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Abstract 
 

Chilli is extensively grown all over the globe and is particularly important as a food. 

One of the most difficult issues confronting chilli cultivation is the requirement for 

accurate identification of leaf diseases. Leaf diseases have a negative impact on 

chilli production quality, resulting in significant losses for farmers. Numerous Machine 

Learning (ML) and Convolutional Neural Network (CNN) models have been 

developed for classifying chilli leaf diseases under uniform background and 

uncomplicated leaf conditions, with an average classification accuracy achieved. 

However, a diseased leaf usually grows alongside a cluster of other leaves, making 

it difficult to classify the disease. It will be easier for farmers if there is a reliable 

model that can classify a chilli leaf disease in a cluster of leaves. The aim of this 

study was to propose a model for classifying chilli leaf disease from both a uniform 

background and a complex cluster of leaves. Images of diseased chilli leaves are 

acquired using a low-cost Kinect camera, which include discoloration, grey spots, 

and leaf curling. The different types of chilli leaf disease are then classified using an 

improved ShuffleNet CNN model. With a classification accuracy of 99.82%, the 

proposed model outperformed the other existing models. 

 

Keywords: Chilli, leaf disease, Machine Learning, Convolutional Neural Network, 

ShuffleNet 

 

 

Abstrak 
 

Cili ditanam secara meluas di seluruh dunia dan amat penting sebagai makanan. 

Salah satu isu paling sukar yang dihadapi dalam penanaman cili adalah keperluan 

untuk mengenal pasti penyakit daun dengan tepat. Penyakit daun memberi kesan 

negatif terhadap kualiti pengeluaran cili sehingga mengakibatkan kerugian yang 
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1.0 INTRODUCTION 
 

Chilli has been deeply ingrained in the culture of 

Asians, Southeast Asians, Indians, Malaysians, and 

Indonesians and has even become an inseparable 

component of the local diet in a variety of cuisines, in 

addition to being used for medicinal purposes [1]. 

According to Wei (2022) [2], the demand for high-

quality chilli in China outnumbers supply, and the 

price has risen to 1.42 USD per 0.5 kg in March 2022, 

up from 0.79–0.95 USD in February 2022. 

While in India, Chand et al. (2021) [3] stated that 

chilli consumption is increasing due to increased 

demand from urban consumers; exports are also in 

high demand, but supply is limited due to low crop 

productivity. According to Jadon et al. (2016) [4], this 

depleted output is typically caused by chilli 

contagion with diseases caused by moulds, 

microbes, germs, and mycoplasmas, which 

drastically reduce possible harvests. Common leaf 

diseases in chilli are leaf spot according to Jain et al. 

(2019)  [5], rapid discolouration according to Hami et 

al. (2021) [6], mosaic and leaf curl as stated by Khan 

et al. (2020) [7]. 

Chilli leaf spot symptoms are primarily circular 

lesions with a white centre that resemble frog eyes. 

The leaf spot's centre frequently falls out, resulting in 

small holes [8]. Discoloration is distinguished by an 

unusual yellowing of the leaf, which begins at the tips 

and progresses to the lower leaf. The oldest chilli leaf 

will typically turn yellow first, followed by the 

remaining leaves turning light green [9]. Leaf curling, 

on the other hand, occurs when the leaf fails to 

develop normally and begins to curl or fluff. This may 

be accompanied by brown spots on the leaf [10]. 

Chilli leaf spots, discoloration, and leaf curling 

captured through the Kinect camera are depicted in 

Figures 1, 2, and 3. 

 

 
 

Figure 1 Chilli leaf 

spots 

 
 

Figure 2 Chilli 

discolour leaf 

 
 

Figure 3 Chilli leaf 

curling 

 

 

In order to reduce farmer losses, several methods 

for classifying chilli leaf disease have been 

developed. However, based on the developed 

model's accuracy percentage, existing models for 

classifying chilli leaf diseases perform moderately well 

[11], as explained in the next paragraph. 

