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Abstract 
 

Nowadays, the advancement in autonomous robots is the latest influenced by the development of a world surrounded by 

new technologies. Deep Reinforcement Learning (DRL) allows systems to operate automatically, so the robot will learn the next 

movement based on the interaction with the environment. Moreover, since robots require continuous action, Soft Actor Critic 

Deep Reinforcement Learning (SAC DRL) is considered the latest DRL approach solution. SAC is used because its ability to 

control continuous action to produce more accurate movements. SAC fundamental is robust against unpredictability, but 

some weaknesses have been identified, particularly in the exploration process for accuracy learning with faster maturity. To 

address this issue, the study identified a solution using a reward function appropriate for the system to guide in the learning 

process. This research proposes several types of reward functions based on sparse and shaping reward in SAC method to 

investigate the effectiveness of mobile robot learning. Finally, the experiment shows that using fusion sparse and shaping 

rewards in the SAC DRL successfully navigates to the target position and can also increase accuracy based on the average 

error result of 4.99%. 

 

Keywords: Soft Actor Critic Deep Reinforcement Learning (SAC DRL), Deep Reinforcement Learning, Mobile robot navigation, 

Reward function, Sparse reward, Shaping reward 

 

Abstrak 
 

Pada masa kini, kemajuan dalam robot autonomi adalah dipengaruhi oleh perkembangan dunia terkini yang dikelilingi 

dengan teknologi baharu. “Deep Reinforcement Learning” (DRL) membolehkan sistem beroperasi secara automatik, justeru 

robot akan mempelajari pergerakan seterusnya berdasarkan interaksi dengan persekitaran. Selain itu, disebabkan robot 

memerlukan tindakan berterusan, “Soft Actor Critic Deep Reinforcement Learning” (SAC DRL) dianggap sebagai 

penyelesaian pendekatan DRL yang terkini. SAC digunakan kerana ia boleh mengawal tindakan berterusan untuk 

menghasilkan pergerakan yang lebih tepat. Tambahan pula, asas SAC adalah teguh terhadap ketidakpastian, tetapi 

terdapat beberapa kelemahan telah dikenal pasti, terutamanya dalam proses penerokaan untuk pembelajaran ketepatan 

dengan kematangan yang cepat. Bagi menangani isu ini, kajian mengenal pasti penyelesaian terkini menggunakan fungsi 

ganjaran yang sesuai untuk sistem sebagai panduan di dalam proses pembelajaran. Penyelidikan ini mencadangkan 

beberapa jenis fungsi ganjaran berdasarkan ganjaran jarang dan membentuk di dalam kaedah SAC untuk menyiasat 

keberkesanan pembelajaran robot mudah alih. Akhir sekali, eksperimen menunjukkan bahawa penggunaan gabungan 

ganjaran jarang dan membentuk di dalam SAC DRL berjaya menavigasi ke kedudukan sasaran dan juga boleh meningkatkan 

ketepatan berdasarkan hasil purata ralat sebanyak 4.99%. 

 

Kata kunci: Soft Actor Critic Deep Reinforcement Learning (SAC DRL), Deep Reinforcement Learning, Robot mudah alih 

navigasi, Fungsi ganjaran, Ganjaran jarang, Ganjaran membentuk 

© 2024 Penerbit UTM Press. All rights reserved 
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1.0 INTRODUCTION 
 

With the evolution of the modern era nowadays, the 

use of artificial intelligence-based technology has 

emerged as a technical breakthrough that can 

improve the conventional method [1, 2], which is a 

trend that is widely used in robot control. There are 

various studies carried out by previous researchers 

involving artificial intelligence especially robot control 

by using Reinforcement Learning [3, 4] and there are 

different technologies that have been introduced to 

mobile robot applications for the navigation process. 

Most of the studies conducted have indicated the 

trends of some researchers in new technologies that 

have been implemented to improve the mobile 

robot abilities using machine learning [5-7]. 

Machine Learning is one of the effective 

branches of AI (Artificial intelligence), which is 

practically used for training the robot without 

complete human supervision [8]. Reinforcement 

Learning enables the agent (robot) to learn the next 

action based on the interaction between the agent 

and the environment, allowing the system to run and 

control autonomously. Recently, there are many 

algorithms on Reinforcement learning among which 

are Q-Learning [9, 10], SARSA [11], DQN [12], DDPG 

[13], and SAC [14]. There is no doubt that these will 

continue to make headlines in the coming years.  

In RL, there are two methods: on-policy and off-

policy [15], with the off-policy becoming the 

preferred method because it can save the learning 

process in the replay memory [12]. Furthermore, 

replay memory can improve the learning process 

effectively based on learning factors based on 

experience. At the same time, the off-policy is 

divided into two states consisting of deterministic and 

stochastic policies. Deterministic is a method based 

on no probability of action selection. In contrast, 

Stochastic policy is based on randomness probability 

action, which allows the agent to explore further and 

improve its performance. 

Recently, SAC is state of the art in RL which is 

based on a stochastic policy that applies maximum 

expected reward and entropy in the exploration 

process. According to this article [14, 16], SAC still has 

a lot of room for improvement, particularly in learning 

accuracy and maturity, which can be attributed to 

the correct and accurate use of the reward function. 

