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Abstract 
 

Chili is a popular crop that is widely grown due to its flavorful and spicy fruit that is nutritionally 

beneficial. For the benefit of economic growth, it is important to precisely assess the chili health. 

With the advancement of computer vision-based applications, methods such as feature 

descriptors have been utilized to assist farm owners in identifying chili diseases via chili leaf images. 

However, these feature descriptors still require the manual extraction of disease features in order to 

accurately identify chili diseases. In this research, pretrained Convolutional Neural Networks (CNNs) 

are proposed as feature extractors to identify healthy and diseased chili leaf images. Three 

pretrained CNN models, DenseNet-201, EfficientNet-b0, and NasNet-Mobile, are utilized for their 

ability to identify healthy and diseased chili leaf using five indexes: accuracy, recall, specificity, 

precision, and F1-score. These indexes are validated through a five-fold cross-validation method 

during the experiments. The experimental results show that the EfficientNet-b0 model achieved the 

highest identification performance, with indexes of accuracy, recall, specificity, precision, and F1-

score of 97.05%, 0.97, 0.92, 0.92, and 0.94, respectively. Therefore, the use of pretrained CNNs as 

feature extractors has the capability to enhance the efficiency and accuracy of chili disease 

identification in agricultural settings.  
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Abstrak 
 

Cili merupakan tanaman popular yang ditanam secara meluas kerana buahnya yang berperisa 

pedas dan bermanfaat dari segi pemakanan. Untuk pertumbuhan ekonomi, adalah penting 

untuk menilai kesihatan cili. Dengan kemajuan aplikasi berasaskan penglihatan komputer, kaedah 

deskriptor ciri telah digunakan untuk membantu pemilik ladang bagi mengenal pasti penyakit cili 

melalui imej daun cili. Namun begitu, kaedah ini masih memerlukan pengekstrakan ciri-ciri 

penyakit secara manual bagi mengenal pasti penyakit cili dengan tepat. Dalam penyelidikan ini, 

Rangkaian Neural Konvolusi (CNNs) yang terlatih dicadangkan untuk mengestrak ciri bagi 

mengenal pasti imej daun cili yang sihat dan berpenyakit. Tiga model CNN yang terlatih, 

DenseNet-201, EfficientNet-b0, dan NasNet-Mobile, digunakan bagi mengenal pasti daun cili yang 

sihat dan berpenyakit dengan menggunakan lima indeks: ketepatan, ingatan semula, 

kekhususan, keperincian dan skor F1. Indeks ini disahkan melalui kaedah pengesahan silang lima 

kali semasa eksperimen. Keputusan eksperimen menunjukkan bahawa model EfficientNet-b0 

mencapai prestasi pengenalpastian tertinggi, dengan ketepatan, ingatan semula, kekhususan, 

keperincian dan skor F1 masing-masing sebanyak 97.05%, 0.97, 0.92, 0.92, dan 0.94. Oleh itu, 

penggunaan CNN yang terlatih sebagai pengekstrak ciri berpotensi untuk meningkatkan 

kecekapan dan ketepatan pengenalpastian penyakit cili dalam persekitaran pertanian. 
 

Kata kunci: Berpenyakit, daun cili, terlatih, rangkaian neural konvolusi, pengesahan silang 

© 2024 Penerbit UTM Press. All rights reserved 
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1.0 INTRODUCTION 
 

Chili, a type of spice crop from the Solanaceae 

family, is indigenous to South and Central America 

[1]. The crop is widely grown due to its flavorful and 

spicy fruit that is rich in nutrients [2]. These nutrients 

include vitamin C, fiber, phosphorus, potassium, and 

antioxidants, as well as flavonoids including 

cryptoxanthin, lutein, zeaxanthin, α-carotene, and β-

carotene which have been shown to have cancer-

fighting properties [3]. However, the chili is prone to 

various diseases caused by factors such as viruses, 

bacteria, fungus, pests, and the environment, which 

can negatively impact the chili cultivation process 

and reduce the fruit quality and yield. Approximately 

70% of diseases as well as early disease symptoms 

can be identified by examining crop leaves, 

according to a report [4]. Therefore, it is important to 

accurately identify these diseases early on in the chili 

leaves in order to address these diseases and 

maintain the health as well as the productivity of the 

chili. 