Furthermore, existing models can only classify chilli 

leaf disease using leaves picked from the tree and 

placed on a uniform background colour. The process 

of segmentation and classification of chilli leaf 

disease is simplified but ineffective using these 

existing models. In contrast to a complex 

background, which includes multiple elements like 

other leaves and the surrounding environment, a 

uniform background refers to a background that is 

consistent in colour or texture throughout an image 

of a chilli. 

Among the models that are often used to classify 

plant leaf diseases is Convolutional Neural Network 

(CNN). Many variants of CNN architectures have 

been developed over the years to solve real-world 

problems. For example AlexNet, VGG-16, VGG-19, 

Inception, GoogleNet, ResNet, SqueezeNet, Enet, 

ShuffleNet and DenseNet. The most recent CNN 

architectures are DenseNet and ShuffleNet, both 

ketara kepada petani. Terdapat banyak model Machine Learning (ML) dan 

Convolutional Neural Network (CNN) telah dibangunkan untuk mengklasifikasikan 

penyakit daun cili dari latar belakang gambar yang seragam dan dalam keadaan 

daun yang tidak rumit, dengan ketepatan pengelasan sederhana dicapai. Walau 

bagaimanapun, daun yang berpenyakit biasanya tumbuh bersama gugusan 

daun lain, menjadikannya sukar untuk mengklasifikasikan penyakit. Adalah lebih 

mudah bagi petani jika terdapat model yang boleh dipercayai yang boleh 

mengklasifikasikan penyakit daun cili dalam kelompok daun lain. Matlamat kajian 

ini adalah untuk mencadangkan model bagi mengklasifikasikan penyakit daun cili 

dari gambar yang berlatarbelakang seragam dan gambar dari kelompok daun 

yang kompleks. Imej daun cili berpenyakit diperoleh menggunakan kamera Kinect 

kos rendah, yang merangkumi penyakit daun kuning, bintik kelabu dan daun 

bergulung. Jenis penyakit daun cili tersebut kemudiannya dikelaskan 

menggunakan model ShuffleNet CNN yang ditambahbaik. Dengan ketepatan 

klasifikasi 99.82%, model yang dicadangkan mengatasi model sedia ada yang lain. 

 

Kata kunci: Cili, penyakit daun, Machine Learning, Convolutional Neural Network, 

ShuffleNet 
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developed in 2017. According to Khan et al. (2019) 

[12], in the majority of cases, the performance of 

CNN models has gradually improved over time. 

Many models based on Machine Learning (ML) 

and Convolutional Neural Networks (CNN) have 

been developed around the world to classify various 

types of diseases on plant leaves, as Alzubaidi et al. 

(2021) [13] mention. 

Rangarajan et al. 2021 [14] used a machine 

learning Support Vector Machine (SVM) to identify 

eggplant (Solanum melongena) leaf images. 

Cercospora leaf spot and two-spotted spider 

infestation are the types of leaf disease they are 

attempting to classify. Their research is based on 

images gotten from a mobile phone camera (the 

Xiaomi Redmi Note 3) with a resolution of 16 

megapixels. Because eggplant leaves grow vertically 

upwards, the camera is set perpendicular to the 

ground. The segmentation is then finalized by 

detaching the terrain exterior and some superfluous 

peculiar leaflets. The gray-level co-occurrence matrix 

(GLCM) with a 20-pixel offset along an image's rows is 

used for texture analysis. For classification, the split 

ratio is 80:20. The dataset is randomly divided into 10 

subsets for 10-fold cross-validation. The classification 

accuracy is 78.32%. 

Shahi et al. 2022 [15] classified tomato leaf 

diseases using a deep learning transfer learning 

AlexNet. The image dataset is taken from a publicly 

available dataset on the PlantVillage website. Color 

standardisation and resizing are performed on the 

images before they are partaken into the AlexNet 

model. To fit the transfer learning model, the images 

are first resized to 64×64 pixels. They are then pixel-by-

pixel standardised with the Tensorflow function. The 

split is a ratio of 75:25 for classification. Three Fully 

Connected Layers and a Softmax Layer are used in 

the transfer learning implementation. The epoch 

count is 32, and the K-fold cross validation 

implemented is 10 folds. This model's validation 

accuracy was 89.8%. 