Otherwise, using the inappropriate reward function 

can also make the system development process 

more complex and extensive due to the trial and 

error process in determining the agent's ability to 

learn effectively and quickly. Our motivation in 

conducting this research can improve the SAC 

development process, particularly the structure of 

the reward function and can speed up the robot's 

learning process in terms of maturity for a learning 

curve. 

To overcome this problem, we suggest producing 

a reward function based on fusion sparse and 

shaping reward in adapting the robot to learn better 

and mature quickly. The main reason for using sparse 

and shaping is to maximize the benefits of the 

different reward type functions. Furthermore, the SAC 

method's robot learning process can be improved by 

introducing fusion sparse and shaping reward 

functions. 

 

 

2.0 RELATED WORK 

 
In practice, DRL is a system that is one of the 

autonomous system concept's characteristics. 

Numerous autonomous applications in this sector 

implemented DRL with varied uses [16-19], especially 

the autonomous mobile robot in this study that is 

based on navigation task [6, 7, 20]. There are two 

types of policies commonly used and practiced in 

DRL [15, 21], generally on-policy and off-policy. Both 

have different policies and practices to how the 

system is used. The concept of on-policy refers to a 

method of behaviour policy that seeks to evaluate or 

improve policies used to make decisions [15]. For off-

policy methods, the policy is to improve policies that 

are not used to generate data and allow the agent 

to explore the environment without adhering strictly 

to policy [15].  Off-policy users are generally also due 

to its main feature, which practices using replay 

memory, which is very useful in the learning process 

and assisting in performance [12]. Off-policy usually 

includes two methods consisting deterministic and 

stochastic especially using for continuous action. This 

paper [14] demonstrates the effectiveness of a 

stochastic policy that significantly helps the system 

predict the following action with more significant 

variance and is effective in exploration. Furthermore, 

using a stochastic policy can reduce the repeated 

selection of actions leading to overestimation in the 

system network in DRL algorithms [22]. 

The type of control action is also an important 

factor in determining the appropriate algorithm user 

in the robot system. There are two types of control 

actions for this [15] consisting of the continuous 

action [23] and discrete action [12]. The use of 

continuous action is main as an important indicator in 

the solution's selection since the accuracy of the 

navigation process is required in determining the 

performance of this system. Based on this paper [6], a 

comparative experiment in mobile robot navigation 

uses two types of methods from the same action 

category, DPPG, and SAC. Based on the results, SAC 

has produced better performance on the simulation 

results. The concept of SAC is explained in this work 

[14], where stochastic policy is used as an actor 

policy for the agent to learn. SAC maximises the use 

of entropy when making decisions. This paper also 

demonstrates the state-of-the-art performance 

obtained by implementing the SAC in robot 

applications based on continuous action hence 

making it is an excellent option for the architecture 

algorithm in this study. SAC also has a weakness that 

can complicate the exploration process, particularly 
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the learning policy without pre-learning, that makes 

learning challenging and takes a long time to the 

maturity learning [16]. The solution for this issue is to 

implement an appropriate reward function structure 

that allows the system to learn more easily and 

quickly, increasing the overall system's efficiency [24].  

Previous research has identified various types of 

reward functions, which are classified into two 

reward categories: sparse and non-sparse (shaping 

reward). The Sparse reward is a binary reward after 

entire episodes rather than continuous feedback 

after each action. Some processes, that are 

discussed in the articles [25, 26] require sparse reward 

in determining the exploration of the environment 

and guiding the robot in system control. Sparse 

rewards will also simplify and reduce the complexity 

of the robot's exploration process in the environment 

[26]. Article in [27] proposed Scheduled Auxiliary 

Control (SACX) to simulate robot manipulation for the 

exploration process in the environment by modifying 

sparse rewards, but it has not yet been applied in the 

real world. In fact, [26] demonstrates the benefits of 

sparse reward to the UAV navigation system by using 

DRL with nonexpert helpers in a large-scale 

environment. This paper [25] investigates an 

alternative by employing sparse reward RL in video 

game environments and it has successfully overcome 

the sparse reward system's weakness through a 

combination of curiosity-driven exploration and 

unsupervised auxiliary tasks. 

In some previous research papers on non-

sparse(shaping) rewards from article [16], the SAC 

algorithm is used to control an autonomous 

underwater vehicle (AUV) and  has introduced a 

comprehensive external reward function to 

overcome the weakness of sparse reward. In [28], 

which addresses a limitation of the Partially 

Observable Markov Decision Process (POMDP) for 

UAV navigation and it is solved based on the non-

sparse reward function and introduces the specific 

reward function based on domain knowledge. Yiqiu 

Hu [29] released a paper in 2021 that used federated 

reinforcement learning by implementing reward 

shaping by experimenting on GridWorld and 

successfully demonstrated a system that can 

improve the efficiency and quality of training. In the 

paper [30], the reward horizon (optimal bound for 

reward function) is used in the MDP RL system to 

conduct experiments on the shaping reward to 

increase the speed of the training process. Articles 

[24, 26] have conducted experiments by increasing 

the speed of the training process through the 

shaping rewards into the RL algorithm 

implementation. [24] presented an additional subtask 

reward function in the DRL policy to control the 

manipulator for the purpose of controlling the 

trajectory movement. These rewards can help the 

agents to learn faster and to reduce mistakes in 

exploiting the environment. In [31], an experiment 

was conducted to solve the sparse reward problem 

by developing a reward function based on the 

knowledge domain (shaping reward) for kinematic 

mobile robots using improved DQN. 

