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Abstract 
 

Electrical power systems frequently experience different kinds of faults while 

they are used on a daily basis. Therefore, it is crucial to classify faults according 

to their severity in order to keep the system operating reliably. In this study, a 

novel method for categorising the severity of faults in the stability of the power 

system into three cases namely Minor, Moderate, and Major Fault was 

presented. This method is based on cutting-edge artificial intelligence 

algorithms. Under different types of faults, the suggested methodology was 

used in IEEE 9-bus. The study's findings give network operators important 

information that they can use to spot electrical system weaknesses during 

serious faults and maintain the power system's dependability and continuity of 

energy flow.  
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1.0 INTRODUCTION 
 

Electrical power systems in all sectors, including 

generation, transmission, distribution, and load 

systems, have grown and become more complex as 

a result of the significant changes in users' power 

requirements [1]. Due to its expansion, the electrical 

power system is now more susceptible to electrical 

faults, which can be brought on by a number of 

things including electrical overload, lightning, and 

improper wiring [2]. These faults have serious 

repercussions for the stability of the system [3] and 

the infrastructure of any nation [4] when they cause 

a disruption in the electrical power supply. The 

degree of loss can differ based on the duration and 

frequency of the interruptions, as well as the 

particular sectors and geographical areas impacted. 

According to some estimates, power outages can 

result in annual losses of billions of dollars [5]. This is 

caused by a variety of factors, such as decreased 

productivity, infrastructure and equipment damage, 

and higher energy costs. 

When factors such as a short circuit or insulation 

failure disrupt the normal flow of electrical energy, it 

results in an electrical fault in the power system. The 

severity of these faults can range from minor, 

localised issues to major faults that can cause 

widespread power outages [6]. 

The power system is actually prone to a variety of 

faults, which can be categorised into two groups: 

short circuit faults and open circuit faults. In contrast 

to open circuit faults, which involve a break in the 

current path and are more dangerous for power 

systems, short circuit faults are more common in 

power systems. Asymmetrical faults and symmetrical 

faults are two different types of short circuit faults that 
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can be distinguished by how severe they are and 

how frequently they occur in power systems. A 

malfunction that results in a circuit breaking down 

and continuity being lost is known as an open circuit 

fault, also known as a series fault. This can be brought 

on by problems like melted fuses or conductors in 

one or more phases, or failure of joints in cables or 

overhead lines. Figure 1 [7] illustrates further 

classification for both types of faults. 
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Figure 1 Various types of Electrical Fault 

 

 

The choice of circuit breakers, as well as the size 

and ratings of switchgear, have a significant impact 

on the classification of electrical fault severity in 

today's power system operating environment. The 

selection of circuit breakers and switchgear to 

handle load requirements such as voltage, current, 

and frequency, as well as the anticipated maximum 

load including future expansions, is crucial for the 

safe and reliable operation of electrical systems. 

Consideration of ratings, flight curves, and 

coordination characteristics are necessary for 

protection coordination in order to isolate and 

safeguard defective components of the system while 

maintaining the functionality of the rest. The system 

voltage determines the type and ratings of circuit 

breakers and switchgear, with different specifications 

for low, medium, and high voltage systems. In order 

to prevent tripping or damage, it is also necessary to 

consider the current fault levels. Therefore, the proper 

selection of circuit breakers, the size of switchgear 

and their ratings, taking into account load 

requirements, protection coordination, system 

voltage and fault current levels for safety and 

security and reliable operation of electrical systems, 

are closely related to the classification of the severity 

of electrical faults in the modern power system 

operating environment. 

Three major categories can be drawn from a 

thorough analysis of the numerous studies used for 

finding and fixing faults in electrical systems: fault 

detection, fault location estimation, and fault 

classification. These studies employed various 

methodologies, including conventional and artificial 

intelligence techniques, to arrive at their results. 