Wu et al. (2022) [16] classified woody fruit plant 

leaf diseases using deep learning of an improved 

ResNe101. To condense model training parameters, a 

universal average pooling layer is employed; layer 

stabilization, dropout, and L2 regularization are 

utilized to avert model overfitting; and the SENet 

attention mechanism is used to convalesce the 

model's aptitude to excerpt features. The dataset 

used in this article was obtained from the AI 

Challenger 2018. The Resnet101 network flinches with 

a complication layer, then quaternion sets of 

modules made up of lingering blocks, with apiece 

collection of modules using 3, 4, 23, 3 residual blocks 

and the identical sum of production conduits 

coating as Chung et al. (2019) [17]. Individually 

component in the primary remaining lump duplicates 

the sum of channel layers of the former module while 

halving its stature and girth. The production sorting 

coating is then linked. The algorithm of stochastic 

incline ancestry with thrust also known as (SGDM) is 

also employed. The achieved accuracy is 85.90%. 

Kothari et al. (2022) [18] used GoogleNet deep 

learning to classify potato leaf diseases. A 

PlantVillage Dataset is used. There are three channels 

and fifty epochs implemented. Max Pooling and 

Conv layers are used to build the model. The 

secreted coats employ the non-lined initiation utility 

Relu, while the production coat exploits the softmax 

initiation utility. The layer employed is a 22-layer deep 

convolutional neural network. The classification 

accuracy achieved is 62.0%. 

Sitompul et al. (2022) [19] used DenseNet201 to 

classify rice leaf diseases. The dataset, titled Rice 

Leaf, is obtained from the UCI Machine Learning 

Repository via the Kaggle site. The image is reduced 

to 224224 pixels in size. Separation of image data has 

been completed with 70% for training, 20% for 

validating, and 10% for testing. This study's 

augmentation makes use of Tensorflow's 

ImageDataGenerator image preprocessing feature. 

Each layer is linked, as are feature-maps to all 

subsequent layers, and the next layer receives input 

feature-maps from all previous layers. A number of 

layers are added to the next layer. The mentioned 

layers are average pooling layer, dropout layer, 

dense layer, and activation function. The Confusion 

Matrix is used to represent the prediction results with 

the actual dataset conditions. The classification 

accuracy achieved is 82.99%. 

While Mohanty et al. (2016) [20] used existing CNN 

models, AlexNet and GoogleNet to classify plant leaf 

diseases of apple, cherry, blueberry, corn, grape, 

orange, peach, bell paper, potato, raspberry, 

soybean, squash, strawberry and tomato. A total of 

54,306 images are used. AlexNet and GoogleNet 

have been trained to identify 14 crop diseases. When 

classifying plant leaf diseases from images with 

uniform backgrounds, the models achieved an 

accuracy of 99.35%, but this dropped to 31.4% when 

images from a different set of environments are 

tested. 

In reality, however, diseased leaves grow in 

clusters with other leaves, making classification 

difficult due to the difficulty of distinguishing between 

the healthy leaf part, the unhealthy leaf part, and 

the complex background. There is currently no model 

for distinguishing chilli leaf disease from a complex 

leaf cluster. Farmers will benefit from a model that 

can classify chilli leaf disease from a complex 

background because they will only need to take 

photos at the scene rather than picking the diseased 

leaf and placing it on a uniform background before 

analysing the type of disease. Figure 4 and 5 

compare a chilli leaf with a uniform background to a 

chilli leaf with a complex cluster of leaves taken using 

Kinect camera. 