In summary, the use of an efficient reward 

function should be highlighted throughout system 

development, particularly in the RL algorithm. 

According to the previous papers [31, 32] combining 

both types of reward functions can also assist the 

system in learning tasks easily and effectively. Several 

previous papers [28, 30, 33] have successfully 

demonstrated that the reward function based on 

shaping can accelerate the learning process. 

Therefore, the purpose of conducting this experiment 

is to apply the concept of an effective reward 

function based on a combination of sparse and non-

sparse (shaping reward) to overcome the 

weaknesses that exist in the reward function of the 

SAC algorithm [16], that can help agents learn 

correctly while also accelerating the learning process 

in terms of  maturity to adapt the environment.  

 

 

3.0 METHODOLOGY 
 

The study's main objective is to develop a SAC 

control system that will control the robot without 

specific instructions based on a suitable reward 

function that can assist learning and improve 

navigation accuracy. MATLAB and Simulink are used 

extensively in this system's development training and 

simulation phases. Several types of reward functions 

derived from a combination of sparse and shaping 

reward were designed to evaluate the significance 

and effectiveness of this study.  

 

3.1 SAC Agent Development 

 

Based on Figure 1 shows the block diagram 

developed in the simulation. The navigation input is 

based on the location's initial and target values. 

Then, the system will operate and be controlled by 

the SAC agent based on the trial-and-error concept. 

Through the process of control using SAC, the system 

will learn randomly and generate action for the next 

movement as an output of the system. Lastly, the 

system will produce observations and rewards to be 

used as the next input to the controller system for 

learning and exploring in the environment.  

Divided into four categories: SAC controller 

system, mobile robot, environment, and mobile robot 

interaction with the environment. Firstly, the SAC 

controller system has input based on observation 

(current position robot, Lidar ray, target position, 

difference distance, and total difference), and the 

output is action (linear and angular velocity). Next, 

the SAC system provides linear and angular velocity 

input to the mobile robot, which produces an output 

that includes the robot's current position and Lidar 

ray reading while the environment only outputs the 

target position (x, y, theta). Finally, mobile robot 

interaction with the environment generates response 
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output based on the initial and target distances (x, y, 

theta) and the total difference. 

 

 
Figure 1 Block diagram of the system development 

 

 

A. SAC Agent  

 
SAC is a model-free algorithm with applies the off-

policy method [14] in the learning process. In 

addition, SAC agents use actor and critic as function 

approximators to select the next action. In order to 

develop the agent and train the system to perform 

actions based on the critic and actor functions, the 

rlSACAgent (agent function) [34] is utilized with the 

specified actor and critic, as depicted in Equation 

(1). 
  (1) 

In this research, the implementation includes the 

utilization of two critics to enhance the stability of the 

optimization network [14]. Consequently, the agent is 

created within a simulation, as represented by 

Equation (2). 

 (2) 

To implement the function of the reinforcement 

learning concept using Simulink as in Figure 2, several 

features such as observation, action, reward, and 

isDone condition must be developed in this work. 

 

 
Figure 2 Block of Simulink used in Reinforcement Learning  

 

 

B. SAC Neural Network Structure 

 
The neural network in the SAC is designed to increase 

the system's intelligence and robustness. In SAC, 

there are two parts of network, first is for the actor 

network and the second part is the critic network.  

According to Figure 3, the network's output 

follows a Gaussian distribution, indicating that the 

action is generated by probability distribution. The 

Gaussian distribution layer is constructed by 

combining the standard deviation and mean to 

determine the action value with high precision. 

 

 
Figure 3 Flow chart of actor network system by using the 

Deep network designer application 

 

 

In Figure 3, the actor network has a single input 

that utilizes the features input layer, which contains 

numeric scalar data. The network layer connector is 

implemented using the full connector layer, and the 

activation layer for the hidden layer is set as the ReLU 

layer. At the end of the standard deviation section, 

the softplus layer is used exclusively as an activation 

layer. 

In this research, the full connector layer is 

preferred over the convolution layer because it can 

leverage all the features from the previous layer's 

combination [35]. The ReLU activation function layer 

is extensively used throughout the network to prevent 

simultaneous activation of all neurons and reduce 

training time [36]. As shown in Figure 3, the softplus 

activation function layer is employed in the standard 

deviation section to ensure positive output values. 

Moreover, the softplus layer, being a smoother 

continuous version of the ReLU layer, also generates 

a Gaussian policy in the actor network. 