With the advancement of technology, several 

recent documented research studies have 

demonstrated the effectiveness of computer vision-

based applications in the identification of diseases 

using crop leaf images. The computer vision-based 

applications can be divided into two approaches 

[5]: the use of conventional feature descriptors and 

the use of Convolutional Neural Networks (CNNs). In 

the feature descriptor approach, image features are 

manually extracted from the pixels of a leaf image 

and then fed into a machine learning-based 

classifier, which is trained to classify the features 

based on the input feature provided. The research in 

[6] entails the usage of a feature descriptor 

approach, utilizing the Scale-Invariant Feature 

Transform (SIFT) descriptor to identify unique points on 

the diseased chili leaf images, which are self-

captured, and extract features based on those 

points. These extracted features are then supplied to 

several machine learning-based classifiers, including 

Decision Tree, K-Nearest Neighbors (KNN), Naive 

Bayes, as well as Support Vector Machine (SVM) for 

the purpose of disease identification. The findings of 

the research show that Naive Bayes classifier 

produces the highest accuracy, yielding an 

accuracy of 84.5%. 

In contrast, the research in [7] entails the usage of 

a Gray Level Co-occurrence Matrix (GLCM) 

descriptor to extract six features, which are contrast, 

energy, entropy, dissimilarity, Inverse Different 

Moment (IDM), and correlation from self-captured 

chili leaf images with diseases. These extracted 

features are input into a SVM classifier that is 

subsequently trained to classify and identify the 

diseases. The authors report an overall accuracy of 

88% for this method. Conversely, the research in [8] 

engages in a fused feature extraction technique 

utilizing Histograms Oriented Gradient (HOG) and 

Local Binary Patterns (LBP) as feature descriptors on 

diseased chili leaf images acquired from the 

PlantVillage website. Once the features have been 

extracted, the authors apply Principal Component 

Analysis (PCA), a dimensionality reduction method, in 

order to reduce the amount of features, which can 

assist to enhance the effectiveness and accuracy of 

the method. The extracted features are subsequently 

passed to several machine learning-based classifiers, 

including HistGradientBoosting, SVM, Naive Bayes, 

Logistic Regression and Decision Tree classifiers, for 

the purpose of disease identification. The highest 

accuracy is achieved through the use of the 

extracted features with the HistGradientBoosting 

classifier, resulting in an accuracy of 89.11%. 

Under the CNN approach, the first few layers of a 

CNN typically consist of convolutional layers, which 

are designed to automatically extract features 

originating in an input leaf image. These extracted 

features are prepared to be fed into the classification 

layer, which will be trained to classify the input leaf 

image based on the extracted features. The research 

in [9] encompasses the usage of a CNN approach, 

where a basic CNN model is built from scratch to 

identify diseased chili leaf images. The images used 

in the research are self-captured, rather than 

obtained from a website source. The CNN model 

includes of two convolutional layers, and a softmax-

based layer for classification tasks. The authors report 

an overall accuracy of 81.5% for the method.  

On the other hand, the research in [10] examines 

the use of multiple CNN models for identifying 

different diseases in chili. The authors obtain the chili 

leaf images from the PlantVillage website for use in 

the research. These models include LeNet, AlexNet, 

VGG16, VGG19, and ResNets-34. The LeNet model 

consists of two convolutional layers, and three fully 

connected layers. For classification tasks, it uses a 

built-in softmax function in the fully connected layers. 

In comparison, the AlexNet model includes five 

convolutional layers, three fully connected layers, 

and an additional softmax-based layer. As opposed 

to the AlexNet model, the VGG16 model has sixteen 

convolutional layers and three fully connected layers, 

while the VGG19 model has nineteen convolutional 

layers and three fully connected layers. Both VGG16 

and VGG19 models use a built-in softmax function in 

the fully connected layers, similar to the LeNet model. 

For the ResNets-34 model, it consists of thirty-four 

convolutional layers, which are followed by fully 

connected layers and a softmax-based layer for 

classification tasks. It is reported that the Resnet-34 

model obtains the highest validated accuracy 

compared to the rest of the CNN models, yielding an 

accuracy of 94.7%. 

Overall, the use of CNNs for computer vision-

based application, particularly in the identification of 

diseases in chili, is showing promising results and 

continues to remains a field of active research. 

Despite the emergence of various strains of chili 

diseases, the CNNs remain effective in identifying the 

diseases and can be improved to increase the 

accuracy of the results. In this research, more 

pretrained CNNs are proposed as feature extractors 
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for identifying diseased and healthy chili leaf images 

in order to improve disease identification. Three 

pretrained CNN models, DenseNet-201, EfficientNet-

b0, and NasNet-Mobile, are utilized in the research, 

where their identification performances on diseased 

and healthy chili leaf images are compared and 

evaluated. In order to measure each identification 

performance, five performance indexes are 

computed from the confusion matrix generated from 

the model testing result that are accuracy, recall, 

specificity, precision as well as F1-score. These 

indexes are validated through a k-fold cross-

validation method in order to find the model with the 

highest identification performance. The results of the 

experiments and the designated CNN models are 

obtained using MatlabTM software version 9.11, 

R2021b on a laptop with an Intel® CoreTM i5 

processor operated at 3.4 GHz. 

