

86:2 (2024) 37-49|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI:

|https://doi.org/10.11113/jurnalteknologi.v86.20147|

Jurnal

Teknologi

Full Paper

FUSION SPARSE AND SHAPING REWARD

FUNCTION IN SOFT ACTOR-CRITIC DEEP

REINFORCEMENT LEARNING FOR MOBILE ROBOT

NAVIGATION

Mohamad Hafiz Abu Bakara, Abu Ubaidah Shamsudina*, Zubair Adil

Soomroa, Satoshi Tadokorob, C. J Salaanc

aFaculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn

Malaysia, 86400 Batu Pahat, Johor, Malaysia
bTohoku University, 2 Chome-1-1 Katahira, Aoba Ward, Sendai, Miyagi 980-

8577, Japan
cDepartment of Electrical Engineering and Technology, MSU-Iligan Institute

of Technology, Andres Bonifacio Ave, Iligan City, 9200 Lanao del Norte,

Philippines

Article history

Received

4 April 2023

Received in revised form

24 August 2023

Accepted

2 October 2023

Published Online

18 February 2024

*Corresponding author

ubaidah@uthm.edu.my

Abstract

Nowadays, the advancement in autonomous robots is the latest influenced by the development of a world surrounded by

new technologies. Deep Reinforcement Learning (DRL) allows systems to operate automatically, so the robot will learn the next

movement based on the interaction with the environment. Moreover, since robots require continuous action, Soft Actor Critic

Deep Reinforcement Learning (SAC DRL) is considered the latest DRL approach solution. SAC is used because its ability to

control continuous action to produce more accurate movements. SAC fundamental is robust against unpredictability, but

some weaknesses have been identified, particularly in the exploration process for accuracy learning with faster maturity. To

address this issue, the study identified a solution using a reward function appropriate for the system to guide in the learning

process. This research proposes several types of reward functions based on sparse and shaping reward in SAC method to

investigate the effectiveness of mobile robot learning. Finally, the experiment shows that using fusion sparse and shaping

rewards in the SAC DRL successfully navigates to the target position and can also increase accuracy based on the average

error result of 4.99%.

Keywords: Soft Actor Critic Deep Reinforcement Learning (SAC DRL), Deep Reinforcement Learning, Mobile robot navigation,

Reward function, Sparse reward, Shaping reward

Abstrak

Pada masa kini, kemajuan dalam robot autonomi adalah dipengaruhi oleh perkembangan dunia terkini yang dikelilingi

dengan teknologi baharu. “Deep Reinforcement Learning” (DRL) membolehkan sistem beroperasi secara automatik, justeru

robot akan mempelajari pergerakan seterusnya berdasarkan interaksi dengan persekitaran. Selain itu, disebabkan robot

memerlukan tindakan berterusan, “Soft Actor Critic Deep Reinforcement Learning” (SAC DRL) dianggap sebagai

penyelesaian pendekatan DRL yang terkini. SAC digunakan kerana ia boleh mengawal tindakan berterusan untuk

menghasilkan pergerakan yang lebih tepat. Tambahan pula, asas SAC adalah teguh terhadap ketidakpastian, tetapi

terdapat beberapa kelemahan telah dikenal pasti, terutamanya dalam proses penerokaan untuk pembelajaran ketepatan

dengan kematangan yang cepat. Bagi menangani isu ini, kajian mengenal pasti penyelesaian terkini menggunakan fungsi

ganjaran yang sesuai untuk sistem sebagai panduan di dalam proses pembelajaran. Penyelidikan ini mencadangkan

beberapa jenis fungsi ganjaran berdasarkan ganjaran jarang dan membentuk di dalam kaedah SAC untuk menyiasat

keberkesanan pembelajaran robot mudah alih. Akhir sekali, eksperimen menunjukkan bahawa penggunaan gabungan

ganjaran jarang dan membentuk di dalam SAC DRL berjaya menavigasi ke kedudukan sasaran dan juga boleh meningkatkan

ketepatan berdasarkan hasil purata ralat sebanyak 4.99%.

Kata kunci: Soft Actor Critic Deep Reinforcement Learning (SAC DRL), Deep Reinforcement Learning, Robot mudah alih

navigasi, Fungsi ganjaran, Ganjaran jarang, Ganjaran membentuk

© 2024 Penerbit UTM Press. All rights reserved

38 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

1.0 INTRODUCTION

With the evolution of the modern era nowadays, the

use of artificial intelligence-based technology has

emerged as a technical breakthrough that can

improve the conventional method [1, 2], which is a

trend that is widely used in robot control. There are

various studies carried out by previous researchers

involving artificial intelligence especially robot control

by using Reinforcement Learning [3, 4] and there are

different technologies that have been introduced to

mobile robot applications for the navigation process.

Most of the studies conducted have indicated the

trends of some researchers in new technologies that

have been implemented to improve the mobile

robot abilities using machine learning [5-7].

Machine Learning is one of the effective

branches of AI (Artificial intelligence), which is

practically used for training the robot without

complete human supervision [8]. Reinforcement

Learning enables the agent (robot) to learn the next

action based on the interaction between the agent

and the environment, allowing the system to run and

control autonomously. Recently, there are many

algorithms on Reinforcement learning among which

are Q-Learning [9, 10], SARSA [11], DQN [12], DDPG

[13], and SAC [14]. There is no doubt that these will

continue to make headlines in the coming years.

In RL, there are two methods: on-policy and off-

policy [15], with the off-policy becoming the

preferred method because it can save the learning

process in the replay memory [12]. Furthermore,

replay memory can improve the learning process

effectively based on learning factors based on

experience. At the same time, the off-policy is

divided into two states consisting of deterministic and

stochastic policies. Deterministic is a method based

on no probability of action selection. In contrast,

Stochastic policy is based on randomness probability

action, which allows the agent to explore further and

improve its performance.

Recently, SAC is state of the art in RL which is

based on a stochastic policy that applies maximum

expected reward and entropy in the exploration

process. According to this article [14, 16], SAC still has

a lot of room for improvement, particularly in learning

accuracy and maturity, which can be attributed to

the correct and accurate use of the reward function.

