination of 

low to very high capacities that are spread around 

multiple locations to optimize power loss reduction. 

On the other hand, though DE’s technique 

coordinates this action by offering small and medium 

sized DG facilities in various points across the network, 

such as in buses 37,64 ,68 ,66, and 50 whose respective 

powers are 0.5 MW,0.5Mw,0.71 Mw,1.29 Mw, and 

0.52Mw. 

FF on its part has placed DG at Buses numbered 

47,35,41,56,51 with respective areas of capacities 

being:0.73 kW;1.87 kw;1.15kw ;1.88 kw and 0.84kw 

Consequently this will mean a different optimization 

strategy which would emphasize larger capacities at 

fewer places where better load flow control and 

reducing losses can be attained or achieved. These 

DGs can be located at buses 53, 47, 68, 50 and 61 with 

sizes of 0.50 MW, 1.99 MW, 0.63 MW, 1.00 MW and 1.52 

MW respectively as suggested by HDEPSO. It 

combines DE and PSO in this strategy with different 

sizes of DGs for effective power loss reduction. 

In line with this finding, AHDEPSO suggests that 

there should be a DG at bus number 61, capable of 

producing 50kW of electricity to serve it; along with 

those that must be installed at points 61,2,10 and 18 

which have got capacities of 1.65 MW, 0.5 MW,1.34 

MW and 0.5 MW respectively. This shows the best 

optimization solution for minimizing power loss 

because DE’s advantages are combined with PSOs’. 

Its adaptability is evident from the fact that it uses 

higher order polynomial expressions since placing DGs 

in DE are not constant. 

As a result, hybrid algorithms particularly AHDEPSO 

has been refined to provide an approach towards 

optimal sizing of distribution system components (DG 

placement). The adaptive nature of AHDEPSO means 

it can achieve the least possible power losses thereby 

being the best among all other techniques studied 

herein. 

Figure 6 displays the performance of different 

optimization algorithms in minimizing power loss for the 

IEEE 69 bus distribution network over 200 iterations. The 

algorithms compared are DE, PSO, AHDEPSO, FF, and 

HDEPSO. 

 

 
Figure 6 Iteration of the all algorithms for IEEE-69 bus 

 

 

Among these algorithms, AHDEPSO demonstrates 

the most efficient performance, achieving a minimum 

power loss of 0.0699 MW. It converges quickly and 

steadily, reaching its optimal value in early iterations. 

This rapid and effective convergence highlights 

AHDEPSO's capability to find the best solution 

efficiently. 

FF algorithm, although converging rapidly within a 

few iterations, does not improve further and results in 

a higher power loss of 0.0808 MW compared to 

AHDEPSO. DE and PSO also converge relatively 
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quickly but do not reach the same efficiency level as 

AHDEPSO, with final power losses of 0.0720 MW and 

0.0768 MW, respectively. 

HDEPSO shows notable improvements in reducing 

power loss and achieves a power loss of 0.0733 MW. 

This algorithm demonstrating better performance 

than PSO and FF but not surpassing AHDEPSO. 

The convergence patterns of these algorithms 

indicate varying degrees of efficiency and stability. 

AHDEPSO not only achieves the lowest power loss but 

also exhibits a very low standard deviation, indicating 

robustness and consistent performance during the 

optimization process. 

Overall, the AHDEPSO algorithm stands out as the 

most effective and reliable method for minimizing 

power loss in the IEEE 69 bus distribution network, 

demonstrating superior optimization capabilities 

compared to the other algorithms tested. 

Other optimizers like Firefly, PSO, DE and HDEPSO 

were used to compare their performance against that 

of AHDEPSO for maintaining bus voltages in a 

distribution network. The voltage of the buses is 

displayed in Figure 7 across several different bus 

numbers per each algorithm. 

 

 
 

Figure 7 Bus Voltage for the six algorithms for IEEE-69 bus 
 

 

This algorithm AHDEPSO is the first to hold a higher 

voltage level at most buses, which indicates its 

stability, unlike DE and PSO that have wide voltage 

drops, especially around bus numbers 10 and 25. The 

reduced voltage drops and the smoother curve under 

AHDEPSO’s case show that it performs better in terms 

of power losses reduction and voltage stabilization. 

Essentially, this algorithm by AHDEPSO ensures that 

voltages are maintained within the range between 

0.95 p.u to 1.05 p.u according to operating limits. 

Conversely, other algorithms show voltage levels 

approaching or falling below this lower limit, indicating 

possible improper size and location of DG optimized 

by those algorithms. 

AHDEPSO achieves superior results due to its hybrid 

nature, which combines the exploratory potential of 

DE with the exploitative power of PSO, hence yielding 

a more robust optimization process altogether. This 

study, therefore, supports AHDEPSO as an appropriate 

selection for DG optimization in distribution networks 

with improved overall system reliability and voltage 

regulation, as also confirmed by the survey findings. 

 

 

4.0 CONCLUSION 
 

This research will demonstrate how the Adaptive 

Hybrid Differential Evolution Particle Swarm 

Optimization (AHDEPSO) algorithm outperforms PSO, 

DE, and Firefly in optimizing DG. The combination of a 

DE and PSO results in this hybrid approach which 

makes it possible to enhance both exploration and 

exploitation abilities hence leading to a better 

convergence thus, better optimization. Key findings 

showed that AHDEPSO minimized power losses well 

having a power loss of 0.0823 MW compared to PSO’s 

0.08501MW and DE’s 0.0832 MW. This decline indicates 

a tangible increase in the overall performance 

efficiency of the distribution network. 

Moreover, AHDEPSO algorithm keeps bus voltages 

within its optimal range; 0.95 p.u.<V<1.05 p.u., hence 

ensuring stability and lowering voltage drops more 

effectively as opposed to other algorithms. In 

addition, this confirms its effectiveness under smoother 

voltage profile observed mainly at critical bus 

numbers with respect to AHDEPSO. Moreover, it has 

taken less time for AHDEPSO to reach convergence 

than many other algorithms because its convergence 

time is very much shorter by up to 38.3% than those of 

others. 

Power loss reduction, voltage stabilization and 

convergence efficiency are areas where AHDEPSO 

outperforms other optimization tools like Firefly, PSO 

and DE in comparative analysis. The hybrid approach 

inherent in AHDEPSO combines the strengths of both 

DE and PSO making it a more effective solution for DG 

optimization in RDS. Significantly, the AHDEPSO 

algorithm is a substantial leap towards improving 

performance metrics across different parameters for 

DG optimization. It is highly dependable and efficient 

due to its ability to minimize power losses, sustain 

voltage stability and achieve fast convergence; thus, 

enhancing the operation of distribution networks. 

Therefore, this study advocates for the 

implementation of AHDEPSO as a reliable and robust 

tool for optimization with respect to power systems’ 

reliability and efficiency increase 
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