The contributions of this research can be 

summarized as follows: (a) introduction of pretrained 

CNN models for identifying diseased and healthy chili 

leaves, (b) an analysis of comparison of the 

performance of pretrained CNN models as feature 

extractors in identifying diseased and healthy chili 

leaves, and (c) cross-validating the performance of 

the pretrained CNN models to reduce bias and 

generalization errors from the underlying chili leaf 

dataset. The rest of the paper is organized in the 

following manner. The description of the chili leaf 

dataset used in the research is explained in Section 

2.0. The section also delves into the various layers of 

the architectures of the DenseNet-201, EfficientNet-

b0, and NasNet-Mobile models. The details of the 

experiments performed are also presented. In 

Section 3.0, the evaluation results are shown, and a 

discussion of the results is provided. The research 

conclusion is presented in Section 4.0.  

 

 

2.0 METHODOLOGY 
 

2.1 Chili Leaf Dataset 
 

To reduce the burden for farm owners and crop 

pathologists to document and track crop diseases, a 

team of researchers has created a dataset of crop 

diseases, including those that affect chili. This dataset 

is available on the PlantVillage website and is 

intended to help reduce the workload for farm 

owners and crop pathologists by providing a 

comprehensive resource for information on various 

diseases, including chili diseases.  

In this research, the chili leaf dataset is acquired 

from the PlantVillage website, comprising a total of 

3000 images, with 1000 images belonging to the 

healthy category, 1000 images of which are in the 

category of Bacterial Leaf Spot disease, and 1000 

images of which are in the category of Powdery 

Mildew disease. Each of the images in the chili leaf 

dataset has an initial resolution of 256 x 256 pixels. 

These images are downsized to 224 x 224 pixels to fit 

the dimensional image input of utilized CNN models, 

and to reduce the processing device workload 

during the model training process. Figure 1 to Figure 3 

present examples of the images from the utilized chili 

leaf dataset. 
 

 
 

Figure 1 Healthy chili leaf 
 

 
 

Figure 2 Bacterial Leaf Spot 

 
 

Figure 3 Powdery Mildew 

 

 

2.2 Developments of a CNN Model 

 

A CNN model architecture typically consists of a 

series of layers that extract, process, and classify an 

input leaf image. These layers can be broadly 

classified into several categories, including 

convolutional, activation, pooling, and fully-

connected layers [11]. In the CNN model 

architecture, a convolution layer is the fundamental 

layer [12]. The convolution layer goal is to extract 

features from an input leaf image. It has a set of 

learnable kernels or filters, f that activate when the 

filters discover available features in the input leaf 

image. The filters have two parameters: weight, 

𝑊𝑓and bias, 𝑏𝑓. Each filter is employed to the image 
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pixel values in a sliding window fashion, taking into 

account the blue, red, and green color channels, 

and computing the dot product between the weight 

and the input pixel, x. This produces a 2-dimensional 

activation map of the filter called the feature map, 

hf, as shown in Equation (1).  

 

                    ℎ𝑓 = 𝑓(𝑊𝑓 ∗  𝑥 + 𝑏𝑓)                           (1) 

 

Afterwards, the Rectified Linear Unit (ReLU) layer is 

used to apply a non-linear function to the feature 

map, where every negative value from the feature 

map is removed and replaced with a zero value. In 

contrast, every positive value in the feature map 

remains. This makes it possible for the model to use 

fewer computational resources from a processing 

device. The formula of non-linear function is given by 

Equation (2). 

 

                𝑓(𝑥)𝑅𝑒𝐿𝑈 = 𝑚𝑎𝑥(0, 𝑥)                               (2) 

 

Next, a pooling layer processes the feature map, 

reducing the feature map size to lessen the number 

of parameters that must be computed by the model 

network. There are various pooling types, like as 

average pooling and maximum pooling, which, 

respectively, extract the value of average or 

maximum from a region of the feature map. The 

pooled feature map comes into a vector form and is 

then inserted into a fully connected layer. 

As a layer activation connector, the fully 

connected layer links all other layers together to be 

in a same path in order to prepare for the 

classification step. The pooled feature map is 

converted by the fully connected layer into an 

output, which is then sent to the softmax-based layer.  

The output is compressed into a distribution of 

probability over the potential classes in the softmax-

based layer. The softmax function can be utilized to 

determine the probability that a given input is 

associated to a specific class. This probability is 

calculated by applying the softmax function, as 

shown in Equation (3).  
 

                     𝜎(𝑥⃗)𝑖 =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐾

𝑗=1

                                      (3) 

 

where 𝜎 is the softmax, 𝑥⃗ is the input vector, and 

𝑒𝑥𝑖 is the standard exponential function for the input 

vector. Meanwhile, 𝐾 is the number of classes, and 

𝑒𝑥𝑗  is the standard exponential function for the 

output vector. In the following section, the motivation 

for selecting a CNN model in this research, and its 

architectural details will be described and explained 

in more details. 