Aside from that, the existing models perform on 

average, with classification accuracy ranging from 

31.40% to 89.80% for uniform background cases and 

difficulty classifying disease types from real-world 

conditions [12–20]. Therefore, a better model must be 

proposed that outperforms the existing models in 

terms of classification accuracy. 
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Figure 4 Uniform 

background 

 
Figure 5 Complex background 

 

 

Because of its low-cost depth mapping sensor, 

the Kinect camera, a new controller-free gaming 

device used in the Xbox 360 console, has been 

widely used in a variety of applications [21]. The 

Kinect camera has a 640 × 480 32-bit RGB colour 

camera and a 320*240 16-bit depth camera both 

running at 30 frames per second. The field of view 

(FOV) of cameras are 57º horizontally and 43º 

vertically. It features a motorised angle driver that 

can tile both cameras 27º vertically. The Kinect 

camera can extract image information using an 

active time-of-flight technique (TOF). The majority of 

cameras capture light in the red, green, and blue 

wavelength ranges (RGB). The primary distinction is 

that a 3D TOF camera illuminates the entire prospect, 

provides image depth information, has a larger field 

of view, and a higher sensor resolution [22]. 

 

 

2.0 METHODOLOGY 
 

Figure 6 illustrates the research framework flow chart 

for this study, from image acquisition to image 

classification using a proposed method of an 

improved multiple layers ShuffleNet CNN model. 

As stated by Hellin et al. (2020) [23], ShuffleNet is a 

new CNN model that uses pointwise group 

convolution as well as a novel channel shuffle 

operation to improve information flow across feature 

channels. ShuffleNet supports more feature map 

channels, allowing for more information to be 

encoded and is especially important for very small 

network performance [24]. In terms of configuration, 

the ShuffleNet architecture has 50 layers and the 

subsequent pointwise group convolution's purpose is 

to recuperate the channel breadth to match the 

crosscut path [25]. Table 1 depicts the overall 

ShuffleNet architecture. 

It is made up of three stages of ShuffleNet units 

stacked on top of each other. The connection 

sparsity of pointwise convolutions is controlled by 

output group channels that simultaneously assigned 

different numbers so that the output channels layers 

can be computed and evaluated to ensure that the 

total computational costs are roughly the same (~140 

MFLOPs). The network can be freely customised to 

the desired level of complexity. Merely exploit a scale 

factor s to the number of channels layers to 

accomplish this. For example, if the networks are 

denoted in Table 1 as "ShuffleNet 1×," then " 

ShuffleNet s×" means multiplying the number of filters 

in ShuffleNet 1× by s, resulting in an overall complexity 

of roughly s squared times ShuffleNet 1×. All 

machineries in the ShuffleNet unit can be calculated 

efficiently because of the pointwise group 

convolution with channel shuffle layers. 

The dataset images of diseased chilli leaf 

comprising of leaf spots, discolour leaf and leaf 

curling are acquired employing a Kinect camera 

with both the 640*480 32-bit RGB colour camera and 

the 320*240 16-bit depth camera operate at 30 

frames per second. 

 

 

Figure 6 Flowchart of identification of Capsicumleaf 

diseases using an improved ShuffleNet model 

 

 

The diseased chilli leaf images are captured under 

two conditions which are uniform background and 

complex background. For uniform background, there 

are 96 images for leaf spot, 80 images for discolour 

leaf, and 75 images for leaf curling. While for 

complex background, there are 100 images for 

discolour leaf, 96 images for leaf spot and 88 images 

for leaf curling. The images are then imported via 

image acquisition tools for analysis and manipulation 

using Matlab R2022a to a laptop with specifications 

of Intel® Core™ i3-CPU microprocessor, 1.90GHz 

clock speed and 6.00GB RAM. Figure 7 shows the set-

up of the experimentation. 
 

Image acquisition – Kinect camera 

Image preprocessing – Image 

augmentation and resize 

Splitting of dataset to training, 

validation and testing 

Fine tuning of parameters and 

modification of ShuffleNet layers 

If validation 

accuracy is 

the highest? 