Otherwise, using the inappropriate reward function

can also make the system development process

more complex and extensive due to the trial and

error process in determining the agent's ability to

learn effectively and quickly. Our motivation in

conducting this research can improve the SAC

development process, particularly the structure of

the reward function and can speed up the robot's

learning process in terms of maturity for a learning

curve.

To overcome this problem, we suggest producing

a reward function based on fusion sparse and

shaping reward in adapting the robot to learn better

and mature quickly. The main reason for using sparse

and shaping is to maximize the benefits of the

different reward type functions. Furthermore, the SAC

method's robot learning process can be improved by

introducing fusion sparse and shaping reward

functions.

2.0 RELATED WORK

In practice, DRL is a system that is one of the

autonomous system concept's characteristics.

Numerous autonomous applications in this sector

implemented DRL with varied uses [16-19], especially

the autonomous mobile robot in this study that is

based on navigation task [6, 7, 20]. There are two

types of policies commonly used and practiced in

DRL [15, 21], generally on-policy and off-policy. Both

have different policies and practices to how the

system is used. The concept of on-policy refers to a

method of behaviour policy that seeks to evaluate or

improve policies used to make decisions [15]. For off-

policy methods, the policy is to improve policies that

are not used to generate data and allow the agent

to explore the environment without adhering strictly

to policy [15]. Off-policy users are generally also due

to its main feature, which practices using replay

memory, which is very useful in the learning process

and assisting in performance [12]. Off-policy usually

includes two methods consisting deterministic and

stochastic especially using for continuous action. This

paper [14] demonstrates the effectiveness of a

stochastic policy that significantly helps the system

predict the following action with more significant

variance and is effective in exploration. Furthermore,

using a stochastic policy can reduce the repeated

selection of actions leading to overestimation in the

system network in DRL algorithms [22].

The type of control action is also an important

factor in determining the appropriate algorithm user

in the robot system. There are two types of control

actions for this [15] consisting of the continuous

action [23] and discrete action [12]. The use of

continuous action is main as an important indicator in

the solution's selection since the accuracy of the

navigation process is required in determining the

performance of this system. Based on this paper [6], a

comparative experiment in mobile robot navigation

uses two types of methods from the same action

category, DPPG, and SAC. Based on the results, SAC

has produced better performance on the simulation

results. The concept of SAC is explained in this work

[14], where stochastic policy is used as an actor

policy for the agent to learn. SAC maximises the use

of entropy when making decisions. This paper also

demonstrates the state-of-the-art performance

obtained by implementing the SAC in robot

applications based on continuous action hence

making it is an excellent option for the architecture

algorithm in this study. SAC also has a weakness that

can complicate the exploration process, particularly

39 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

the learning policy without pre-learning, that makes

learning challenging and takes a long time to the

maturity learning [16]. The solution for this issue is to

implement an appropriate reward function structure

that allows the system to learn more easily and

quickly, increasing the overall system's efficiency [24].

Previous research has identified various types of

reward functions, which are classified into two

reward categories: sparse and non-sparse (shaping

reward). The Sparse reward is a binary reward after

entire episodes rather than continuous feedback

after each action. Some processes, that are

discussed in the articles [25, 26] require sparse reward

in determining the exploration of the environment

and guiding the robot in system control. Sparse

rewards will also simplify and reduce the complexity

of the robot's exploration process in the environment

[26]. Article in [27] proposed Scheduled Auxiliary

Control (SACX) to simulate robot manipulation for the

exploration process in the environment by modifying

sparse rewards, but it has not yet been applied in the

real world. In fact, [26] demonstrates the benefits of

sparse reward to the UAV navigation system by using

DRL with nonexpert helpers in a large-scale

environment. This paper [25] investigates an

alternative by employing sparse reward RL in video

game environments and it has successfully overcome

the sparse reward system's weakness through a

combination of curiosity-driven exploration and

unsupervised auxiliary tasks.

In some previous research papers on non-

sparse(shaping) rewards from article [16], the SAC

algorithm is used to control an autonomous

underwater vehicle (AUV) and has introduced a

comprehensive external reward function to

overcome the weakness of sparse reward. In [28],

which addresses a limitation of the Partially

Observable Markov Decision Process (POMDP) for

UAV navigation and it is solved based on the non-

sparse reward function and introduces the specific

reward function based on domain knowledge. Yiqiu

Hu [29] released a paper in 2021 that used federated

reinforcement learning by implementing reward

shaping by experimenting on GridWorld and

successfully demonstrated a system that can

improve the efficiency and quality of training. In the

paper [30], the reward horizon (optimal bound for

reward function) is used in the MDP RL system to

conduct experiments on the shaping reward to

increase the speed of the training process. Articles

[24, 26] have conducted experiments by increasing

the speed of the training process through the

shaping rewards into the RL algorithm

implementation. [24] presented an additional subtask

reward function in the DRL policy to control the

manipulator for the purpose of controlling the

trajectory movement. These rewards can help the

agents to learn faster and to reduce mistakes in

exploiting the environment. In [31], an experiment

was conducted to solve the sparse reward problem

by developing a reward function based on the

knowledge domain (shaping reward) for kinematic

mobile robots using improved DQN.

In summary, the use of an efficient reward

function should be highlighted throughout system

development, particularly in the RL algorithm.

According to the previous papers [31, 32] combining

both types of reward functions can also assist the

system in learning tasks easily and effectively. Several

previous papers [28, 30, 33] have successfully

demonstrated that the reward function based on

shaping can accelerate the learning process.

Therefore, the purpose of conducting this experiment

is to apply the concept of an effective reward

function based on a combination of sparse and non-

sparse (shaping reward) to overcome the

weaknesses that exist in the reward function of the

SAC algorithm [16], that can help agents learn

correctly while also accelerating the learning process

in terms of maturity to adapt the environment.

3.0 METHODOLOGY

The study's main objective is to develop a SAC

control system that will control the robot without

specific instructions based on a suitable reward

function that can assist learning and improve

navigation accuracy. MATLAB and Simulink are used

extensively in this system's development training and

simulation phases. Several types of reward functions

derived from a combination of sparse and shaping

reward were designed to evaluate the significance

and effectiveness of this study.

3.1 SAC Agent Development

Based on Figure 1 shows the block diagram

developed in the simulation. The navigation input is

based on the location's initial and target values.