The process of identifying and locating an 

abnormal condition in the electrical network, such as 

a short circuit or a broken conductor, is known as 

fault detection in a power system [8]. Protective 

relays are frequently used for this, which monitor the 

electrical characteristics of the system and trip circuit 

breakers when a fault is discovered, isolating the 

malfunctioning area of the network and preventing 

equipment damage [9–11]. Fault detection in power 

systems can also be accomplished using additional 

techniques, such as remote monitoring and power 

system analysis software [12–15]. 

Finding the location of a fault (like a short circuit) 

on a transmission or distribution line is the process of 

fault location estimation in power systems. Analysing 

data from protective relays and other devices that 

keep an eye on the electrical conditions on the line is 

how this is accomplished. It is possible to quickly 

isolate the fault and restore power to unaffected 

areas using the estimated fault location. Different 

techniques are employed for fault location 

estimation, such as distance protection, impedance 

based [16], and traveling wave based [11, 17, 18]. 

The process of determining the precise type of 

fault that has occurred on the electrical network is 

known as fault classification in the power system. This 

is typically done by looking at the electrical 

parameters during the fault event, such as the 

voltage and current [19, 20]. Different techniques, 

including signal processing [21], machine learning, 

and other cutting-edge methodologies [22], can be 

used to categorise faults. 

Electrical faults can range from minor problems 

that are simple to fix to major failures that can 

seriously harm equipment, disrupt the power supply, 

and pose a risk to safety. Therefore, it is essential for 

power system operators and engineers to identify 

and classify the severity of electrical faults in order to 

prioritise fault resolution and maintenance tasks, 

reduce downtime, and guarantee the power 

system's safe and reliable operation. 

The word "severity" in the article title here refers to 

the extent to which electrical faults can affect the 

efficiency and security of power systems. The article 

concentrates on categorising faults according to 

their level of severity to better comprehend and 

reduce potential risks. 

It is crucial to have a system in place for assessing 

the severity of faults that occur regularly over an 

extended period of time in order to protect power 

system reliability and avoid service interruptions. In 

addition to safeguarding the stability of the system, 

this will assist in designing areas vulnerable to serious 

faults, ensuring a more stable power flow. This is what 

the study aims to accomplish by systematically and 

thoroughly identifying and categorising the severity 

of electrical faults. 
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The remainder of this essay is structured as follows: 

The different degrees of severity for electrical faults 

are described in Section 2. The specifics of the 

suggested strategy, including its methodology and 

guiding principles, are covered in Section 3. In 

Section 4, the results and findings of this study are 

presented and analysed. A summary of the most 

important findings and contributions from this 

research are presented in Section 5. 

 

1.1 Types of Electrical Fault Severity 

 

Electrical faults in a modern power system can be 

categorised based on their severity, which 

establishes the proper course of action. Here are 

some typical categories of electrical fault severity, as 

determined by literature reviews: 

i. Minor fault: Typically, this kind of fault is not 

severe and does not seriously harm the power 

system. Voltage dips, temporary overloads, and tiny 

ground faults are a few examples of minor faults. 

These faults typically do not require immediate 

attention because the power system's protective 

devices can handle them. 

ii. Moderate fault: A moderate fault is more 

serious than a minor fault and, if left unattended, 

could harm the power system. Phase-to-phase faults, 

large ground faults, and sustained overloads are a 

few examples of moderate faults. In order to isolate 

these faults and stop further damage, protective 

devices like circuit breakers may need to be used. 

iii. An electrical fault that can seriously harm the 

power system and necessitate pricey repairs is 

referred to as a major fault. Lightning strikes, 

transformer failures, and transmission line failures are 

a few examples of major faults. The power system 

may need to be shut down in order to address these 

faults right away and prevent further damage. 

The severity of electrical faults in a power system 

must be properly classified because this determines 

the appropriate course of action. 

 

 

2.0 METHODOLOGY 
 

Fluctuations in frequency on each bus can be 

caused by faults in electrical systems. The degree to 

which these fluctuations are severe depends on a 

number of variables, including the type of fault, its 

location, and the size and composition of the load 

[23]. As a result, severe faults will cause the frequency 

of buses to fluctuate more. Our research 

methodology involves keeping track of and 

recording the difference between the highest and 

lowest frequency fluctuations at each bus to assess 

the severity of a fault.  