In the meantime, the critic network is designed to 

take input from observations and actions. To improve 

decision-making stability and efficiency, the critic 

network is updated using two networks. It's worth 

noting that the structure of the critic network remains 

the same for both critic 1 and critic 2 networks in this 

research. Both network structures used similar designs 

are illustrated in Figure 4. Specifically, the critic 

network utilizes the feature input layer (input layer), 

the linear function layer using the fully connected 
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layer as the connector for all and the ReLU activation 

function layer as the hidden layer. The output of this 

network is then used as input for the actor-network. 

The critic network plays a crucial role by providing 

criticisms or comparisons, and its values are 

continuously updated to improve the decision-

making process in subsequent steps.  

 
Figure 4 Flowchart of first or second critic network system by 

using the Deep network designer application 

 

 

C. Observation Space 

 

In this topic, observation space (observation signal) is 

an input to the network system that the agent uses to 

learn how to improve the system to increase the 

agent's efficiency in controlling navigation 

instructions to the robot. This robot uses 46 

observation signal inputs in total, including position (x, 

y, theta), Lidar ray (36 rays), target position (x, y, 

theta), error vector (x, y, theta), and total difference. 

As illustrated in Figure 5, these signals were used for 

the observation feature. 

 

 
Figure 5 Block diagram of the system development 

 

 

For the observation space part, the agent utilised 

the robot's current position and target position to 

determine movement and distance differences for 

the navigation. The total distance difference is 

calculated as follows in Equations (3)-(7). 

Equation (3) and Equation (4) describes an error for 

each of the two axes, x and y. The value will be 

updated as an observation parameter in the 

differential between the actual and the target 

position. 

                    (3) 

and, 

 
(4) 

where  is the error vector axis -x,   is the error 

vector axis -y,  is the current axis-x,  is the current 

axis-y,  is the target axis-x and  is the target axis-y. 

The error vector theta(θ) is differently calculated 

compared with vector-x, y because it is a rotation of 

axes depending on the simulation platform. Table 1 

describes the error θ value based on their condition 

criteria to estimate the value of positioning error for 

the body robot. 

 
Table 1 Error theta (θ) value based on their condition criteria 
 

Case Angle error condition Error value 

1 θc > 0 && θt >0 θt − θc 

2 θc > 0 && θt <0 - θt + (π− θc) 

3 θc <0 && θt >0 θt + (π − θc) 

4 θc <0 && θt <0 θt − θc 

5 θc = =0 θt 

where θc is the current theta(θ) and θt is the target theta(θ). 

 
(5) 

and, 

 
(6) 

where  is initial axis-x and  is initial axis-y. is the 

value for the distance between current to target 

position and  is the value for the distance from the 

initial target to the target position. 

Both of value used to determine total difference 

distance ( )  can be written as follow Equation (7). 

 (7) 

During the navigation phase, three-movement 

parameters were used: axis-x, axis-y, and theta 

(orientation angle of body robot). Figure 6 

demonstrates two different situations for the robot's 

orientation angle. The structure of the angle rotation 

ratio is important for assisting in the development of 

the system more effectively, and that concept was 

also used in designing the angle correction reward to 

improve the accuracy of the robot's angle position. 

 

Figure 6 Angle of rotation for the mobile robot in this study 
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Essentially, a Lidar sensor detects obstacles and the 

surroundings to direct the robot's movement. In this 

work, 36 rays were applied for all training and 

simulations. The reason for adopting this small Lidar 

value is to assist the agent in evaluating and 

producing a minimum Lidar value for analysis. 

Furthermore, it can reduce the complexity of data 

processing.  

 

D. Action Space 

 
In this development, two types of action spaces are 

used for differential drive kinematics: 1. linear velocity 

and 2. Angular velocity. Since the action space(at) is 

a system output, so the neural network and system 

employed must also be selected based on the 

action that the robot will perform. In this research, a 

continuous action space is used to control the linear 

and angular velocity of the robot movement and 

ranges between -1 and 1 for the action, as 

mentioned in Equation (8). 

 

 
(8) 

 

E. Reward Function 

 

Our objective in this study is to investigate the reward 

function(rt) and whether it would affect the result of 

the simulation. Previous articles [16, 24] have 

emphasized the importance of aligning the reward 

function with the mission requirements. Rewards are 

essential for motivating and assisting agents in 

efficiently completing tasks. In the realm of RL, 

successful outcomes are generously rewarded while 

poor performance is penalized. To explore different 

approaches, this research introduces four types of 

reward functions: 

 

1. Reward function with angle correction (RFAC) 

2. Reward function without angle correction 

(RFWAC) 

3. Reward function without sparse reward (RFWSR)  

4. Reward function without sparse reward and 

angle correction (RFWSRAC) 

 

The development of the reward function is based 

on carefully analyzed criteria that are specifically 

tailored for the navigation task. Initially, the RFWSRAC 

incorporates the basic reward function for a mobile 

navigation robot, encompassing avoidance, 

distance, straight-line movement, and spinning 

movement. Subsequently, the RFWSR is enhanced by 

integrating angle correction into the RFWSRAC. 

Through observation, weaknesses related to 

exploitation learning were identified. To address 

these limitations, this research introduces the RFAC, 

which enhances the reward system by including an 

accomplishment reward based on sparse rewards. 