Evaluation of model using test set 

Validation of model using 

confusion matrix 

End 

Training 

Yes 

No 

Start 
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Figure 7 Experimentation set-up 
 

 

Before the diseased chilli leaf images are utilized 

by model training and inference, and to enhance 

the images quality so that they can be more 

effectively analyzed, the images are pre-processed 

using two techniques which are image 

augmentation and resize. Figure 8 illustrates an 

original image being transformed into some 

augmented images using the random reflection 

technique in this study. Data augmentation of 

random left/right reflections and X/Y is used in this. 

Image augmentation is performed only in cases 

of uniform background, while images with complex 

background are left unaltered to maintain their 

authenticity as in real-world conditions. Type of data 

augmentation applied is the random reflection 

technique using ‘"RandYReflection",true’. A logical 

scalar representing random reflection in the top-

bottom direction. When the RandYReflection 

parameter is set to true (1), each input image flips 

with a 50% possibility in each dimension. No images 

are reflected when RandYReflection is false (0). One 

original image is roughly transformed into 23 to 30 

augmented images. Following image augmentation, 

the images of leaf spot become 1,334, discolour leaf 

become 1,240, and leaf curling become 936 in total. 

Data augmentation can improve the classifier 

accuracy as it enhances the training of convolutional 

neural networks as mentioned by Zhang et al. (2012) 

[26]. Then, the images augmented are resized to fit 

the network input layer. The augmented store then 

automatically resizes. The ShuffleNet model requires 

an input image of a specific dimension of 224×224 

according to Munadi et al. (2022) [27], and hence all 

images after augmentation are resized to 224×224×3.  

In this study, the network of ShuffleNet is trained on 

70% of the data and validated on 15% of the data. 

The remaining 15% is allocated to testing. The 

imageDatastore is alienated into training, validation, 

and testing sets using the splitEachLabel function. The 

entire amount of diseased chilli leaf images has been 

amplified to 3,510 as a result of image augmentation. 

 
 

 Images After Augmentation 

 

Original Image 

 

 

     
 

     
 

     

Figure 8 Random reflection technique 
 

 

Also in this study, after each epoch, the dataset is 

set to be shuffled. Then, prior to performing the 

training manoeuvre, a few layers of ShuffleNet are 

altered to detect chilli leaf diseases. The copiously 

associated, softmax, and classification coats have 

been substituted with new-fangled diagnostic layers. 

The network branches are also added to the layer 

graph. Every branch is a linear array of layers.  Then, 

all the branches of the network are connected to 

produce the network graph which connects a set of 

nodes that provide information about the diseased 

chilli leaf for classification. For quicker convergence, 

the parameters in the copiously associated coats 

were arbitrarily make ready and necessitate a 

sophisticated erudition rate than the pre-trained 

layers. The ShuffleNet models are then fine-tuned to 

conform to the hyperparameter settings listed in 

Table 1. 
 

Table 1 Hyperparameter structure 
 

Hyperparameter Value 

Initial learn rate 0.01 

Maximum epoch 5 

Minibatch size 64 

Validation frequency 10 iterations 

Optimizer Stochastic gradient 

descent with 

momentum (SGDM)  

Execution environment ‘auto’ 

Validation iterations 205 
 

 

To obtain the best validated model, several trials 

and errors of fine-tuning parameters and ShuffleNet 

layers are performed in order to bargain the ideal 

values that provide the finest possible performance. 

When the programme converges (stops changing), 

the trial-and-error process is set to end. After 

determining the optimal fine-tuning parameters and 

ShuffleNet layers, the validation model is used to test 

the proposed model's accuracy in classifying chilli
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leaf diseases using test set. The validated models are 

tested employing an augmented test set to grant an 

unbiased evaluation of the final tuned model's 

performance in order to assess the final model. The 

final percentage accuracy of the model following 

the training process is discovered and printed in the 

Matlab model for the reference. 

 

 

3.0 RESULTS AND DISCUSSION 
 

The proposed ShuffleNet model for classifying chilli 

leaf diseases is proficient exploiting a training dataset 

with 205 iterations of validation. Figure 9 shows the 

training evolution along amid the minibatch 

accuracy as well as loss value of the proposed 

model.  