 

2.3 Utilized CNN Models 

 

As more computational resources become available 

due to technological advancement in processing 

devices, CNN models are scaled over the years to 

increase their learning capabilities. When scaling a 

CNN model, three dimensions are changed: depth, 

width, and resolution [13]. The depth refers to the 

overall number of convolutional layers, while the 

width refers to the number of filters in every 

convolutional layer. Finally, the resolution is merely 

the dimensions of the input image. 

A CNN model can learn more complex features 

of an image by adding more convolutional layers, 

e.g., by increasing the depth, but deeper models 

tend to suffer from vanishing gradients [14]. Vanishing 

gradients refer to the information of the features 

disappearing before reaching their destination due 

to the longer path between the convolutional layer 

and the fully classification layer. This problem causes 

the learning process to degrade over time, resulting 

in lower accuracy. Many CNN models, such as 

ResNet [15], and FractalNet [16], are introduced to 

address the problem by using skip connections that 

create short paths to pass information between 

layers. The drawback of this solution is that it limits the 

information representation capabilities [17]. 

Therefore, the DenseNet-201 model is used in this 

research, which mitigates the representation 

problem by using multi-layer feature concatenation 

[18] in its network.  

Respectively, by increasing the width of a CNN 

model, the layers can learn more fine-grained 

features. In fact, this approach has been used in the 

Wide ResNet [19] model. Nonetheless, in contrast to 

scaling up the depth, increasing only the width 

inhibits the model from learning complex features. In 

addition, higher image resolution allows a CNN 

model to extract finer features but, on its own, returns 

a big computational resource as well [20]. Still, 

balancing all three dimensions where one of the 

dimensions is scaled up is a difficult task. In fact, the 

process often requires many attempts to scale up the 

dimensions appropriately to satisfy the 

computational resource constraints. The use of the 

EfficientNet-b0 model in this research starts with a 

compound coefficient [21] that can scale all three 

dimensions equally, which gives the model better 

learning capabilities and allows the use of fewer 

computational resources. 

The main block of the EfficientNet-b0 model, the 

Mobile Inverted Bottleneck Convolution (MBConv), is 

inspired by the construction method of its 

predecessor, NasNet-Mobile, whose model is 

developed using the neural architecture search 

space [22] to determine the dimensions and 

connections of each layer in order to minimize real-

world processing latency on mobile devices.  

Therefore, along with the EfficientNet-b0 and 

DenseNet-201 models, the NasNet-Mobile model is 

also considered for use in this research. 

 

2.3.1 DenseNet-201 Model Architecture 

 

In order to accomplish the feature concatenation, a 

down-sampling of the feature map is required. 

Therefore, dense blocks are essential in order to 

achieve down-sampling. The DenseNet-201 model in 
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this research has four dense blocks, each with a 

growth rate of 2. Before entering the first dense block, 

the input leaf image is passed through a 

convolutional layer with a kernel size of 7 x 7 and a 

max pooling layer with a kernel size of 3 x 3. These 

layers are used to maintain the size of the feature 

map consistent as it is passed through the network.  

Between successive dense blocks, transition layers 

are used that consist of a convolution layer with a 

kernel size of 1 x 1, and an average pooling layer with 

a kernel size of 2 x 2. These layers are used to reduce 

the size of the feature map, and to facilitate the 

down-sampling process. At the end of the network, 

there is a Global Average Pooling layer that reduces 

the dimensionality size of the feature map. This is 

followed by fully connected and softmax-based 

layers that are used for classification. Figure 4 

illustrates the architecture of the DenseNet-201 

model, and its details are presented in Table 1. 

 
Table 1 Details of the Densenet-201 model architecture 

 
Architecture Kernel size and 

type 

Resolution 

Convolution  7 × 7 conv, stride 2 224 × 224 × 32 

3 × 3 max pool, 

stride 2 

56 × 56 × 64 

Dense block 1 {
1 ×  1 conv
3 ×  3 conv

} x 6 56 × 56 × 256 

Transition 1 1 × 1 conv 28 × 28 × 128 

2 × 2 average 

pool, stride 2 

Dense block 2 {
1 ×  1 conv
3 ×  3 conv

} x 12 28 × 28 × 512 

Transition 2  1 × 1 conv 14 × 14 × 256 

2 × 2 average 

pool, stride 2 

Dense block 3 {
1 ×  1 conv
3 ×  3 conv

} x 24 14 × 14 × 1792 

Transition 3  1 × 1 conv 7 × 7 × 896 

2 × 2 average 

pool, stride 2 

Dense block 4 {
1 ×  1 conv
3 ×  3 conv

} x 16 7 × 7 × 1920 

Global 

Average 

Pooling 

7 × 7 average 

pool, stride 2 

1 × 1 × 1920 

Classification fully connected, 

softmax 

1 × 1 × 1000 

 

 

2.3.2 EfficientNet-b0 Model Architecture 

 

The main building block for the EfficientNet-b0 model 

in this research is the MBConv block. The MBConv 

block is made to effectively increase the network 

depth and width while preserving a small model size. 