The RFAC incorporates avoidance, distance, straight-

line movement, spinning movement, 

accomplishment, and angle correction as part of its 

reward function system. Finally, the RFWAC is 

designed without the angle correction reward to 

facilitate a comparison of its effectiveness with the 

comprehensive RFAC, which includes all the 

developed reward functions. 

This section provides detailed explanations of 

each developed reward function and its purpose in 

providing effective rewards to guide the system 

towards achieving its objective in the navigation 

process, from the initial to the target position. The 

basic reward setup, utilizing the shaping reward 

function, involves incrementally rewarding the robot 

as it approaches the target position. On the other 

hand, the accomplishment reward function relies on 

sparse rewards, which are awarded when the robot 

successfully meets the criteria specified by the isDone 

condition (referring Table 4) for its position. The 

primary reward function is the distance reward, 

which calculates rewards based on the robot's 

proximity to the target. Additionally, five other 

fundamental criteria are used to assess the agent's 

performance. The avoidance reward assigns a 

positive value based on minimum distance by the 

Lidar robot to obstacle. The straight-line movement 

reward encourages the robot to move in a straight 

path based on linear velocity and penalizes spinning 

movements based on angular velocity. The 

accomplishment reward is the only sparse reward 

used in this research, and it is activated when the 

robot reaches the target pose as defined by the 

isDone condition. The agent receives an additional 

reward if it successfully reaches the target position. 

The angle correction reward is an additional function 

that provides rewards based on the robot's body 

positioning within a radius of less than 1 meter from 

the target position. It assigns higher rewards for 

movements that bring the robot closer to the target 

and penalizes movements away from the target. 

Table 2 depicts about the value for each reward 

function, and Table 3 describes the type of reward 

used in this development with its function. 

 
Table 2 Value for each reward 

 

Reward Value 

RFAC RFWAC RFWSR RFWSRAC 

Avoidance  0.01* R2 0.01 * R2 0.01 * R2 0.01 * R2 

Straight line 

movement 

1* ν2 1* ν2 1* ν2 1* ν2 

Spinning 

movement 

-1* ω2 -1* ω2 -1* ω2 -1* ω2 

Distance 1*DT 1*DT 1*DT 1*DT 

Accomplish

ment  

P*2000 P*2000 not use not use 

Angle 

correction 

1*E not use 1*E not use 

where ν is the linear velocity, ω is the angular velocity, R is the 

minimum range of Lidar, DT is the total distance from target position 

and P is the accomplishment(termination) reward. 
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Table 3 Type of reward used with their function 

 

Reward Function Type of 

Reward  
Avoidance  Avoid nearest obstacle Shaping  

 Straight line 

movement 

Encourage straight line 

motion 

Shaping  

Spinning 

movement 

Discourage going in circle Shaping  

Distance Distance to target position Shaping  

Accomplishment  Accomplish to target 

position 

Sparse  

Angle correction Encourage angle 

correction 

Shaping  

 

 

Based on Table 3, the rewards that are used, as 

well as the types of reward categories that represent 

different functions in guiding the agent to the target 

position are intended to demonstrate their 

effectiveness.  

Equation (9) designates the reward function with 

angle correction (RFAC) with a combination of 

sparse (accomplishment reward) and shaping 

rewards. In contrast, Equation (10) designates the 

reward function without angle correction (RFWAC), 

Equation (11) designates the reward function without 

accomplishment reward (RFWSR), and Equation (12) 

designates the reward function without 

accomplishment reward and angle correction 

(RFWSRAC). 

 

 

(9) 

 

(10) 

 
(11) 

 

(12) 

 

where ν is the linear velocity, ω is the angular 

velocity, R is the minimum range of Lidar, DT is the 

total distance from target position and P is the 

accomplishment reward. 

Equation (13) is an extra condition to activate 

reward function with angle correction. The condition 

will be triggered if the agent arrives in a radius less 

than 1 meter before the target position, which 

encourages the agent to make a correction angle 

and to credit reward based on the positioning of the 

agent in the rotation movement of the robot’s body. 

 
(13) 

where AC is an angle correction, E is an angle error 

condition,  is represented semi-circle of 360 degrees 

for the mobile robot movement and lastly  is the 

distance between current to target position is 

defined as in Equation (5) and m is a meter. 

In this experiment, the effectiveness of the reward 

system developed is crucial because each reward 

function has a significant impact on the robot's 

learning process when it interacts with the 

environment. For example, the accomplishment 

reward (sparse reward) is used to help the robot 

understand the importance of exploitation 

compared to exploration. It improves the quality of 

exploitation while reducing exploration, which is less 

important for learning. Exploitation is vital because 

the robot utilizes its knowledge to successfully 

complete tasks, whereas exploration encourages the 

robot to continuously learn and adapt to the 

environment based on the system's entropy value. 

 

F. isDone 

 

In navigation from the initial to the target position, 

the isDone function is used to accommodate the 

robot's boundary in determining the desired target. It 

allows the model to detect if the robot has 

successfully achieved the required task or failed to 

do so. There are four conditions to terminate the 

training process. The training episode ended when 1. 