The validation dataset's preliminary accuracy 

prior to training with the pre-trained topographies is in 

the 20% to 30% range. Although the value is small, it 

indicates that certain of the rudimentary 

topographies obligatory for analysis have already 

been cultured, which subsidized significantly to the 

preliminary classification outcome. However, 

fascinatingly later 205 iterations in the first epoch, the 

validation accuracy reached about 90%. The 

finishing validation accuracy gotten at the end of 

five epochs is 99.82%. The full performance of the 

proposed improved ShuffleNet model is tabularized in 

Table 2 and the confusion matrix is depicts in Figure 

10. 

 

 

 
 

Figure 9 Training progress of the proposed ShuffleNet model 

 
Table 2 Assessment of the proposed ShuffleNet model 
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Figure 10 Confusion matrix of proposed ShuffleNet model 
 

 

An 85.6% sensitive test means that nearly all 

diseased entities are appropriately acknowledged as 

diseased, that is there are only insufficient false 

negatives. Most prominently, because the 

calculation comprises all chilli leaves with the 

disease, it is shown that the proposed ShuffleNet 

model is less intermittent by disease’s occurrence.  

While a test that is 100% specific means all healthy 

parts of the chilli leaf are appropriately recognized as 

healthy, that is there are no false positives. A 

flawlessly specific test means that no healthy parts of 

the chilli are recognized as diseased. 

In addition, as shown in Table 2, the valuation is 

supported ready exploiting recital metrics appraised 

after the confusion matrix. This is where precision, 

sensitivity, negative predictive value, specificity, miss 

rate, false discovery rate, fall out, F1 score and false 

commission rate are tabularized. While the accuracy 

of the proposed ShuffleNet identified through the 

model itself is displays in Figure 10.  

From Table 2, with a precision of 100%, it 

demonstrates that the proposed model produces no 

false positives. It demonstrates that there are zero 

negative events (uninfected parts) that are 

incorrectly classified as positive (false 

positives/predicted as infected parts) and zero 

actual negative events (notwithstanding of 

classification). 

The high negative predictive value (92.8%) 

indicates that the proportion of cases giving 

negative test results classifying uninfected leaf parts is 

high. It is the ratio of subjects that are actually found 

to be negative to all leaves that had a negative test 

result (including leaves containing one of the 

uninfected parts).  

The high negative predictive value achieved also 

indicates that this proposed model is an effective 

screening program. This is due to the fact that the 

program already applies the concept that the extra 

sensitive a test, the less probable an individual leaf 

with a negative test (uninfected part) will have the 

disease, and thus the higher the negative predictive 

value. 

The low miss rate (14.4%) denotes that the 

percentage of data requested that does not reside 

in the cache is small. This means that the programme 

is efficient because the percentage of data that 

must be retrieved from the main memory every time 

the program is run, is small. 

The 0% fall out produced reveals that there is no 

disagreement occurred in the programme when the 

uninfected part of the chilli leaf is predicted. It means 

that none of the observed negative (uninfected 

part) values are predicted incorrectly 

(positive/predicted as infected part) by the model. 

The low false omission rate (7.2%) shows that the 

ratio of the number of individuals chilli leaf with a 

negative predicted (uninfected part) value for which 

the true label is positive (positive/predicted as 

infected part) by the model is low. It explains that the 

pervasiveness of the proposed model is prominent as 

the false negatives among all negative transactions 

are greatly penetrated. 

The 92.24% F1 score indicates that this proposed 

model that is used for classifying class of chilli leaf 

diseases which are imbalanced, has a good 

arithmetic mean of precision and recall. This signifies 

that the proposed model has minor false positives 

and small false negatives, so it is appropriately 

classifying real threats and is not troubled by false 

alarms where a test result inaccurately designates 

the incidence of a condition, such as a disease when 

it is not existing. 