The study concentrated on three typical faults 

that can occur during routine operations: 

disconnecting loads, opening transmission lines, and 

causing three-phase faults in order to investigate the 

effects of typical electrical malfunctions on power 

systems. The frequency stability of power systems is 

known to be significantly impacted by these faults, so 

they were chosen. 

The frequency value at each bus was recorded 

for three minutes with a very small time step (parts of 

a second) after each electrical fault was applied in 

order to analyse the effects and severity of these 

faults. This method enables a thorough 

comprehension of the system's behaviour after each 

fault, and the outcomes were documented in an 

Excel spreadsheet. 

It's important to note that this approach differs 

from transient and dynamic studies, which only 

consider the behaviour of the system over a short 

period of time [24, 25]. In this study, a longer time 

frame is required to evaluate the stability of the 

system following the impact of the electrical fault 

[26]. The effects of the fault on the entire system can 

be more thoroughly examined thanks to the longer 

time frame. 

This study highlights the importance of ongoing 

monitoring and maintenance to maintain the stability 

and dependability of power systems and offers 

significant new insights into the effects of common 

electrical faults on power systems. Power system 

operators can better comprehend the effects of 

faults and take the necessary action to reduce 

disruptions and avert potential system failures with 

the aid of detailed, time-based analysis. 

The IEEE 9 bus test system was used as the testbed 

for our research methodology for a number of 

reasons. In the power systems community, it is first 

and foremost a well-known and widely used 

benchmark system. Second, it represents a power 

system at a small scale, with only 9 buses, 3 

generators, and 3 loads [27], making it simpler to 

model and simulate than larger systems. As a result, 

we can concentrate on creating and validating our 

suggested approach without having to deal with the 

complexity of larger systems. Thirdly, the IEEE 9 bus 

test system is particularly helpful for testing and 

assessing novel approaches and innovations in the 

field of power systems, including distributed 

generation, the integration of renewable energy 

sources, and advanced control systems. As a result, it 

makes for a great starting point for our suggested 

methodology's investigation of fault classification in 

power systems. Overall, the IEEE 9 bus test system 

serves as a solid foundation for our research, and we 

are optimistic that the findings will advance fault 

classification methods in power systems. 

The method for determining the severity of 

electrical faults in a power system is described in this 

passage. The data is gathered in a single file as 

follows after applying various electrical faults and 

noting the total differences in the results:  

Sum for casem= the difference between the 

highest and lowest value of frequency for bus1+the 

difference between the highest and lowest value of 

frequency for bus2+.... +the difference for between 

the highest and lowest value of frequency busn 
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Where 

n=number of buses (1-9) 

m=number of case 

Based on the extent of the results' differences, the 

study assessed the faults' seriousness. A small 

difference indicates a minor fault and is represented 

by symbol (A), a moderate difference represents a 

moderate fault and is represented by symbol (B), and 

a large difference represents a major fault and is 

represented by symbol (C).  
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Figure 2. IEEE 9 bus test system 
 

 

3.0 RESULTS AND DISCUSSION 
 

The frequency values at each bus prior to an 

electrical fault are displayed in the OriginalHZ field of 

Tables 1, 2, and 3 in the second column. The third 

and fourth columns, MinHz and MaxHz, display the 

minimum and maximum frequency values, 

respectively, at each bus following the fault. In the 

fifth column, the max-MinHz field indicates the 

difference between the MinHz and MaxHz values. 

The case is classified based on the sum of the Max-

MinHz values, which is displayed under the field 

labeled “sum for case”. ' 

The outcomes of the symmetrical three-phase 

faults on the transmission line connecting bus 7-8 are 

shown in Table 1. As a result of the low sum of the 

Max-MinHz values, it is categorised as a minor fault 

(A). As shown in Table 2, the sum of the Max-MinHz 

values, on the other hand, is moderate, classifying it 

as a moderate fault (B). A serious fault (C) is 

indicated by the high sum of the Max-MinHz values 

as displayed in Table 3. 