Then, the system will operate and be controlled by

the SAC agent based on the trial-and-error concept.

Through the process of control using SAC, the system

will learn randomly and generate action for the next

movement as an output of the system. Lastly, the

system will produce observations and rewards to be

used as the next input to the controller system for

learning and exploring in the environment.

Divided into four categories: SAC controller

system, mobile robot, environment, and mobile robot

interaction with the environment. Firstly, the SAC

controller system has input based on observation

(current position robot, Lidar ray, target position,

difference distance, and total difference), and the

output is action (linear and angular velocity). Next,

the SAC system provides linear and angular velocity

input to the mobile robot, which produces an output

that includes the robot's current position and Lidar

ray reading while the environment only outputs the

target position (x, y, theta). Finally, mobile robot

interaction with the environment generates response

40 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

output based on the initial and target distances (x, y,

theta) and the total difference.

Figure 1 Block diagram of the system development

A. SAC Agent

SAC is a model-free algorithm with applies the off-

policy method [14] in the learning process. In

addition, SAC agents use actor and critic as function

approximators to select the next action. In order to

develop the agent and train the system to perform

actions based on the critic and actor functions, the

rlSACAgent (agent function) [34] is utilized with the

specified actor and critic, as depicted in Equation

(1).
 (1)

In this research, the implementation includes the

utilization of two critics to enhance the stability of the

optimization network [14]. Consequently, the agent is

created within a simulation, as represented by

Equation (2).

 (2)

To implement the function of the reinforcement

learning concept using Simulink as in Figure 2, several

features such as observation, action, reward, and

isDone condition must be developed in this work.

Figure 2 Block of Simulink used in Reinforcement Learning

B. SAC Neural Network Structure

The neural network in the SAC is designed to increase

the system's intelligence and robustness. In SAC,

there are two parts of network, first is for the actor

network and the second part is the critic network.

According to Figure 3, the network's output

follows a Gaussian distribution, indicating that the

action is generated by probability distribution. The

Gaussian distribution layer is constructed by

combining the standard deviation and mean to

determine the action value with high precision.

Figure 3 Flow chart of actor network system by using the

Deep network designer application

In Figure 3, the actor network has a single input

that utilizes the features input layer, which contains

numeric scalar data. The network layer connector is

implemented using the full connector layer, and the

activation layer for the hidden layer is set as the ReLU

layer. At the end of the standard deviation section,

the softplus layer is used exclusively as an activation

layer.

In this research, the full connector layer is

preferred over the convolution layer because it can

leverage all the features from the previous layer's

combination [35]. The ReLU activation function layer

is extensively used throughout the network to prevent

simultaneous activation of all neurons and reduce

training time [36]. As shown in Figure 3, the softplus

activation function layer is employed in the standard

deviation section to ensure positive output values.

Moreover, the softplus layer, being a smoother

continuous version of the ReLU layer, also generates

a Gaussian policy in the actor network.

In the meantime, the critic network is designed to

take input from observations and actions. To improve

decision-making stability and efficiency, the critic

network is updated using two networks. It's worth

noting that the structure of the critic network remains

the same for both critic 1 and critic 2 networks in this

research. Both network structures used similar designs

are illustrated in Figure 4. Specifically, the critic

network utilizes the feature input layer (input layer),

the linear function layer using the fully connected

41 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

layer as the connector for all and the ReLU activation

function layer as the hidden layer. The output of this

network is then used as input for the actor-network.

The critic network plays a crucial role by providing

criticisms or comparisons, and its values are

continuously updated to improve the decision-

making process in subsequent steps.

Figure 4 Flowchart of first or second critic network system by

using the Deep network designer application

C. Observation Space

In this topic, observation space (observation signal) is

an input to the network system that the agent uses to

learn how to improve the system to increase the

agent's efficiency in controlling navigation

instructions to the robot. This robot uses 46

observation signal inputs in total, including position (x,

y, theta), Lidar ray (36 rays), target position (x, y,

theta), error vector (x, y, theta), and total difference.

As illustrated in Figure 5, these signals were used for

the observation feature.

Figure 5 Block diagram of the system development

For the observation space part, the agent utilised

the robot's current position and target position to

determine movement and distance differences for

the navigation. The total distance difference is

calculated as follows in Equations (3)-(7).

Equation (3) and Equation (4) describes an error for

each of the two axes, x and y. The value will be

updated as an observation parameter in the

differential between the actual and the target

position.

 (3)

and,

(4)

where is the error vector axis -x, is the error

vector axis -y, is the current axis-x, is the current

axis-y, is the target axis-x and is the target axis-y.

The error vector theta(θ) is differently calculated

compared with vector-x, y because it is a rotation of

axes depending on the simulation platform. Table 1

describes the error θ value based on their condition

criteria to estimate the value of positioning error for

the body robot.

Table 1 Error theta (θ) value based on their condition criteria

Case Angle error condition Error value

1 θc > 0 && θt >0 θt − θc

2 θc > 0 && θt <0 - θt + (π− θc)

3 θc <0 && θt >0 θt + (π − θc)

4 θc <0 && θt <0 θt − θc

5 θc = =0 θt

where θc is the current theta(θ) and θt is the target theta(θ).

(5)

and,

(6)

where is initial axis-x and is initial axis-y. is the

value for the distance between current to target

position and is the value for the distance from the

initial target to the target position.

Both of value used to determine total difference

distance () can be written as follow Equation (7).

 (7)

During the navigation phase, three-movement

parameters were used: axis-x, axis-y, and theta

(orientation angle of body robot). Figure 6

demonstrates two different situations for the robot's

orientation angle. The structure of the angle rotation

ratio is important for assisting in the development of

the system more effectively, and that concept was

also used in designing the angle correction reward to

improve the accuracy of the robot's angle position.

Figure 6 Angle of rotation for the mobile robot in this study

42 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

Essentially, a Lidar sensor detects obstacles and the

surroundings to direct the robot's movement. In this

work, 36 rays were applied for all training and

simulations. The reason for adopting this small Lidar

value is to assist the agent in evaluating and

producing a minimum Lidar value for analysis.

Furthermore, it can reduce the complexity of data

processing.

