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Abstract 

 

This article presents a comparative study of the accuracy between homotopy analysis method (HAM) and 

a new technique of homotopy analysis method (nHAM) for the Korteweg–de Vries (KdV) and Burgers’ 
equations. The resulted HAM and nHAM solutions at 8th-order and 6th-order approximations are then 

compared with that of the exact soliton solutions of KdV and Burgers’ equations, respectively. These 

results are shown to be in excellent agreement with the exact soliton solution. However, the result of 
HAM solution is ratified to be more accurate than the nHAM solution, which conforms to the existing 

finding. 

 
Keywords: KdV equation; Burgers’ equation; homotopy analysis method; new homotopy analysis 

method; approximate analytic solution 

 

Abstrak 

 

Artikel ini mempersembahkan satu kajian perbandingan ketepatan di antara kaedah analisis homotopi 
(HAM) dan suatu teknik baru kaedah analisis homotopi (nHAM) bagi menyelesaikan persamaan 

Korteweg-de Vries (KdV) dan Burgers’.Hasil penyelesaian HAM dan nHAM pada peringkat anggaran 

kelapan dan keenam itu dibandingkan dengan penyelesaian tepat bagi persamaan KdVdan Burgers 
masing-masing. Keputusan ini didapati dalam persetujuan cemerlang dengan penyelesaian tepat soliton. 

Walaubagaimanapun, keputusan bagi penyelesaian HAM ditunjukkan lebih tepat daripada penyelesaiann 

HAM, yang mematuhi hasil penemuan terkini. 
 

Kata kunci: Persamaan KdV; persamaan Burgers’; kaedah analisis homotopi; kaedah analisis homotopi 
baru; penyelesaian analisis beranggaran 
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1.0  INTRODUCTION 

 

Korteweg and de Vries derived KdV equation to model Russell’s 

observation of the phenomenon of solitons in 1895. The Burgers’ 

equation is a fundamental partial differential equation from fluid 

mechanics. It occurs in various areas of applied mathematics, such 

as modelling of gas dynamics and traffic flow. The first steady-

state solution of Burgers’ equation was given by Bateman in 

1915. There are several analytical techniques of studying the 

integrable nonlinear wave equations that have soliton solutions [1-

3]. It is customarily difficult to solve nonlinear problems, 

especially by analytic technique. Therefore, seeking suitable 

solving methods (i.e. exact, approximate or numerical) is an 

active task in branches of engineering mathematics. Recently, a 

new approximate analytic approach named homotopy analysis 

method (HAM) has seen rapid development. The homotopy 

analysis method (HAM) [4, 5] is a powerful analytic technique for 

solving non-linear problems, which was initially introduced by 

Liao in 1992. Recently, this technique has been effectively 

applied to several non-linear problems in science and engineering, 

such as generalized Hirota-Satsuma coupled KdV equation [6], 

third grade fluid past a porous plate [7], non-linear flows with slip 

boundary condition [8], the KdV and Burgers’ equations [9] and 

more recently Aziz et al. [10] examined constant accelerated flow 

for a third-grade fluid in a porous medium and a rotating frame. In 

this direction, the effectiveness, flexibility and validity of HAM 

are confirmed through all of these successful applications. In 

addition, several different kinds of non-linear problems were 

solved via HAM (see Liao [11-13], Abbasbandy [14, 15] and 

Abbasbandy & Shirzadi [16]). More recently, a powerful 
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modification of HAM was proposed in [17-19]. This modification 

only deals with the non-homogeneous term or variable 

coefficients through their series expansion. Nonetheless, Hassan 

and El-Tawil in [20, 21] have successfully applied a new 

technique of HAM (or nHAM for short) to obtain an 

approximation of some high-order in t-derivative (order n 2 ) 

nonlinear partial differential equations. We are concerned with the 

accuracy between Liao’s HAM and Hassan and El-Tawil’s 

nHAM in solving the KdV and Burgers’ equations and their 

conclusions in [20, 21].  

  The paper layout is as follows: In Section 2, basic idea of 

HAM is presented. In Section 3, basic idea of nHAM is given. In 

Section 4, the KdV equation is approximately solved by HAM 

method. In Section 5, the KdV equation is approximately solved 

by nHAM method. In Sections 6 and 7, the Burgers’ equation is 

approximately solved by HAM and nHAM methods respectively. 

In Section 8, HAM and nHAM results are compared and 

discussed. Section 9 provides a brief conclusion. 