The dataset is organised and exported as an 

Excel file and consists of differences and the 

classifications that go with them. After that, it is fed 

into Orange Data Mining, an artificial intelligence 

programme, for data classification training. 66% of 

the data is used for training, and the remaining 34% is 

set aside for testing. Open-source and created in the 

Python programming language, Orange Data Mining 

is a tool for data visualisation and analysis. For 

creating interactive data analysis workflows, it 

provides a range of machine learning and data 

mining algorithms as well as a range of visualisation 

tools and widgets [28]. 
 

Table 1 Three-phase faults on transmission line 7-8 (Minor 

fault) 
 

Name OriginalHz MinHz MaxHz Max-MinHz 

Bus1 50 49.9752 50.2072 0.232 

Bus 2 50 49.9785 50.41 0.4315 

Bus 3 50 49.9822 50.3321 0.3499 

Bus 4 50 49.9806 50.1833 0.2027 

Bus 5 50 49.9834 50.1648 0.1814 

Bus 6 50 49.9834 50.1659 0.1825 

Bus 7 50 49.981 50.3247 0.3437 

Bus 8 50 49.9816 50.3052 0.3236 

Bus 9 50 49.9828 50.2782 0.2954 

Sum for case= 2.5427 

Classification: Minor fault (A) 

 
Table 2 Fault on transmission line 4-5 and 4-6 (Moderate 

fault) 
 

Name OriginalHz MinHz MaxHz Max-MinHz 

Bus1 50 50 52.2547 2.2547 

Bus 2 50 48.3878 50.0055 1.6177 

Bus 3 50 48.3878 50.0012 1.6134 

Bus 4 50 50 52.2547 2.2547 

Bus 5 50 48.3878 50.0045 1.6167 

Bus 6 50 48.3878 50.002 1.6142 

Bus 7 50 48.3878 50.0045 1.6167 

Bus 8 50 48.3878 50.0035 1.6157 

Bus 9 50 48.3878 50.002 1.6142 

Sum for case= 15.818 

Classification: Moderate fault 

(B) 

 
Table 3 Fault on transmission line 3-9 (Major fault) 

 

Name OriginalHz MinHz MaxHz Max-MinHz 

Bus1 50 48.1729 50 1.8271 

Bus 2 50 48.1726 50 1.8274 

Bus 3 50 50 63.7362 13.7362 

Bus 4 50 48.1728 50 1.8272 

Bus 5 50 48.1728 50 1.8272 

Bus 6 50 48.1728 50 1.8272 

Bus 7 50 48.1726 50 1.8274 

Bus 8 50 48.1727 50 1.8273 

Bus 9 50 48.1727 50 1.8273 

Sum for case= 28.3543 

Classification: Major fault 

(C) 
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Multiple algorithms, including Support Vector 

Machine, K-Nearest Neighbours, and AdaBoost 

(Adaptive Boosting), were employed in order to 

achieve optimal results for fault severity classification. 

By utilising a variety of algorithms, we were able to 

compare and ultimately select the one that 

performed the best for this task. 

Where the Support Vector Machine (SVM) 

algorithm is a supervised learning technique that can 

be used for classification or regression purposes [29]. 

In the context of classification, the SVM algorithm 

identifies the hyperplane in high-dimensional space 

that most effectively separates distinct classes. This 

enables the algorithm to effectively classify examples 

it has never encountered before. In regression tasks, 

SVM attempts to identify the hyperplane that best fits 

a dataset. Even when the number of training 

examples is small, SVM is known for its ability to 

handle high-dimensional data and make accurate 

generalisations in both instances. It is a potent and 

widely-applied machine learning algorithm that has 

proven effective in numerous real-world applications. 