D. Action Space

In this development, two types of action spaces are

used for differential drive kinematics: 1. linear velocity

and 2. Angular velocity. Since the action space(at) is

a system output, so the neural network and system

employed must also be selected based on the

action that the robot will perform. In this research, a

continuous action space is used to control the linear

and angular velocity of the robot movement and

ranges between -1 and 1 for the action, as

mentioned in Equation (8).

(8)

E. Reward Function

Our objective in this study is to investigate the reward

function(rt) and whether it would affect the result of

the simulation. Previous articles [16, 24] have

emphasized the importance of aligning the reward

function with the mission requirements. Rewards are

essential for motivating and assisting agents in

efficiently completing tasks. In the realm of RL,

successful outcomes are generously rewarded while

poor performance is penalized. To explore different

approaches, this research introduces four types of

reward functions:

1. Reward function with angle correction (RFAC)

2. Reward function without angle correction

(RFWAC)

3. Reward function without sparse reward (RFWSR)

4. Reward function without sparse reward and

angle correction (RFWSRAC)

The development of the reward function is based

on carefully analyzed criteria that are specifically

tailored for the navigation task. Initially, the RFWSRAC

incorporates the basic reward function for a mobile

navigation robot, encompassing avoidance,

distance, straight-line movement, and spinning

movement. Subsequently, the RFWSR is enhanced by

integrating angle correction into the RFWSRAC.

Through observation, weaknesses related to

exploitation learning were identified. To address

these limitations, this research introduces the RFAC,

which enhances the reward system by including an

accomplishment reward based on sparse rewards.

The RFAC incorporates avoidance, distance, straight-

line movement, spinning movement,

accomplishment, and angle correction as part of its

reward function system. Finally, the RFWAC is

designed without the angle correction reward to

facilitate a comparison of its effectiveness with the

comprehensive RFAC, which includes all the

developed reward functions.

This section provides detailed explanations of

each developed reward function and its purpose in

providing effective rewards to guide the system

towards achieving its objective in the navigation

process, from the initial to the target position. The

basic reward setup, utilizing the shaping reward

function, involves incrementally rewarding the robot

as it approaches the target position. On the other

hand, the accomplishment reward function relies on

sparse rewards, which are awarded when the robot

successfully meets the criteria specified by the isDone

condition (referring Table 4) for its position. The

primary reward function is the distance reward,

which calculates rewards based on the robot's

proximity to the target. Additionally, five other

fundamental criteria are used to assess the agent's

performance. The avoidance reward assigns a

positive value based on minimum distance by the

Lidar robot to obstacle. The straight-line movement

reward encourages the robot to move in a straight

path based on linear velocity and penalizes spinning

movements based on angular velocity. The

accomplishment reward is the only sparse reward

used in this research, and it is activated when the

robot reaches the target pose as defined by the

isDone condition. The agent receives an additional

reward if it successfully reaches the target position.

The angle correction reward is an additional function

that provides rewards based on the robot's body

positioning within a radius of less than 1 meter from

the target position. It assigns higher rewards for

movements that bring the robot closer to the target

and penalizes movements away from the target.

Table 2 depicts about the value for each reward

function, and Table 3 describes the type of reward

used in this development with its function.

Table 2 Value for each reward

Reward Value

RFAC RFWAC RFWSR RFWSRAC

Avoidance 0.01* R2 0.01 * R2 0.01 * R2 0.01 * R2

Straight line

movement

1* ν2 1* ν2 1* ν2 1* ν2

Spinning

movement

-1* ω2 -1* ω2 -1* ω2 -1* ω2

Distance 1*DT 1*DT 1*DT 1*DT

Accomplish

ment

P*2000 P*2000 not use not use

Angle

correction

1*E not use 1*E not use

where ν is the linear velocity, ω is the angular velocity, R is the

minimum range of Lidar, DT is the total distance from target position

and P is the accomplishment(termination) reward.

43 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

Table 3 Type of reward used with their function

Reward Function Type of

Reward
Avoidance Avoid nearest obstacle Shaping

 Straight line

movement

Encourage straight line

motion

Shaping

Spinning

movement

Discourage going in circle Shaping

Distance Distance to target position Shaping

Accomplishment Accomplish to target

position

Sparse

Angle correction Encourage angle

correction

Shaping

Based on Table 3, the rewards that are used, as

well as the types of reward categories that represent

different functions in guiding the agent to the target

position are intended to demonstrate their

effectiveness.

Equation (9) designates the reward function with

angle correction (RFAC) with a combination of

sparse (accomplishment reward) and shaping

rewards. In contrast, Equation (10) designates the

reward function without angle correction (RFWAC),

Equation (11) designates the reward function without

accomplishment reward (RFWSR), and Equation (12)

designates the reward function without

accomplishment reward and angle correction

(RFWSRAC).

(9)

(10)

(11)

(12)

where ν is the linear velocity, ω is the angular

velocity, R is the minimum range of Lidar, DT is the

total distance from target position and P is the

accomplishment reward.

Equation (13) is an extra condition to activate

reward function with angle correction. The condition

will be triggered if the agent arrives in a radius less

than 1 meter before the target position, which

encourages the agent to make a correction angle

and to credit reward based on the positioning of the

agent in the rotation movement of the robot’s body.

(13)

where AC is an angle correction, E is an angle error

condition, is represented semi-circle of 360 degrees

for the mobile robot movement and lastly is the

distance between current to target position is

defined as in Equation (5) and m is a meter.

In this experiment, the effectiveness of the reward

system developed is crucial because each reward

function has a significant impact on the robot's

learning process when it interacts with the

environment. For example, the accomplishment

reward (sparse reward) is used to help the robot

understand the importance of exploitation

compared to exploration. It improves the quality of

exploitation while reducing exploration, which is less

important for learning. Exploitation is vital because

the robot utilizes its knowledge to successfully

complete tasks, whereas exploration encourages the

robot to continuously learn and adapt to the

environment based on the system's entropy value.

F. isDone

In navigation from the initial to the target position,

the isDone function is used to accommodate the

robot's boundary in determining the desired target. It

allows the model to detect if the robot has

successfully achieved the required task or failed to

do so. There are four conditions to terminate the

training process. The training episode ended when 1.

The robot has arrived at to target location with

tolerance, 2. The minimum range Lidar(robot) to wall

or obstacle and any other object is crossed over, 3.