Before entering the first MBConv block, the input leaf 

image is passed through a convolutional layer with a 

kernel size of 3 x 3 to maintain the size of the feature 

map consistent as it is passed through the network. 

The first MBConv block then conducts a 1 x 1 

convolution to expand the feature map, followed by 

a spatial convolution with a kernel size of k3 x k3. The 

successive MBConv blocks apply a spatial 

convolution with a kernel size of either k3 x k3 or k5 x 

k5. The last MBConv block is followed by convolution 

1 x 1 and pooling layers with a kernel size of 7 x 7 to 

restore the original dimensions of the feature map. At 

the end of the network, fully connected and softmax-

based layers are attached in order to perform 

classification. Figure 5 illustrates the architecture of 

the EfficientNet-b0 model, and its details are 

presented in Table 2. 

 
Table 2 Details of the Efficientnet-b0 model architecture 

 

Architecture Kernel size and 

type 

Resolution 

Convolution 3 × 3 conv, stride 2 224 × 224 × 32 

MBConv1, 

block=1 

1 × 1 conv, stride 2 112 × 112 × 16 

k3 × k3, spatial 

MBConv6, 

block=2 

k3 × k3, spatial 112 × 112 × 24 

MBConv6, 

block=2 

k5 × k5, spatial 56 × 56 × 40 

MBConv6, 

block=3 

k3 × k3, spatial 80 × 80 × 28 

MBConv6, 

block=3 

k5 × k5, spatial 192 × 192 × 14 

MBConv6, 

block=2 

k5 × k5, spatial 112 × 112 × 14 

MBConv6, 

block=1 

k3 × k3, spatial 320 × 320 × 7 

Convolution 1 × 1 conv, stride 2 7 × 7 × 1280 

Pooling 7 × 7 average pool, 

stride 2 

1 × 1 × 1280 

Classification fully connected, 

softmax 

1 × 1 × 1000 

 

 

2.3.3 NasNet-Mobile Model Architecture 

 

The NasNet-Mobile model in this research is obtained 

through the neural architecture search process, 

which involves searching through a space of possible 

architectures. In this case, the search is performed on 

a convolutional cell, which can be classified as either 

a Normal Cell or a Reduction Cell. The Normal and 

Reduction cells are used to increase the depth of the 

network and reduce the spatial resolution of the 

input leaf image, respectively. These cells consist of 

multiple layers, each of which can perform different 

types of operations such as regular convolutions, 

depthwise convolutions, max pooling, and average 

pooling. At the end of the network, fully connected 

and softmax-based layers are attached in order to 

perform classification. Figure 6 illustrates the 

architecture of the NasNet-Mobile model, and its 

details are presented in Table 3. 
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Table 3 Details of the NasNet-Mobile model architecture 

 
Architecture Kernel size and 

type 

Resolution 

Normal cell 7 × 1 conv, stride 

2 

224 × 224 × 32 

3 × 3 average pool, 

stride 2 

72 × 72 × 64 

5 × 5 max pool, 

stride 2 

56 × 56 × 59 

1 × 1 conv, stride 

2 

112 × 112 × 56 

Reduction 

cell 1 

3 × 3 conv, 

depthwise 

357 × 357 × 48 

7 × 7 conv, 

depthwise 

752 × 752 × 40 

3 × 3 conv, stride 

2 

437 × 437 × 35 

3 × 3 conv, dilated 264 × 264 × 28 

Reduction 

cell 2 

3 × 3 max pool, 

stride 2 

153 × 153 × 14 

7 × 7 conv, stride 

2 

364 × 364 × 7 

1 × 1 conv, stride 

2 

7 × 7 × 1280 

7 × 7 average pool, 

stride 2 

1 × 1 × 1280 

Classification fully connected, 

softmax 

1 × 1 × 1000 

 

 

2.4 Experimental Setup 

 

The experiments begin with three CNN models, 

namely DenseNet-201, EfficientNet-b0, and NasNet-

Mobile are used to identify healthy and diseased chili 

leaf images from the utilized chili leaf dataset. These 

models are trained on a total of 2100 images from 

the dataset, and the remaining 900 images are 

utilized to test the models. After the training and 

testing process of each model is completed, the 

confusion matrix generated from a model testing 

result is used to measure the identification 

performance, while a k-fold cross-validation method 

is used to validate the identification performance. 