The robot has arrived at to target location with 

tolerance, 2. The minimum range Lidar(robot) to wall 

or obstacle and any other object is crossed over, 3. 

Minimum and maximum theta (rotation position of 

the agent) and 4. The robot is reached maximum 

axis-x and axis-y. With this function, the system can 

stop the training if the robot has fulfilled the 

conditions. To determine several conditions, isDone 

uses a logic gate to execute containment action for 

the robot. Table 4 shows isDone condition used in this 

research. 
 

Table 4 Type of isDone using in this development 

 

Type of IsDone Condition 

Pose (target 

position with 

tolerance) 

cx < (tx ± 0.5) AND   cy < (ty ± 0.5) AND 

θc < (θt ± 0.25) 

Minimum Lidar to 

wall or obstacle 

cL< min lidar distance (0.5m) 

Minimum and 

maximum theta 

0 < θc< 2π OR 0 > θc > -2π 

Maximum x and y 

axis 

only execute the running if the robot 

still exists on map 

where cx is the current axis-x, cy is the current axis-y, tx is the target 

axis-x, ty is the target axis-y, θc is the current theta(θ), θt is the target 

theta(θ), cL is the current Lidar range, AND is the AND logic gate and 

OR is the OR logic gate.  

 

 

G. Environment Setup 
 

The development of a two-dimensional (2D) map in 

MATLAB as per Figure 7 with the binary 

OccupancyMap method is used to create the 

robot's environment based on an occupancy grid 

with binary values. The dimensions used in this study 

for the training and simulation are 25 meters x 25 

meters. 



44                           Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49 

 

 

 
Figure 7 2D map using for the simulation 

 

 

The parameters in the training process are shown 

in Table 5. Hyperparameter is a factor in determining 

the effectiveness of the system. The SAC algorithm 

allows the system maximum entropy for the 

discounted expected reward [14]. However, this 

framework is less sensitive to hyperparameter tuning 

consideration during the training process. The initial 

and target positions for the evaluation of the system 

are listed in Table 6. 

 
Table 5 Hyperparameter in all simulations 

 

Hyperparameter Value 

optimiser Adam 

learning rate 103 

discount factor 0.99 

replay buffer size 106 

target smooth factor 103 

mini batch size 256 

sample time 0.1 

episode maximum step 300 

 
Table 6 Location of initial and target for the simulation 

 

Axis 
Position 

Initial Target 

x 15 5 (±0.5) 

y 15 5(±0.5) 

θ  π /2 3π/2(±0.25) 
 

 

 

H. Mobile Robot Model 

 

One of the drives for a mobile robot is the use of 

differential drive kinematic to control movement. To 

determine the position of the mobile robot, three-

element vectors (x, y, and theta(θ)) are used, with an 

x-y axis position in meters and a vehicle heading 

known as theta (θ) in radians. Time derivative states 

are determined by using the derivate function and 

the robot's current state. Furthermore, the derivative 

function is used to calculate the motion of a mobile 

robot with referring [37, 38]. The robot's movement 

will generate a pose, which will be used as the 

system's main observation. Figure 8 displays a mobile 

robot based on differential drive kinematics. 

 
Figure 8 Mobile robot using differential drive kinematic 

 

 

where x is the x-position for the robot, y is the y-

position for the robot, d is the track width (in meters), 

θ(Theta) is the heading rotation( in radians),  r is the 

wheel radius (in meters), v is the linear velocity (in 

meters/second), ω is the angular velocity (in 

meters/second), vR is the velocity of the right wheel 

(in meters/second) and vL is the velocity of the right 

wheel (in meters/second). 

Meanwhile, a differential drive is determined by 

two factors are linear velocity (v) and angular 

velocity (ω). To define v and ω as described in 

Equation (14) – (15). The velocity of the robot is 

derived by taking the velocity of the right wheel (vR) 

and the velocity of the left wheel (vL). 

  

 

(14) 

 

then,  

 

 

(15) 

MT = [ x, y, θ] T is a coordinate position based on a 

differential motion that can thus be defined following 

Equation (16) to determine the location and 

orientation of the robot movement. T denotes the 

current coordinates position. 

 

(16) 

In the development of mobile robots, a 

differential-drive kinematic model based on a simple 

vehicle dynamic factor is used for simulation. Table 7 

describes the properties used in this study. 
 

Table 7 Properties used for Differential drive kinematic 

model  
 

Parameters Value 

Input 
Linear velocity(ν) & Angular 

velocity(ω) 

Wheel radius(m)  0.05 

Wheel speed 

range(rad/s) 
[-inf inf] 

Track width (m) 0.2 

Initial state [initial X; initial Y; initial Theta] 

 

 



45                           Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49 

 

 

3.2 Training and Simulation Setup 

 

Firstly, we conduct four sets of reward function studies 

to investigate the reliability of the performance 

based on learning accuracy, as shown in Table 2. This 

experiment has four reward functions, RFAC, RFWAC, 

RFWSR, and RFWSRAC. The training process will 

record in 1000 episodes. The training data will be 

collected and compared for each reward function. 