K-Nearest Neighbours (KNN) is a type of machine 

learning algorithm that does not require a great deal 

of prior data knowledge and is referred to as "lazy" 

because it does not create an explicit model and 

instead waits for an input before making a 

prediction. This algorithm is applicable to 

classification and regression problems. In both cases, 

the input consists of the k data points from the 

training set that are closest to the input in the feature 

space. Depending on the given task, the algorithm 

will produce a distinct output. The output of K-NN 

classification is the class to which the input belongs, 

as determined by the majority vote of the k closest 

data points. The input is assigned to the class to 

which the majority of its immediate neighbours also 

belong [30]. 

AdaBoost (Adaptive Boosting) is a boosting 

algorithm used in machine learning to enhance the 

performance of weak learners (base models) 

through the combination of their predictions. It 

operates by iteratively training weak learners on the 

dataset, giving greater weight to examples 

misclassified by previous weak learners, and 

combining the predictions of all weak learners to 

make the final prediction. This process continues until 

the desired level of performance is achieved or until 

a maximum number of weak learners is reached. 

Typically, the final ensemble model is more accurate 

than any of the weak learners individually [31]. 

A schema for an Orange data mining program 

that investigates the categorization of electrical fault 

severity data is shown in Figure 3. SVM, KNN, and 

AdaBoost are the three classifier algorithms that are 

being used. 

The F1 score is a metric used to evaluate a 

classification model's performance. It is computed as 

the harmonic mean of both precision and recall. The 

score ranges from 0 to 1, with 1 representing perfect 

precision and recall. The F1 score is useful when class 

labels are unbalanced because it gives equal weight 

to both precision and recall. It is frequently employed 

when the cost of false positives and false negatives 

differs. The ideal F1 score is 1, but in practise this is 

often difficult to achieve. Given the particular 

problem and data set, a good F1 score is one that is 

close to 1 and achievable. 

Precision is a metric used to evaluate the 

performance of a classification model; it measures 

the ratio of true positive predictions to all positive 

predictions (true positives and false positives). A 

model with a high precision has a small number of 

false positives. The ratio of true positive predictions to 

the sum of true positives and false positives is used to 

calculate precision. A precision score of 1 is optimal, 

indicating that all positive predictions are accurate 

and there are no false positives. However, achieving 

or maintaining a precision score of 1 may not always 

be possible or practical. 

Recall is a metric used to measure the accuracy 

of a classification model; it calculates the proportion 

of correctly predicted positive examples relative to 

the number of actual positive examples. It is the 

proportion of true positive predictions to the sum of 

true positives and false negatives. A high recall rate 

indicates few false negatives. The optimal recall 

value is 1, indicating that all positive examples are 

accurately predicted and there are no false 

negatives. However, achieving a perfect recall score 

of 1 is not always possible [32]. 
 

Table 4 Results of the Proposed Methodology 
 

Algorithm Classification 

accuracy 

F1 Precision Recall 

kNN 0.875 0.875 0.8783 0.875 

SVM 0.925 0.925 0.9437 0.925 

AdaBoost 0.850 0.841 0.8535 0.85 
 

 

The SVM algorithm outperformed the competition, 

achieving a 92.5% correct classification rate a 5% 

and 8% improvement over the KNN and AdaBoost 

algorithms, respectively. The results are shown in 

Table 4. In comparison to the other algorithms, the 

SVM algorithm also showed a higher ratio of F1, 

precision, and recall. 

Incorporating more training cases will increase the 

accuracy of an SVM algorithm because it will give it 

more data to learn from, similar to using a large-scale 

test system.  The best way to increase accuracy may 

not always be to simply use larger systems because 

doing so can increase computational complexity 

and overfitting. Dimensionality reduction, which can 

involve lowering the number of instances or features 

used to represent the data, is an efficient method for 

any test system for enhancing accuracy while 

lowering computational complexity. By doing so, it 

may be possible to keep the most useful elements 

while removing noise and unimportant data. 