The validated identification performance of each 

model is then compared to determine which model 

has the highest identification performance. The setup 

of the experiments will be described further in the 

following section. 

  

2.4.1 Hyperparameter Setting 

 

Hyperparameters are parameters whose values are 

set before training a CNN model in order to control 

the learning process of the model. These 

hyperparameters are the learning rate, epoch, 

testing interval, momentum, batch size, and optimizer, 

which values in this research are fixed according to 

[23]. The learning rate is applied to control the speed 

at which a CNN model learns. In contrast, the epoch 

indicates the frequency at which a training set is sent 

to train the model. When it comes to the testing 

interval, the interval refers to the number of testing 

attempts conducted during the training process. 

Next, momentum accelerates the learning rate, and 

the batch size indicates the training image amount 

that propagates along the model network. 

Conversely, the optimizer adjusts the model weight 

during training to minimize error. The fixed values of 

these hyperparameters are shown in Table 4.  

 
Table 4 Hyperparameter values for CNN models 

 
Hyperparameter Value 

Learning rate 0.1 

Epoch 30 

Testing interval 20 

Momentum 1.0 

Batch size 64 

 

Optimizer 

Stochastic Gradient 

Descent with Momentum 

(SGDM) 

 

 

2.4.2 K-fold Cross-validation 

 

For identification performance, there is a need to 

validate how accurately a CNN model can perform 

in practice. A k-fold cross-validation method is used 

to validate each identification performance index 

from the result of the testing set of a CNN model. This 

research uses the value of k = 5, which is the 

standard k value for cross-validation [24, 25]. In the 

experiments, both the training and testing sets are 

partitioned into five folds and randomly shuffled. 

There are five iterations, and in the first iteration, the 

first fold is set aside to test the model, while the 

remaining four folds are composed to train the 

model.   

After the testing result is generated, the second 

fold is set aside to test the model, while the remaining 

four folds are composed again to train the model. 

This process continues until all five folds are used to 

test the model. At the end of all the iterations, each 

identification performance index is obtained by 

averaging the accumulated index scores derived 

from the testing result through all the iterations. 

 

2.4.3 Index of Identification Performance 

 

The accuracy, recall, specificity, precision, and F1-

score are the indexes used to assess the identification 

performance of the utilized CNN models in the 

research. These indexes are computed from the 

confusion matrix generated according to the testing 

result produced by the models, which are True 

Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN) [26].
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Figure 4 DenseNet-201 model architecture 

 

            
Figure 5 EfficientNet-b0 model architecture 

 

           
Figure 6 NasNet-Mobile model architecture 
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Accuracy is the measure of a likelihood of correct 

prediction made by a CNN model. This index is the 

ratio of true positive and true negative predictions to 

the total number of predictions. The index is mostly 

used when evaluating the stability of a CNN model. 

Theoretically, accuracy can be calculated by using 

Equation (4) as follows: 

 

               𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
𝑥100%                   

(4) 

 

In contrast, recall is the percentage of a true 

positive prediction of the total frequency of true 

positive and false negative predictions. The index 

measures the proportion of true prediction on the 

diseased leaf case. The index can be computed 

using Equation (5) as follows: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
𝑥100                               (5) 

 

For specificity, it is the vice versa of recall, where 

the index represents the percentage of a true 

prediction on a negative diseased leaf case. The 

index is expressed as given in Equation (6) as follows: 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
𝑥100%                      (6) 

 

Whereas precision gives feedback on the 

capability of a CNN model to give a positive result on 

a real diseased leaf image from all the positively 

predicted diseased leaf images. The index can be 

obtained with the following formula given in Equation 

(7) as follows: 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
𝑥100%                           (7) 

 

On the other hand, F1-score conveys the balance 

of the prediction in terms of precision and recall. The 

value of the F1-score can be obtained with the 

following Equation (8) as follows: 
 

  𝐹1 = 2𝑥
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                               (8) 

 

 

3.0 RESULTS AND DISCUSSION 
 

Following the implementation of the experimental 

setup in Section 2.4, the experimental results in this 

research are divided into two parts: an analysis of the 

model training progress, and an analysis of the model 

identification performance. 

 

3.1 Model Training Progress 

 

Softmax-based layers enable CNN models to be 

applied to the visualization of training progress, 

where their training accuracy and learning loss are 

displayed as these models are trained to completion. 

Figure 7 to Figure 9 depict the training progress of the 

CNN models when fed with the chili leaf datasets.  

 
 

Figure 7 Training progress of DenseNet-201 model 

 

 
 

Figure 8 Training progress of EfficientNet-b0 model 

 

 
 

Figure 9 Training progress of NasNet-Mobile model 

 

 

Firstly, in Figure 7, it can be seen that the training 

progress of DenseNet-201 model shows a substantial 

training undershoot at the beginning of epoch 10, 

before stabilizing at epoch 30 until training is 

completed. The learning loss of the model is also very 

high at the beginning of epoch 0, before it gradually 

decreases after epoch 4 until training is completed.  