During training, the agent will learn and explore an 

environment where the system will record all reward-

related data and the number of steps for analysis. 

After the training, the agent will be saved and used 

to evaluate their performance with the same initial 

and target position. For the simulation, each 

movement of the agent will be recorded to validate 

the reward function's efficiency and accuracy. To 

perform experiments with four different reward 

functions, with all parameters remaining constant for 

both reward function systems, including the system's 

input and output.  

Furthermore, we analysed the collected data and 

evaluated the result based on the agent's ability to 

navigate from the initial to the target position. To 

ensure that our study's objectives are achieved, we 

propose two approaches: 1. complete the training 

process, and 2. evaluate the agent trained with the 

simulation. 

 

 

4.0 RESULTS AND DISCUSSION 

 
To achieve our objective of the study, the result of 

the simulation can determine whether the system 

developed to deliver our objective or target. 

 

4.1 Training Result 

 

In this study, the training of the agent in interaction 

with the environment is determined by two aspects: 

average reward, and step of movements. 

The average reward is displayed in Figure 9. 

Overall, these results indicate that there is a clear 

tendency for a similar pattern. Early in the learning 

process, the agent will have a high risk of exploration 

due to fluctuating rewards and getting bad result. 

After the 700th episode, it can see that the agent 

started to adapt and mature in an environment to 

get higher rewards. Based on the average result 

reward for RFWSR takes longer to stable compared 

with RFAC and RFWAC. This result is most likely related 

to the reward function, where RFWSR stands for 

reward function without sparse reward 

(accomplishment reward). Basically, the sparse 

reward is used as a containment action to reduce 

unnecessary exploration and   provide direct results if 

their goal is achieved. Meanwhile, RFWSRAC 

probably suffers in learning because it lacks the 

accomplishment and angle correction reward 

functions. All reward functions are fast matured after 

the 700th episode refer to Figure 9 where the reward 

is more stable and consistence. However, it must 

measure the system's maturity based on learning 

accuracy. 

 

 
Figure 9 The result of training for average reward 

 

 

Figure 10 present the average steps for 1000 

episodes of the training. Another possible 

explanation for this is that exploration demonstrates 

the instability of the use of maximum steps induced 

by the obstacle wall, making it more difficult for the 

agent to explore the environment during an early 

stage due to the narrower space. Then, the agent 

starts understanding and adapting to the 

environment based on the increment of the steps. In 

comparison, RFAC and RFWAC use steps less after 

the 700th episode, whereas RFWSR and RFWSRAC use 

maximum steps at the end of the training after the 

700th episode. A possible explanation for this might 

be that RFAC and RFWAC are integrated with sparse 

reward into the reward function system, whereas 

RFWSR and RFWSRAC are not.  
 

 
Figure 10 The result of training for average steps 

 

 

4.2 Simulation Result 
 

The simulation result is produced by a validated 

system after the training session, where the agent is 

used to display behaviours of the agent. A 

comparison of distance error and error percentage 

can indicate an agent's accuracy in navigating to 

the desired location. To determine distance error 

percentage as following Equation (17). 
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(17) 

where  is the target value and   is the arrived 

value. 

To make it more straightforward to evaluate 

system performance, an average percentage to 

determine the best overall system is used. That is the 

average error percentage in the Equation (18). 

 

(18) 

where AE% is average error percentage, s1% is the 

error percentage vector-x, s2% is the error 

percentage vector-y, s3% is the error percentage 

vector-theta and n is number of samples. 

According to Table 8, the smaller the distance 

error or error %, the more accurate the agent's 

position. The simulation process shows that RFAC 

performs significantly better than RFWAC, RFWSR, 

and RFWSRAC based on average error percentage. 

RFAC obtained a value of 3.9% for the x-axis, 9.54% 

for the y-axis, 1.53% for theta, and an average error 

of 4.99%. Although RFWAC recorded 5.77% is the 

second best with percentage positions of 4.42%, 

9.8%, and 3.08%. Moreover, RFWSRAC had a high 

average error percentage of 99.25%, followed by 

RFWSR, which had a percentage of 63.26%. In 

contrast, the worst results are divided into the x, y-

axis, and theta position. Regarding the Theta 

position, RFWSRAC is the lowest with a value of 

234.68%, while RFWSR is 21.75%. Then, on the x, y-axis, 

and RFWSR has the highest error % of 70%, 98.04%, 

while RFWSRAC has a slightly lower error % of 17.74%, 

and 45.34%. 

 
Table 8 The result of simulation 

 

Simulati

on 

Axis Position 

Final 

position 

Distance 

error (m/ 

radians) 

Error 

% 

Average 

error % 

RFAC x 5.2 0.2 3.9 4.99 

y 5.48 0.48 9.54 

θ  4.64 0.07 1.53 

RFWAC x 5.22 0.22 4.42 5.77 

y 5.49 0.49 9.8 

θ  4.57 0.15 3.08 

RFWSR x 1.5 3.5 70.00 63.26 

y 0.1 4.9 98.04 

θ  3.69 1.03 21.75 

RFWSRA

C 

x 4.11 0.89 17.74 99.25 

y 2.73 2.27 45.34 

θ  -6.35 11.06 234.68 

 

 

Through movement trajectories categorized as x 

and y-axis in Figure 11 and theta rotation position in 

Figure 12. In terms of accuracy, RFAC and RFWAC 

outperform RFWSR and RFWSRAC (see Figure 11). 