 

 

2.0  IDEAS OF HAM 

 

Consider a nonlinear equation in a general form, 

 , 0u r t    ,                                            (1) 

where indicates a nonlinear operator,  ,u r t an unknown 

function. Suppose  0 ,u r t  denotes an initial guess of the exact 

solution  ,u r t ,  , 0r t   an auxiliary function,   an 

auxiliary linear operator, 0ћ   an auxiliary parameter, 

and  0,1q as an embedding parameter. By means of HAM, 

we construct the so-called zeroth-order deformation equation 

     

   

01 , ; ,

, , ;

r t u r t

ћ r t r t





    

  

q q

q q .        
(2) 

 

  It should be noted, that the auxiliary parameter attributes in 

HAM are chosen with freedom. Obviously, when 0,1q it 

holds 

   0, ;0 ,r t u r t  ,    , ;1   ,r t u r t 
 

respectively. Then as long as q increases from 0 to1 , the 

solution  , ;r t q varies from initial guess  0 ,u r t  to the 

exact solution  ,u r t .
 

  Liao [5] by Taylor theorem expanded  , ;r t q in a power 

series of q as follows 

       

1

, ; , ;0 , m

m

m

r t r t u r t 




 q q ,     (3) 

where

 

 
 

0

, ;1
,

!

m

m m

r t
u r t

m








q

q

q
│ .                  (4) 

  The convergence of the series in Equation (3) depends upon 

the auxiliary function  ,r t , auxiliary parameter ћ , auxiliary 

linear operator  and initial guess  0 ,u r t . If these are 

selected properly, the series in Equation (3) is convergence at 

1q , and one has 

     0

1

, , , . m

m

u r t u r t u r t




 
                           

(5) 

 

  Based on Equation (2), the governing equation can be 

derived from the zeroth-order deformation in Equation (5) and the 

exact solution can be defined in vector form 

     0 1( , ) , ,  , , , ( , )n nu r t u r t u r t u r t  . 

 

  Differentiating m-times of zeroth-order deformation 

Equation (2) with respect to q  and dividing them by !m    and 

also setting 0q , the result will be so-called mth-order 

deformation equation 

   

   

1

1

, ,

, , ,

m m m

m m

u r t u r t

ћ r t u r t

 



   
,              (6) 

where 

0  , 1
,

1  ,  1
m

m

m



 

                                                             

(7) 
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1
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
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  
  
   

 qq
q

(8)
 

 

THEOREM 1 (Liao [5]):

 
 

  The series solution (5) is convergent to the exact solution of 

Equation (1) as long as it is convergent. 

 

 

3.0  ANALYSIS AND TECHNIQUE OF nHAM 

 

We transformed Equation (1) in the form as below 

( , ) ( , ) ( , ) 0u x t Au x t Bu x t  
                     

(9) 

with initial conditions
 

0 0( ,0) ( , ) ( ),u x u x t f x 
                            (10)

 

0 1

0

( , )
( ) ( ),

t

u x t
v x f x

t 


 


                        

(11) 

where
( , )u x t

t





 is a linear operator and  

( , ) ( , ),u x t u x tA B are linear and nonlinear parts of Equation 

(9) respectively.                          

 

  Based on HAM, the zeroth-order deformation equation is 

 
0(1 ) [ ( , ; ) ( , )]

( ( , ) ( , ) ( , )),,r

x t u x t

u x t Au x t Bu x tt

  

 

q q

q
(12) 
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and the mth-order deformation equation is obtained as
 

 
1

1 1 1

[ ( , ) ( , )]

( ( , ) ( , ) ( , )) .,

m m

m m m

mu x t u x

r

t

u x t Au x xt t Bu t

 

  

 

 
(13) 

By considering   1,r t  , and 1 as an integral operator, 

one has 
 

 

1

1
1 1

0

( , ) ( , )

( , )
( ( , ) ( , )) ,

m m

t

m

m
m m

u x t u x t

u x t
Au x t Bu x t dt

t

 


 

 


 


(14) 

 

for 1m  , 
1 0  and 

0 0 0( ,0) ( , ) ( )u x u x t f x  . The 

Equation (14) becomes

 

1 0 0
0

( , ) ( ( , ) ( , )) ,
t

u x t Au x t Bu x t dt 
             

(15) 

 

and for 1m  , 1m  and 1( ,0) 0 ,mu x  it becomes 

 
1

1 1
0

( , ) (1 ) ( , )

( ( , ) ( , )) .

m m

t

m m

u x t u x t

Au x t Bu t

ћ

x t d



 

  


                

(16) 

 

  Now, we rewrite Equation (1) in a system of first order 

differential equations as

 ( , ) ( , ) 0tu x t v x t 
                                                      

(17) 

( , ) ( , ) ( , ) 0.v x t Au x t Bu x t  
                              

(18) 

 

From (16), (17) and (18) we have                                 

1 0
0

( , ) ( ( , ))
t

u x t v x t dt 
                                          

(19) 

1 0 0( , ) ( ( , ) ( , )),v x t Au x t Bu x t 
                           

(20) 

 

and for 1m  ,   1m  and ( ,0) 0, ( ,0) 0 ,m mu x v x 
 

we obtain the following results 

1 1
0

( , ) (1 ) ( , ) ( ( , ))
t

m m mu x t u x t t dtћ v x    
  

(21) 

1

1 1

( , ) (1 ) ( , )

( ( , ) ( , )) .

m m

m m

v x t v x t

Au x x

ћ

t Bu t



 
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
        

(22) 

 

Equations (21) and (22) represent the general nHAM solution of 

Equation (9). 