Minimum and maximum theta (rotation position of

the agent) and 4. The robot is reached maximum

axis-x and axis-y. With this function, the system can

stop the training if the robot has fulfilled the

conditions. To determine several conditions, isDone

uses a logic gate to execute containment action for

the robot. Table 4 shows isDone condition used in this

research.

Table 4 Type of isDone using in this development

Type of IsDone Condition

Pose (target

position with

tolerance)

cx < (tx ± 0.5) AND cy < (ty ± 0.5) AND

θc < (θt ± 0.25)

Minimum Lidar to

wall or obstacle

cL< min lidar distance (0.5m)

Minimum and

maximum theta

0 < θc< 2π OR 0 > θc > -2π

Maximum x and y

axis

only execute the running if the robot

still exists on map

where cx is the current axis-x, cy is the current axis-y, tx is the target

axis-x, ty is the target axis-y, θc is the current theta(θ), θt is the target

theta(θ), cL is the current Lidar range, AND is the AND logic gate and

OR is the OR logic gate.

G. Environment Setup

The development of a two-dimensional (2D) map in

MATLAB as per Figure 7 with the binary

OccupancyMap method is used to create the

robot's environment based on an occupancy grid

with binary values. The dimensions used in this study

for the training and simulation are 25 meters x 25

meters.

44 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

Figure 7 2D map using for the simulation

The parameters in the training process are shown

in Table 5. Hyperparameter is a factor in determining

the effectiveness of the system. The SAC algorithm

allows the system maximum entropy for the

discounted expected reward [14]. However, this

framework is less sensitive to hyperparameter tuning

consideration during the training process. The initial

and target positions for the evaluation of the system

are listed in Table 6.

Table 5 Hyperparameter in all simulations

Hyperparameter Value

optimiser Adam

learning rate 103

discount factor 0.99

replay buffer size 106

target smooth factor 103

mini batch size 256

sample time 0.1

episode maximum step 300

Table 6 Location of initial and target for the simulation

Axis
Position

Initial Target

x 15 5 (±0.5)

y 15 5(±0.5)

θ π /2 3π/2(±0.25)

H. Mobile Robot Model

One of the drives for a mobile robot is the use of

differential drive kinematic to control movement. To

determine the position of the mobile robot, three-

element vectors (x, y, and theta(θ)) are used, with an

x-y axis position in meters and a vehicle heading

known as theta (θ) in radians. Time derivative states

are determined by using the derivate function and

the robot's current state. Furthermore, the derivative

function is used to calculate the motion of a mobile

robot with referring [37, 38]. The robot's movement

will generate a pose, which will be used as the

system's main observation. Figure 8 displays a mobile

robot based on differential drive kinematics.

Figure 8 Mobile robot using differential drive kinematic

where x is the x-position for the robot, y is the y-

position for the robot, d is the track width (in meters),

θ(Theta) is the heading rotation(in radians), r is the

wheel radius (in meters), v is the linear velocity (in

meters/second), ω is the angular velocity (in

meters/second), vR is the velocity of the right wheel

(in meters/second) and vL is the velocity of the right

wheel (in meters/second).

Meanwhile, a differential drive is determined by

two factors are linear velocity (v) and angular

velocity (ω). To define v and ω as described in

Equation (14) – (15). The velocity of the robot is

derived by taking the velocity of the right wheel (vR)

and the velocity of the left wheel (vL).

(14)

then,

(15)

MT = [x, y, θ] T is a coordinate position based on a

differential motion that can thus be defined following

Equation (16) to determine the location and

orientation of the robot movement. T denotes the

current coordinates position.

(16)

In the development of mobile robots, a

differential-drive kinematic model based on a simple

vehicle dynamic factor is used for simulation. Table 7

describes the properties used in this study.

Table 7 Properties used for Differential drive kinematic

model

Parameters Value

Input
Linear velocity(ν) & Angular

velocity(ω)

Wheel radius(m) 0.05

Wheel speed

range(rad/s)
[-inf inf]

Track width (m) 0.2

Initial state [initial X; initial Y; initial Theta]

45 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

3.2 Training and Simulation Setup

Firstly, we conduct four sets of reward function studies

to investigate the reliability of the performance

based on learning accuracy, as shown in Table 2. This

experiment has four reward functions, RFAC, RFWAC,

RFWSR, and RFWSRAC. The training process will

record in 1000 episodes. The training data will be

collected and compared for each reward function.

During training, the agent will learn and explore an

environment where the system will record all reward-

related data and the number of steps for analysis.

After the training, the agent will be saved and used

to evaluate their performance with the same initial

and target position. For the simulation, each

movement of the agent will be recorded to validate

the reward function's efficiency and accuracy. To

perform experiments with four different reward

functions, with all parameters remaining constant for

both reward function systems, including the system's

input and output.

Furthermore, we analysed the collected data and

evaluated the result based on the agent's ability to

navigate from the initial to the target position. To

ensure that our study's objectives are achieved, we

propose two approaches: 1. complete the training

process, and 2. evaluate the agent trained with the

simulation.

4.0 RESULTS AND DISCUSSION

To achieve our objective of the study, the result of

the simulation can determine whether the system

developed to deliver our objective or target.

4.1 Training Result

In this study, the training of the agent in interaction

with the environment is determined by two aspects:

average reward, and step of movements.

The average reward is displayed in Figure 9.

Overall, these results indicate that there is a clear

tendency for a similar pattern. Early in the learning

process, the agent will have a high risk of exploration

due to fluctuating rewards and getting bad result.

After the 700th episode, it can see that the agent

started to adapt and mature in an environment to

get higher rewards. Based on the average result

reward for RFWSR takes longer to stable compared

with RFAC and RFWAC. This result is most likely related

to the reward function, where RFWSR stands for

reward function without sparse reward

(accomplishment reward). Basically, the sparse

reward is used as a containment action to reduce

unnecessary exploration and provide direct results if

their goal is achieved. Meanwhile, RFWSRAC

probably suffers in learning because it lacks the

accomplishment and angle correction reward

functions. All reward functions are fast matured after

the 700th episode refer to Figure 9 where the reward

is more stable and consistence. However, it must

measure the system's maturity based on learning

accuracy.