Furthermore, RFAC and RFWAC movements are 

highly similar. RFWSR and RFWSRAC have lower 

accuracy, implying the importance of 

accomplishment reward (sparse reward) in helping 

the system learn more efficiently and quality. 

 

 
Figure 11 Movement of the agent based on the x and y-axis 

for the simulation 

 

 

The difference in the agent movement pattern for 

the rotation angle is shown in Figure 12. RFAC and 

RFWAC are almost marginal, but the difference 

between RFWSR and RFWSRAC is quite different. 

RFAC is almost accurate in rotation position, whereas 

RFWSRAC is far from the target rotation angle due to 

the negative value. The factor affecting the 

movement rotation in RFWSRAC is the non - 

availability of an angle correction reward to 

motivate in acquiring rotation accuracy and no 

accomplishment reward, which makes the learning 

process more difficult. 

 

 
Figure 12 Movement rotation of angle for the simulation 

 

 

Figure 13 indicates the simulation result for all 

reward functions. RFAC and RFWAC shows that the 

agent was successful in navigating from an initial to a 

target location with tolerance, which is also can refer 

to in Table 6 & 8. However, RFWSR shows the worst 

movement due to a far from the target position until 

it hits the limitation of the map, as shown in Figure 13. 

The results of the RFWSRAC simulation, where the 

result is not accurate with more marginal values on 

the x- and y-axis. Still, the error percentage is high for 

rotation based on body rotation is not an accurate 

position due to incorrect turning rotation, and it 

produces a negative value. 
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These experiments demonstrated agents 

successfully navigating from the start to the target 

location using two reward functions, which are RFAC 

and RFWAC with tolerance (as referred to in Table 6) 

but not RFWSR and RFWSRAC. However, as shown in 

the robot's accuracy in reaching the target position is 

vital in determining the effectiveness of the 

developed reward system. Through this experiment, 

the result of the training and simulation systems that 

employ appropriate reward strategies especially, 

RFAC can assist robots in learning and adapting to 

their environment more efficiently and quickly 

mature. The fusion of the sparse and shaping reward 

has been demonstrated through this study and 

successfully improved the agent's accuracy and 

maturity. 

This study shows that using a good reward 

function can help stimulate the robot to interact 

more effectively, where the factors of exploration 

and exploitation needs to be considered. The 

shaping reward will help improve the exploration 

process by guiding action to the objective. The 

sparse reward can reward the process if it is 

successful based on binary system reward {true-1, 

false -0}. This study demonstrated that shaping 

reward is beneficial in the exploration process 

through this experiment, especially distance reward 

influences the robot to the target position. For sparse 

rewards, which will reward if the system succeeds in 

achieving the goal and help the system learn more 

easily and it is very effective in exploitation learning. 

Commonly, the SAC algorithm is applied to solve 

problems involving high-dimensional state action for 

continuous action[14], as demonstrated in the results 

of our experiments in Figure 13, which successfully 

navigate the robot to the initial to target position, but 

the results are different due to the use of different 

reward function systems. Based on the previous 

article emphasising the use of the reward function in 

the Reinforcement learning system, [24] conducted 

an experiment based on the researcher's knowledge 

domain that uses the shaping reward in assisting the 

learning system. In contrast, this study introduces a 

fusion of shaping and sparse reward in helping to 

accelerate the maturation of robot learning based 

on a stable learning process by referring to Figure 9, 

where it matured after the 700th episode. 

Furthermore, the development of this fusion can 

improve learning performance based on target 

position accuracy (refer to Table 8). This article [6] 

uses only shaping rewards for reward function 

systems in SAC and DDPG methods but requires the 

7000th episode to train the learning robot. 

Compared to this study, the robot successfully learns 

with high accuracy and matures quickly to navigate 

to the target location with only one thousand training 

episodes based on the reward function that uses 

fusion sparse and shaping reward with refer to RFAC. 

Finally, the conclusion is that the reward system 

must meet the requirements and that the agent must 

be able to self-motivate to achieve the objective 

system. For example, a person that receives 

appropriate encouragement or incentive to 

motivate himself will learn more effectively. 

 

 

 

 

 

Figure 13 The result of the simulation for all reward functions 
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4.0 CONCLUSION 
 

This research is motivated by implementing fusion 

sparse and shaping rewards in SAC DRL for mobile 

robot navigation. To enable the system to learn 

effectively, using the reward function appropriately 

and precisely assists the system in learning accuracy. 

Based on the results of the experiment, RFAC 

produces a low average error value of 4.99%, proving 

that the employment of fusion sparse and shaping 

reward in SAC increases learning accuracy and 

maturity. However, reward function without sparse 

reward, such as RFWSR and RFWSRAC, produce high 

average error values of 63.26% and 99.25%, 

respectively. 
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