 

 

4.0  HAM SOLUTION OF KdV 

 

 

Let us consider the celebrated Korteweg-de Vries equation (KdV). 

This is given by 

6 0, ,t x xxxu uu u x t R   
                                    

(23) 

subjects to the initial condition
 

( ,0) ( ).u x f x (24) 

 

  We shall assume that the solution u(x, t) and its derivatives 

tend to zero (see [22, 23]) 

as |x|→ ∞.
 

The nonlinear KdV Equation (23) is an important mathematical 

model in nonlinear wave’s theory and nonlinear surface wave’s 

theory of engineering mathematics. The same examples are 

widely used in solid state physics, fluid physics, plasma physics, 

and quantum field theory ([24, 25]). The exact solution of KdV 

equation is given by 

2( )
2( , ) 2

2( ) 2(1 )

k x k t
e

u x t k
k x k t

e



 




.              (25) 

 

For HAM solution of KdV equation we choose  
x

0 x 2

-2e
( , )

(1+e )
u x t 

                                               

(26) 

 

as the initial guess and 

( , ; )
[ ( , ; )]

u x t
u x t

t






q
q

                                   

(27) 

 

as the auxiliary linear operator satisfying  

[ ] 0c  (28) 

 

where c is a constant. 

We consider the auxiliary function  

 , 1x t  (29) 

 

and the zeroth-order deformation problem is given by 

     

 

01 , ; ,

, ;

u x t u x t

ћ u x t

    

  

q q

q q ,       
(30) 
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3

3
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( , ; ) ( , ; )
6 ( , ; )
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u x t
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u x t u x t
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u
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


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q
q
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 .      (31) 

 

The mth-order deformation problem 

is

  1
1

1 1

31

3
0

( , )

( , ) ( , )
6 ( ,

( , ) ( , )

) ]

[ m
m m m

m i m
i

m

i

x t

t

x t x t
x t

x

u
u x t u x t

x

u u
u

 
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






  



 


 


, (32) 

( , ) 0, ( 1)mu x t m  .                         (33) 

 

  We have used MATHEMATICA for solving the set of linear 

equations (32) with condition (33). It is found that the HAM 

solution in a series form is given by  
x x x

x 2 x 3

-2e 2e ( 1 e )
( , )

(1+e ) (1+e )
u x t t

 
   (34) 
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5.0  nHAM SOLUTION OF KdV 
 

, the auxiliary ion of KdV, the linear operatorFor nHAM solut

re the a  0 ,u r tand initial guess function ,r tfunction

same as for HAM solution.                                                                

We rewrite KdV equation in the form of system of equations (17) 

and (18) as                                                                                         

( , ) ( , ) ,tu x t v x t (35) 

3

3

( , ) ( , )
( , ) 6 ( , )

u x t u x t
v x t u x t

x x

 
 

 
(36) 

 

and by choosing  
2

0 3 2

4 2
( , ) ,

(1 ) (1 )

x x

x x

e e
v x t

e e


 

 
                         

(37) 

 

from (19) and (20), we have  

1 0
0

( , ) ( ( , )) ,
t

u x t v x t dt  (38) 

3

0 0
1 03

( , ) ( , )
( , ) ( 6 ( , ) ).

u x t u x t
v x t u x t

x t

 
 

   

(39) 

 

By solving the set of linear Equations (21) and (22), it is found 

that the nHAM solution in a series form is given by  

2 3 2

2 4 2
( , )

(1 ) (1 ) (1 )

x x x

x x x

e e e
u x t t

e e e

 
    

   
(40) 

 

 

6.0  HAM SOLUTION OF BURGERS’ EQUATION 

 

The Burgers’ equation is described by  

0, ,t x xxu uu u x t R   
                 

(41) 

 

subjects to the initial condition 

( ,0) ( )u x f x ,                                            (42)
 

 

and the exact solution of this Equation is [9]  

1 1 1 1
( , ) tanh ( )

2 2 4 2
u x t x t   .            (43) 

 

For HAM solution of Burgers’ equation the auxiliary linear 

operator , the auxiliary function and the zeroth-order 

deformation equation are the same as KdV equation. However the 

initial guess is taken as  

0

1 1 1
( , ) tanh ( )