Principal component analysis (PCA), a widely 

used method for dimensionality reduction in SVM, 

can be used to convert high-dimensional data into a 

lower-dimensional space while preserving as much of 

the original information as possible.  

https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Precision_and_recall
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Figure 3 Orange Data Mining Program Interface for the 

Proposed Methodology 
 

 

Overall, increasing the number of training cases 

and employing dimensionality reduction techniques 

can both be successful methods for enhancing an 

SVM algorithm's accuracy. The specifics of the 

dataset and the available computational resources 

will determine which approach should be used.  

Our proposed fault classification severity 

methodology, which classifies faults based solely on 

the difference between the minimum and maximum 

frequency values across all buses, is superior to other 

fault classification methods previously examined in 

sources such as [19-22] which rely on additional 

system parameters as inputs. Our approach is 

distinguished by its simplicity and ease of 

implementation, making it a promising candidate for 

fault classification severity in real-world applications. 

The findings of this study have significant 

engineering and scientific ramifications for the power 

systems industry. For the grid to remain reliable and 

stable, it is essential to determine the severity of 

electrical faults in power systems. By offering a more 

effective and efficient method of fault classification, 

the proposed fault classification methodology can 

help achieve this goal. 

To address the shortcomings of current 

approaches and enhance the precision and 

effectiveness of fault detection and classification in 

power systems, further research and development 

are still required in the field of fault classification 

algorithms. 

It is important to note that, for any power grid, 

there are differences in fault levels, types of faults, 

impact on customers, protection mechanisms, and 

repair/restoration processes between distribution 

systems and HV transmission grids. These differences 

are crucial to consider after determining the severity 

of the faults. Whereas, because of their greater 

power transfer capacity and longer transmission lines, 

HV transmission grids tend to have higher fault levels 

and a wider variety of fault types, such as lightning 

strikes and insulator failures. While faults in HV 

transmission grids can have broader area effects and 

result in widespread blackouts, faults in distribution 

systems are typically localised and affect a smaller 

number of customers. Distribution systems' protection 

mechanisms are less complicated, whereas HV 

transmission grids' protection mechanisms are more 

intricate. Distribution systems' repair and restoration 

procedures might go more quickly, whereas HV 

transmission grid faults might take longer to fix and 

restore because of their greater size and complexity. 

Additionally, in power systems, reliability and 

electrical faults have the opposite relationships. The 

reliability of the power system is reduced when 

electrical faults like short circuits or equipment 

breakdowns happen because they can result in 

power outages or interruptions. The number of 

electrical faults that occur and their duration have a 

direct impact on how reliable the power system is; 

the more faults that occur, the less reliable the system 

becomes. 

By maintaining and upgrading equipment, 

reducing the likelihood of electrical faults, and 

putting backup systems and procedures in place to 

swiftly restore power in the event of a fault, reliability 

can be increased. A high level of reliability is what 

most power systems aim to achieve, and it can be 

gauged using metrics like system availability, mean 

time between failures (MTBF), and mean time to 

repair (MTTR). The study's objective was to classify the 

severity of electrical faults in order to pinpoint the 

system's weak points and improve system 

performance by increasing backup power and 

upgrading equipment. This will lessen the MTBF and 

MTTR, as well as the severity of faults. 

 

 

4.0 CONCLUSION 
 

By comparing the difference between the highest 

and lowest value of the bass frequency after an 

electrical fault occurs, this study concluded that a 

new method for determining the severity of electrical 

faults that occur during routine operation could be 

developed. The study's findings demonstrated that 

classifying faults with an artificial intelligence 

technique—more specifically, the SVM algorithm—is 

possible with a high degree of accuracy (92.5%) and 

a low level of error.  

Electrical fault severity classification is a crucial 

task for the reliability of electrical power systems 

because it helps engineers and technicians decide 

the best course of action for fixing the fault and 
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minimising the risk of further damage. The method 

put forth in this study can be a useful instrument for 

determining how serious electrical faults are in power 

systems. 

A large-scale test system, taking into account 

other system parameters, could provide a more 

accurate reflection of real-world issues for future 

research. Therefore, it is advised to take into account 

using an even larger test system in future work with 

the benefit of the principal component analysis 

(PCA) technique. 
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