Calculated from Figure 8, the proposed model of 

ShuffleNet has True Positive (TP), True Negative (TN), 

False Positive (FP) and False Negative (FN) of 200, 

368, 0 and 0, respectively. So, the assessed sensitivity 

as well as specificity of the proposed ShuffleNet are 

both 100% as calculated in the Equation (1) and (2). 

In addition, Figure 11 shows the result for uniform 

background and Table 3 displays some of the results 

of classification of chilli leaf disease from a complex 

cluster of leaves using an improved ShuffleNet model. 
Effectively, the proposed model correctly classified 

all 142 diseased chilli leaf images used in the 

experimentation of the complex background case. 
 

 
 

Figure 11 Classification of chilli leaf disease from a uniform 

background using an improved ShuffleNet model 
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Table 3 Classification of chilli leaf disease from a complex 

cluster of leaves using an improved ShuffleNet model 

 

Disease Classification result 

Grey spots: 

  
Discolour leaf: 

  

Leaf curling: 

  
 

To strengthen this study, the proposed model's 

performance in term of accuracy of classification is 

compared to that of the existing models, and the 

results are shown in Figure 12. While comparison in 

term of precision is shown in Figure 13. 

 

99.82

80

89.27

97.02

0

20

40

60

80

100

Accuracy (%)

Proposed Model
- Improved
ShuffleNet

Existing Model -
Bag of Features

Existing Model -
ResNet50

Existing Model -
DenseNet201

 
Figure 12 Comparison accuracy of classification of the 

proposed model and the existing models 
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Figure 13 Comparison precision of classification of the 

proposed model and the existing models 

 

 

As shown by Figure 13, the proposed ShuffleNet 

model has the uppermost precision of 100% once 

equated to the existing models of Bag of Features 

(33.33%), ResNet50 (92%), and DenseNet201 (95.89%). 

As a result, in this study, the infected part of the leaf 

that we correctly classify as having diseases 

according to their type out of all the leaf that 

actually has it is 100%, which means that when it 

predicts that a leaf has a grey spot, discolour leaf, 

and leaf curling disease, it will almost always correct. 

With these great relevant data points from the 

proposed model, it is confirmed that the model is not 

simply treating the new set of chilli leaf, which does 

not have a disease but predicted to have it. Squara 

et al. (2021) [28] states that accuracy is the degree 

to which a measurement is close to its true value, 

whereas precision is the degree to which repeated 

measurements for new data under the same 

conditions are accurate. So, the proposed model is 
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assumed to be reliable for resolving the other 

objective of this study, which is to classify the new 

data of diseased chilli leaf from the complex cluster 

of leaf that represents the real-world condition. 

 

 

4.0 CONCLUSION 
 

With a classification accuracy of 99.82%, the 

proposed ShuffleNet model outperformed other 

existing models in classifying chilli leaf diseases. Other 

than that, the proposed model is also able to classify 

the diseased images of chilli from a dissimilar set of 

environments, which is the real-world condition 

where the diseased leaf is obtained along with other 

cluster of leaves where classification of diseases is 

arduous.  

In the future, additional plant varieties and plant 

diseases of various types may be added to the 

existing dataset to improve the trained models. In this 

study, the proposed ShuffleNet model has a precision 

of 100%, a recall of 85.6%, and an F1 score of 92.24%. 

Hence, other CNN models may use diverse learning 

rates and optimizers to test the model's performance 

and accuracy in order to attain a higher recall and 

F1 score value.  

Aside from that, while the real-world case is 

experimented in this study, it does not take into 

account any other factor, such as when the images 

are taken in inclement weather, such as rain, or in a 

dark environment. Therefore, when developing their 

model, the new model should consider other factors 

such as weather condition and light intensity of the 

environment because images taken in good 

weather, bad weather, high light intensity, and low 

light intensity are not the same and will affect the 

performance of the classifier.  

In addition, time taken is also crucial to be 

considered to act as a benchmark to hasten the 

development of new models and to allocate the 

computational resources more effectively. 
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