Figure 9 The result of training for average reward

Figure 10 present the average steps for 1000

episodes of the training. Another possible

explanation for this is that exploration demonstrates

the instability of the use of maximum steps induced

by the obstacle wall, making it more difficult for the

agent to explore the environment during an early

stage due to the narrower space. Then, the agent

starts understanding and adapting to the

environment based on the increment of the steps. In

comparison, RFAC and RFWAC use steps less after

the 700th episode, whereas RFWSR and RFWSRAC use

maximum steps at the end of the training after the

700th episode. A possible explanation for this might

be that RFAC and RFWAC are integrated with sparse

reward into the reward function system, whereas

RFWSR and RFWSRAC are not.

Figure 10 The result of training for average steps

4.2 Simulation Result

The simulation result is produced by a validated

system after the training session, where the agent is

used to display behaviours of the agent. A

comparison of distance error and error percentage

can indicate an agent's accuracy in navigating to

the desired location. To determine distance error

percentage as following Equation (17).

46 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

(17)

where is the target value and is the arrived

value.

To make it more straightforward to evaluate

system performance, an average percentage to

determine the best overall system is used. That is the

average error percentage in the Equation (18).

(18)

where AE% is average error percentage, s1% is the

error percentage vector-x, s2% is the error

percentage vector-y, s3% is the error percentage

vector-theta and n is number of samples.

According to Table 8, the smaller the distance

error or error %, the more accurate the agent's

position. The simulation process shows that RFAC

performs significantly better than RFWAC, RFWSR,

and RFWSRAC based on average error percentage.

RFAC obtained a value of 3.9% for the x-axis, 9.54%

for the y-axis, 1.53% for theta, and an average error

of 4.99%. Although RFWAC recorded 5.77% is the

second best with percentage positions of 4.42%,

9.8%, and 3.08%. Moreover, RFWSRAC had a high

average error percentage of 99.25%, followed by

RFWSR, which had a percentage of 63.26%. In

contrast, the worst results are divided into the x, y-

axis, and theta position. Regarding the Theta

position, RFWSRAC is the lowest with a value of

234.68%, while RFWSR is 21.75%. Then, on the x, y-axis,

and RFWSR has the highest error % of 70%, 98.04%,

while RFWSRAC has a slightly lower error % of 17.74%,

and 45.34%.

Table 8 The result of simulation

Simulati

on

Axis Position

Final

position

Distance

error (m/

radians)

Error

%

Average

error %

RFAC x 5.2 0.2 3.9 4.99

y 5.48 0.48 9.54

θ 4.64 0.07 1.53

RFWAC x 5.22 0.22 4.42 5.77

y 5.49 0.49 9.8

θ 4.57 0.15 3.08

RFWSR x 1.5 3.5 70.00 63.26

y 0.1 4.9 98.04

θ 3.69 1.03 21.75

RFWSRA

C

x 4.11 0.89 17.74 99.25

y 2.73 2.27 45.34

θ -6.35 11.06 234.68

Through movement trajectories categorized as x

and y-axis in Figure 11 and theta rotation position in

Figure 12. In terms of accuracy, RFAC and RFWAC

outperform RFWSR and RFWSRAC (see Figure 11).

Furthermore, RFAC and RFWAC movements are

highly similar. RFWSR and RFWSRAC have lower

accuracy, implying the importance of

accomplishment reward (sparse reward) in helping

the system learn more efficiently and quality.

Figure 11 Movement of the agent based on the x and y-axis

for the simulation

The difference in the agent movement pattern for

the rotation angle is shown in Figure 12. RFAC and

RFWAC are almost marginal, but the difference

between RFWSR and RFWSRAC is quite different.

RFAC is almost accurate in rotation position, whereas

RFWSRAC is far from the target rotation angle due to

the negative value. The factor affecting the

movement rotation in RFWSRAC is the non -

availability of an angle correction reward to

motivate in acquiring rotation accuracy and no

accomplishment reward, which makes the learning

process more difficult.

Figure 12 Movement rotation of angle for the simulation

Figure 13 indicates the simulation result for all

reward functions. RFAC and RFWAC shows that the

agent was successful in navigating from an initial to a

target location with tolerance, which is also can refer

to in Table 6 & 8. However, RFWSR shows the worst

movement due to a far from the target position until

it hits the limitation of the map, as shown in Figure 13.

The results of the RFWSRAC simulation, where the

result is not accurate with more marginal values on

the x- and y-axis. Still, the error percentage is high for

rotation based on body rotation is not an accurate

position due to incorrect turning rotation, and it

produces a negative value.

47 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

These experiments demonstrated agents

successfully navigating from the start to the target

location using two reward functions, which are RFAC

and RFWAC with tolerance (as referred to in Table 6)

but not RFWSR and RFWSRAC. However, as shown in

the robot's accuracy in reaching the target position is

vital in determining the effectiveness of the

developed reward system. Through this experiment,

the result of the training and simulation systems that

employ appropriate reward strategies especially,

RFAC can assist robots in learning and adapting to

their environment more efficiently and quickly

mature. The fusion of the sparse and shaping reward

has been demonstrated through this study and

successfully improved the agent's accuracy and

maturity.

This study shows that using a good reward

function can help stimulate the robot to interact

more effectively, where the factors of exploration

and exploitation needs to be considered. The

shaping reward will help improve the exploration

process by guiding action to the objective. The

sparse reward can reward the process if it is

successful based on binary system reward {true-1,

false -0}. This study demonstrated that shaping

reward is beneficial in the exploration process

through this experiment, especially distance reward

influences the robot to the target position. For sparse

rewards, which will reward if the system succeeds in

achieving the goal and help the system learn more

easily and it is very effective in exploitation learning.

Commonly, the SAC algorithm is applied to solve

problems involving high-dimensional state action for

continuous action[14], as demonstrated in the results

of our experiments in Figure 13, which successfully

navigate the robot to the initial to target position, but

the results are different due to the use of different

reward function systems. Based on the previous

article emphasising the use of the reward function in

the Reinforcement learning system, [24] conducted

an experiment based on the researcher's knowledge

domain that uses the shaping reward in assisting the

learning system. In contrast, this study introduces a

fusion of shaping and sparse reward in helping to

accelerate the maturation of robot learning based

on a stable learning process by referring to Figure 9,

where it matured after the 700th episode.