Secondly, for Figure 8, EfficientNet-b0 model 

records a substantial training undershoot at epoch 1. 

Then, in epoch 4, the training begins to stabilize and 

reaches its optimum starting from epoch 6 till the 

completion of training. For the learning loss, the 

model exhibits an unstable learning loss between 

epochs 1 and 2, before stabilizing at epoch 6 till the 
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completion of training. Finally, it can be seen in 

Figure 9 that the NasNet-Mobile model has no 

substantial training fluctuations. The model manages 

to reach its optimum training starting at epoch 8 until 

epoch 30. Meanwhile, the model learning loss 

remains relatively stable, starting from epoch 2 to the 

end of the training, with a small overshoot recorded 

at epoch 5. 

 

3.2 Model Identification Performance 

 

The testing process is then carried out to verify each 

of the trained models, where the resulting confusion 

matrix is accustomed to measure the model 

identification performance. The derivation of TP, TN, 

FP, and FN, can be made based on the matrix. The 

matrix basically has a table structure, with each row 

representing instances of an actual class and each 

column representing instances of a predicted class.  

There are four possible outcomes that arise in 

each column. Firstly, suppose the actual 

identification is positive, and the projected 

identification is positive (1,1). In this case, this is 

referred to as a TP result, as the model accurately 

identifies the positive image.  

Secondly, suppose the actual identification is 

positive, but the projected identification is negative 

(1,0). In this case, this is referred to as a FN result, as 

the model wrongly labels the positive image as 

negative.  

Thirdly, suppose the actual identification is 

negative, and the projected identification is positive 

(0,1). In this case, this is referred to as a FP result, as 

the model wrongly identifies the negative image as 

positive.  

Lastly, if the actual identification is negative and 

the projected identification is negative (0,0), this is 

referred to as a TN result since the model accurately 

identifies the negative image. The confusion matrix 

resulting from the testing process of each CNN model 

is shown in Figure 10 to Figure 12. The identification 

performance index of each pretrained CNN-based 

model is shown in Table 5. 

 

 
Figure 10 DenseNet-201 model confusion matrix 

 
Figure 11 EfficientNet-b0 model confusion matrix 
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Figure 12 NasNet-Mobile model confusion matrix 

 
Table 5 Overall performance index for each CNN model 

 
No.  Performance 

Index 

CNN Model 

DenseNet

-201  

EfficientNe

t-b0  

NasNet

-Mobile  

1. Accuracy 94.33 99.89 98.12 

2. Recall 1.00 1.00 1.00 

3. Specificity 0.92 1.00 0.98 

4. Precision 0.86 1.00 0.96 

5. F1-score 0.93 1.00 0.98 

 

 

The validated performance of each CNN model 

using a 5-fold cross-validation method is shown in 

Table 6 to Table 8, with the overall validated 

performance is summarized in Table 9.  

 

Table 6 Densenet-201 model  across 5-fold cross-validation 

 
Fold Identification Performance Index 

Accur

acy 

Recall Specifi

city 

Precisi

on 

F1-

score 

1 92.39 1.00 0.94 0.89 0.94 

2 93.48 0.98 0.87 0.77 0.86 

3 91.27 0.95 0.88 0.84 0.89 

4 94.83 1.00 0.91 0.81 0.90 

5 93.08 0.92 0.90 0.83 0.87 

Mean 93.01 0.97 0.90 0.83 0.89 

 

 
Table 7 EfficientNet-b0 model  across 5-fold cross-validation 

 
Fold Identification Performance Index 

Accur

acy 

Recall Specifi

city 

Precisi

on 

F1-

score 

1 98.98 0.99 0.93 0.93 0.96 

2 98.98 0.98 0.96 0.91 0.94 

3 97.90 0.98 0.91 0.89 0.93 

4 96.62 0.96 0.89 0.94 0.95 

5 92.79 0.94 0.92 0.94 0.94 

Mean 97.05 0.97 0.92 0.92 0.94 

Table 8 NasNet-Mobile model across 5-fold cross-validation 

 
Fold Identification Performance Index 

Accur

acy 

Recall Specifi

city 

Precisi

on 

F1-

score 

1 98.98 0.99 0.93 0.93 0.96 

2 98.98 0.98 0.96 0.91 0.94 

3 97.90 0.98 0.91 0.89 0.93 

4 96.62 0.96 0.89 0.94 0.95 

5 92.79 0.94 0.92 0.94 0.94 

Mean 97.05 0.97 0.92 0.92 0.94 

 
Table 9 Overall validated performance index for each CNN 

model 

 
No. Validated 

Performance 

Index 

CNN Model 

DenseNet

-201  

EfficientNe

t-b0  

NasNet

-Mobile  

1. Accuracy 93.01 97.05 96.50 

2. Recall 0.97 0.97 0.96 

3. Specificity 0.90 0.92 0.90 

4. Precision 0.83 0.92 0.91 

5. F1-score 0.89 0.94 0.93 

 