2 2 4
u x t x  ,                               (44) 

 

The mth-order deformation problem 

is

 

21

2
0

1
1

1 1

( , )

( , ) ( , )
( ,

( , ) ( )

]

,

)

[ m
m m m

m i m
m

i

i

u
u x t u x t

x t

t

x t x t
x t

u
u

x x

u

 

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






 






 


  ,     

(45) 

( , ) 0, ( 1)mu x t m  .                                             (46) 

 

It is found that the HAM solution in a series form is given by 

2 2

2

2

32

1 -1+e e ( 1 e )
( , )

2
4(1+e )2(1+e )

x x

x

x

x
u x t t

 
        (47) 

 

 

7.0  nHAM SOLUTION OF BURGERS’ EQUATION 

 

linear For nHAM solution of Burgers’ equation, the 

and initial guess  ,r t, the auxiliary functionoperator

are the same as for HAM solution.  0 ,u r tfunction 

By choosing  

2

0

1
( , ) sech( )

16 16

x
v x t                                         (47) 

 

from (19) and (20), we have  

2

1

1
( , )   sech( )

16 16

x
u x t t 

                         

(48) 

2

0 0
1 0 2

( , ) ( , )
( , ) ( ( , ) )

u x t u x t
v x t u x t

t x

 
 

 
(49) 

 

By solving the set of linear equations (21) and (22), it is found 

that the nHAM solution in a series form is given by  

21 1
( , ) sech( )

2 16 16

21
(1 ) sech( )

16 16

x
u x t t

x
t

  

 

(50) 

 

 

8.0  RESULTS AND DISCUSSION  

 

The approximate analytical solutions of KdV and Burgers’ 

equations by HAM and nHAM are respectively given by (34), 

(40), (47) and (50), containing the auxiliary parameter , which 

influences the convergence region and rate of approximation for 

the HAM and nHAM solutions. In Figures 1 and 2 the - curves 

are plotted for ( , )u x t of KdV and Burgers’ for HAM and 

nHAM solutions. 
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Figure 1  The -curves of 8th-order approximation dashed point: 

(0.01, 0.01)u of HAM, solid line: (0.01, 0.01)u of nHAM 

 

 

 

 

 

 

 

 

 
 

Figure 2  The -curves of 6th-order approximation dashed point: 

(0.1, 0.1)u of HAM, solid line: (0.1, 0.1)u of nHAM 

 

 

  As pointed out by Liao [4], the valid region of is a 

horizontal line segment. It is clear that the valid region for KdV 

case is 1.75 0ћ    and for Burgers’ case is 1.4 0.4ћ    .  

According to theorem 1, the series solutions (34), (40), (47) and 

(50) are convergent to the exact solution, as long as they are 

convergent. In KdV case for 1 1t   and 0.4  and in 

Burgers’ case for 0 1t  and 0.5  , the results are 

shown to be in excellent agreement between the exact soliton 

solutions and the HAM and nHAM solutions. However, the 

results of HAM are shown to be more accurate than the nHAM 

solutions, as shown in Figures3 and 4. The obtained numerical 

results are summarized in Tables 1 and 2. The graphs in Figures 3 

and 4 upon comparing with the exact solutions, look almost the 

same for both cases since the errors generated by HAM and 

nHAM are very small. 
 

 

Table 1  Comparison of the HAM and nHAM solutions with exact solution of KdV equation, when 0.4   

 

t x Absolute error of exact and HAM Absolute error of exact and nHAM 
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(a) (b) (c) 

 

Figure 3  Comparison of the exact solution with HAM and nHAM solutions of KdV equation, when 0.4   

 

   
(a) (b) (c) 

 

Figure 4  Comparison of the exact solution with HAM and nHAM solutions of Burgers’ equation, when 0.5   

 

Table 2  Comparison of the HAM and nHAM solutions with exact solution of Burgers’ equation, when 0.5   
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9.0  CONCLUSION 

 

In this work, a comparative analysis of HAM and nHAM 

methods is implemented for the KdV and the Burgers’ 

equations. The results obtained by HAM and nHAM are 

compared with the standard exact soliton solution of KdV and 

Burgers’ equations and found to be in excellent agreement. 

However, the HAM solution of these equations is observed to be 

more accurate than the nHAM solution. We are of the opinion 

that this observation ratifies Hassan and El-Tawil[20] and [21], 

which states that the new technique of HAM, i.e. nHAM, is 

more suitable to obtain approximate analytical solutions of some 

initial value problems of high-order t-derivative (order n 2 ) 

of nonlinear partial differential equations. However the KdV 

and Burgers’ equations are examples where the order n = 1 , 

and we have shown that the accuracy of HAM for these cases 

are better than nHAM. 
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