Furthermore, the development of this fusion can

improve learning performance based on target

position accuracy (refer to Table 8). This article [6]

uses only shaping rewards for reward function

systems in SAC and DDPG methods but requires the

7000th episode to train the learning robot.

Compared to this study, the robot successfully learns

with high accuracy and matures quickly to navigate

to the target location with only one thousand training

episodes based on the reward function that uses

fusion sparse and shaping reward with refer to RFAC.

Finally, the conclusion is that the reward system

must meet the requirements and that the agent must

be able to self-motivate to achieve the objective

system. For example, a person that receives

appropriate encouragement or incentive to

motivate himself will learn more effectively.

Figure 13 The result of the simulation for all reward functions

48 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

4.0 CONCLUSION

This research is motivated by implementing fusion

sparse and shaping rewards in SAC DRL for mobile

robot navigation. To enable the system to learn

effectively, using the reward function appropriately

and precisely assists the system in learning accuracy.

Based on the results of the experiment, RFAC

produces a low average error value of 4.99%, proving

that the employment of fusion sparse and shaping

reward in SAC increases learning accuracy and

maturity. However, reward function without sparse

reward, such as RFWSR and RFWSRAC, produce high

average error values of 63.26% and 99.25%,

respectively.

Conflicts of Interest

The author(s) declare(s) that there is no conflict of

interest regarding the publication of this paper.

Acknowledgement

This research was supported by Ministry of Higher

Education (MOHE) through Fundamental Research

Grant Scheme (FRGS/1/2022/ICT02/UTHM/03/1),

Robocup Federation - MathWorks Support for

Research Projects 2021, Research Management

Centre (RMC) Universiti Tun Hussein Onn Malaysia

(UTHM), Faculty of Electrical and Electronic

Engineering (FKEE) of UTHM and Universiti Tun Hussein

Onn Malaysia (UTHM). Finally, the author would like to

acknowledge MathWorks as a collaboration partner,

especially in technical support for this research.

References

[1] X. Yang, M. Moallem, and R. V. Patel. 2005. A Layered Goal-

oriented Fuzzy Motion Planning Strategy for Mobile Robot

Navigation. IEEE Trans. Syst. Man, Cybern. Part B Cybern. 35(6):

1214-1224. Doi: 10.1109/TSMCB.2005.850177.

[2] M. Faisal, M. Algabri, B. M. Abdelkader, H. Dhahri, and M. M. Al

Rahhal. 2017. Human Expertise in Mobile Robot Navigation.

IEEE Access. 6: 1694-1705. Doi: 10.1109/ACCESS.2017.2780082.

[3] M. P. Deisenroth. 2013. A Survey on Policy Search for Robotics.

Found. Trends® Robot. 2(1-2): 1-142. Doi: 10.1561/2300000021.

[4] A. S. Polydoros and L. Nalpantidis. 2017. Survey of Model-

Based Reinforcement Learning: Applications on Robotics. J.

Intell. Robot. Syst. Theory Appl. 86(2): 53-173. Doi:

10.1007/s10846-017-0468-y.

[5] J. Xiang, Q. Li, X. Dong, and Z. Ren. 2019. Continuous Control

with Deep Reinforcement Learning for Mobile Robot

Navigation. Proc. - 2019 Chinese Autom. Congr. CAC 2019.

1501-1506. Doi: 10.1109/CAC48633.2019.8996652.

[6] J. C. de Jesus, V. A. Kich, A. H. Kolling, R. B. Grando, M. A. de S.

L. Cuadros, and D. F. T. Gamarra. 2021. Soft Actor-Critic for

Navigation of Mobile Robots. J. Intell. Robot. Syst. Theory Appl.

102(2): 1-11. Doi: 10.1007/S10846-021-01367-5/METRICS.

[7] G. Chen et al. 2020. Robot Navigation with Map-Based Deep

Reinforcement Learning. 2020 IEEE Int. Conf. Networking, Sens.

Control. ICNSC 2020. Doi: 10.1109/ICNSC48988.2020.9238090.

[8] R. N. Das, K., & Behera. 2017. A Survey On Machine Learning:

Concept, Algorithms and Applications. Int. J. Innov. Res.

Comput. Commun. Eng. 5(2): 1301-1309. Doi:

10.15680/IJIRCCE.2017.

[9] S. Irfan, A. Meerza, M. Islam, and M. M. Uzzal. 2019. Q-Learning

Based Particle Swarm Optimization Algorithm for Optimal Path

Planning of Swarm of Mobile Robots. 2019 1st International

Conference on Advances in Science, Engineering and

Robotics Technology (ICASERT). Doi:

10.1109/ICASERT.2019.8934450.

[10] X. Luo, Y. Gao, S. Huang, Y. Zhao, and S. Zhang. 2019.

Modification of Q-learning to Adapt to the Randomness of

Environment. 2019 Int. Conf. Control. Autom. Inf. Sci. 1-4. Doi:

10.1109/ICCAIS46528.2019.9074718.

[11] C. S. Arvind and J. Senthilnath. 2019. Autonomous RL:

Autonomous Vehicle Obstacle Avoidance in a Dynamic

Environment using MLP-SARSA Reinforcement Learning. 2019

IEEE 5th Int. Conf. Mechatronics Syst. Robot. ICMSR 2019. 120-

124. Doi: 10.1109/ICMSR.2019.8835462.

[12] V. Mnih et al. 2015. Human-level Control through Deep

Reinforcement Learning. Nature. 518(7540): 529-533. Doi:

10.1038/nature14236.

[13] Y. Wang, J. Tong, T. Y. Song, and Z. H. Wan. 2018. Unmanned

Surface Vehicle Course Tracking Control based on Neural

Network and Deep Deterministic Policy Gradient Algorithm.

2018 Ocean - MTS/IEEE Kobe Techno-Oceans, Ocean - Kobe

2018. Doi: 10.1109/OCEANSKOBE.2018.8559329.

[14] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. 2018. Soft

Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement

Learning with a Stochastic Actor. PMLR. 1861-1870. Accessed:

Feb. 14, 2023. [Online]. Available:

https://proceedings.mlr.press/v80/haarnoja18b.html.