 

As shown in Table 9, the Efficientnet-b0 model 

obtains the highest index of accuracy at 97.05%. This 

indicates that the model is able to correctly identify 

the majority of the chili leaf images in the dataset. In 

addition to its high accuracy, the Efficientnet-b0 

model also achieves the highest scores in other 

performance indexes, including recall, specificity, 

and F1-score, which are 0.97, 0.92, 0.92, and 0.94, 

respectively. These results indicate that EfficientNet-

b0 is the most effective model in terms of minimizing 

FP (incorrectly classifying healthy leaves as diseased) 

and FN (incorrectly classifying diseased leaves as 

healthy).  

On the other hand, the NasNet-Mobile model is also 

performing well in this research, with an accuracy 

index of 96.50% and validated values for the index of 

recall, specificity, precision, and F1-score of 0.96, 

0.90, 0.91, and 0.93, respectively. While its 

performance is not as strong as EfficientNet-b0 in 

some indexes, the model still demonstrates good 

overall performance in the task of identifying healthy 

and diseased chili leaf images. In contrast, the 

Densenet-201 model achieves the lowest accuracy 

index of 93.01% and the lowest values for the index of 

recall, specificity, precision, and F1-score of 0.97, 

0.90, 0.83, and 0.89, respectively. These results 

suggest that Densenet-201 may not be as effective 

as the other models in this particular identification 

task. 

 

3.3 Accuracy in Identifying Chili Diseases 

 

Accurate disease identification plays a crucial role in 

chili cultivation, enabling early intervention and 

preventing the spread of diseases that can adversely 

affect chili yields. The overall accuracy in identifying 

chili diseases using pretrained CNN models is shown 
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in Table 10. Based on Table 10, the EfficientNet-b0 

model demonstrates the highest accuracy index for 

each type of chili leaf: 98.07% for healthy leaves, 

97.05% for leaves with Bacterial Leaf Spot, and 96.03% 

for leaves with Powdery Mildew. The consistent 

attainment of accuracy levels exceeding 90% across 

all pretrained CNN models for each chili leaf type 

underscores the potential for their integration into 

practical agricultural disease management 

applications. 

 
Table 10 Overall accuracy of chili diseases for each CNN 

model 

 
No. Type of Chili 

Leaf 

Overall CNN Model Accuracy 

DenseNet

-201  

EfficientNe

t-b0  

NasNet

-Mobile  

1. Healthy 95.44 98.07 97.48 

2. Bacterial Leaf 

Spot 

93.32 97.05 96.39 

3. Powdery 

Mildew 

90.27 96.03                                                                                                                                                                                                                                                                                                                                                               95.48 

 

 

4.0 CONCLUSION 
 

In this research, the use of pretrained CNN models is 

proposed as a feature extraction method for 

identifying diseased and healthy chili leaf images in 

order to improve disease identification. Three 

pretrained CNN models, DenseNet-201, EfficientNet-

b0, and NasNet-Mobile, are utilized for their ability to 

identify chili diseases using five indexes: accuracy, 

recall, specificity, precision, and F1-score. These 

indexes are validated through a five-fold cross-

validation method during the experiments. The 

experimental results have shown that the EfficientNet-

b0 model achieved the highest identification 

performance, with indexes of accuracy, recall, 

specificity, precision, and F1-score of 97.05%, 0.97, 

0.92, 0.92, and 0.94, respectively.  

There are several challenges and limitations 

encountered in this research. One major challenge is 

the limited availability of high-quality chili leaf images 

for training and testing the CNN models. Accurate 

identification of chili diseases requires a sufficient 

amount of representative data, and the availability 

of such data may have been a challenge. 

Additionally, the process of training and testing the 

CNN models on the chili leaf dataset requires 

significant computational resources, which may have 

been a challenge as well.  

Given these challenges and limitations, there are 

several potential directions for future work. One 

possibility is to improve the performance of the CNN 

models through boosting the size and diversity of the 

chili leaf dataset. This could involve collecting 

additional chili leaf images or expanding the size of 

dataset artificially by using data augmentation 

methods. Another possibility is to improve the 

efficiency of the CNN models by using more efficient 

training algorithms that require fewer computational 

resources. Techniques such as model parallelism or 

distributed training could be used to train the models 

using multiple processing devices, which could 

significantly reduce the time required to train the 

models. 
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