[15] R. S. Sutton and A. G. Barto. 2018. Reinforcement Learning: An

Introduction. MIT Press, Cambridge, MA.

[16] X. Yu, Y. Sun, X. Wang, and G. Zhang. 2021. End-to-End AUV

Motion Planning Method Based on Soft Actor-Critic. Sensors.

21(17): 5893. Doi: 10.3390/S21175893.

[17] R. Takehara and T. Gonsalves. 2021. Autonomous Car Parking

System using Deep Reinforcement Learning. 2nd Int. Conf.

Innov. Creat. Inf. Technol. ICITech 2021. 85-89. Doi:

10.1109/ICITECH50181.2021.9590169.

[18] Q. Zhang, J. Lin, Q. Sha, B. He, and G. Li. 2020. Deep

Interactive Reinforcement Learning for Path Following of

Autonomous Underwater Vehicle. IEEE Access. 8: 24258-24268.

Doi: 10.1109/ACCESS.2020.2970433.

[19] C. Wu et al. 2019. UAV Autonomous Target Search based on

Deep Reinforcement Learning in Complex Disaster Scene. IEEE

Access. 7: 117227-117245. Doi: 10.1109/ACCESS.2019.2933002.

[20] K. Zhu and T. Zhang. 2021. Deep Reinforcement Learning

based Mobile Robot Navigation: A Review. Tsinghua Sci.

Technol. 26(5): 674-691. Doi: 10.26599/TST.2021.9010012.

[21] Mohamad Hafiz Abu Bakar, Abu Ubaidah bin Shamsudin,

Ruzairi Abdul Rahim, Zubair Adil Soomro, and Andi Adrianshah.

2023. Comparison Method Q-Learning and SARSA for

Simulation of Drone Controller using Reinforcement Learning.

J. Adv. Res. Appl. Sci. Eng. Technol. 30(3 SE-Articles): 69-78. Doi:

10.37934/araset.30.3.6978.

[22] L. Meng, R. Gorbet, and D. Kulić. 2020. The Effect of Multi-step

Methods on Overestimation in Deep Reinforcement Learning.

Proc. - Int. Conf. Pattern Recognit. 9740-9747. Doi:

10.1109/ICPR48806.2021.9413027.

[23] Z. Yang, K. Merrick, S. Member, L. Jin, H. A. Abbass, and S.

Member. 2018. Hierarchical Deep Reinforcement Learning for

Continuous Action Control. IEEE Trans. neural networks Learn.

Syst. 29(11): 5174-5184.

[24] J. Xie, Z. Shao, Y. Li, Y. Guan, and J. Tan. 2019. Deep

Reinforcement Learning with Optimized Reward Functions for

Robotic Trajectory Planning. IEEE Access. 7: 105669-105679.

Doi: 10.1109/ACCESS.2019.2932257.

[25] J. Hare. 2019. Dealing with Sparse Rewards in Reinforcement

Learning. arXiv:1910.09281.

[26] C. Wang, J. Wang, J. Wang, and X. Zhang. 2020. Deep-

Reinforcement-Learning-based Autonomous UAV Navigation

with Sparse Rewards. IEEE Internet Things J. 7(7): 6180-6190.

Doi: 10.1109/JIOT.2020.2973193.

[27] M. Riedmiller et al. 2018. Learning by Playing - Solving Sparse

reward Tasks from Scratch. 35th Int. Conf. Mach. Learn. ICML

2018. 10: 6910-6919.

[28] C. Wang, J. Wang, Y. Shen, and X. Zhang. 2019. Autonomous

Navigation of UAVs in Large-Scale Complex Environments: A

Deep Reinforcement Learning Approach. IEEE Trans. Veh.

Technol. 68(3): 2124-2136. Doi: 10.1109/TVT.2018.2890773.

49 Mohamad Hafiz Abu Bakar et al. / Jurnal Teknologi (Sciences & Engineering) 86:2 (2024) 37-49

[29] Y. Hu, Y. Hua, W. Liu, and J. Zhu. 2021. Reward Shaping based

Federated Reinforcement Learning. IEEE Access. 9: 67259-

67267. Doi: 10.1109/ACCESS.2021.3074221.

[30] A. Laud and G. DeJong. 2003. The Influence of Reward on the

Speed of Reinforcement Learning: An Analysis of Shaping.

Proceedings, Twent. Int. Conf. Mach. Learn. 1: 440-447.

[31] W. Wang, Z. Wu, H. Luo, and B. Zhang. 2022. Path Planning

Method of Mobile Robot Using Improved Deep Reinforcement

Learning. J. Electr. Comput. Eng. Doi: 10.1155/2022/5433988.

[32] A. Trott, S. Research, S. Zheng, C. Xiong, and R. Socher. 2019.

Keeping Your Distance: Solving Sparse Reward Tasks Using Self-

Balancing Shaped Rewards. Adv. Neural Inf. Process. Syst. 32.

[33] A. Hussein, E. Elyan, M. M. Gaber, and C. Jayne. 2017. Deep

Reward Shaping from Demonstrations. Proc. Int. Jt. Conf.

Neural Networks. 510-517. Doi: 10.1109/IJCNN.2017.7965896.

[34] Soft Actor-Critic Agents - MATLAB & Simulink.

https://www.mathworks.com/help/reinforcement-

learning/ug/sac-agents.html (accessed Feb. 15, 2023).

[35] TensorFlow for Deep Learning [Book].

https://www.oreilly.com/library/view/tensorflow-for-

deep/9781491980446/ (accessed Feb. 15, 2023).

[36] A. D. Rasamoelina, F. Adjailia, and P. Sincak. 2020. A Review of

Activation Function for Artificial Neural Network. SAMI 2020 -

IEEE 18th World Symp. Appl. Mach. Intell. Informatics, Proc.

281-286. Doi: 10.1109/SAMI48414.2020.9108717.

[37] K. M. Lynch and F. C. Park. 2017. Modern Robotics. Cambridge

University Press.

[38] Mobile Robot Kinematics Equations - MATLAB & Simulink.

https://www.mathworks.com/help/robotics/ug/mobile-robot-

kinematics-equations.html (accessed Aug. 23, 2023).

