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Graphical abstract 
 

 

Abstract 
 

The incident of harmful gas leakage can cause severe damage to the environment and 

several casualties to human beings while the gas localization system plays a major role in 

mitigating those causalities. With the advances in artificial intelligence technology, deep 

learning is able to enhance the accuracy of the gas localization system to locate the gas 

source. This paper proposes a gas localization system that utilizes three different deep learning 

models namely DNN, 1DCNN, and 2DCNN to locate the gas source within the gas map. The 

proposed method involves generating the gas distribution map through the large gas sensor 

array platform in real-world indoor scenarios. Those models are then trained using the 

collected database which allows for accurate prediction of the gas source location. The 

performance of each proposed deep learning model was compared to find the best model 

demonstrating the highest effectiveness in identifying gas leaks. The study has shown that the 

1DCNN has the highest effectiveness in predicting the gas source in the range between 0.0 

m to 0.3 m with 90.3% compared to the DNN and 2DCNN models.  
 

Keywords: Gas source localization, gas distribution map, deep learning, harmful gas 

dispersion, mobile robot olfaction 

 

Abstrak 
 

Pengumpulan Insiden kebocoran gas berbahaya boleh menyebabkan kerosakan teruk 

kepada alam sekitar dan kecederaan kepada manusia. Sistem pencarian gas memainkan 

peranan utama untuk mengurangkan sebab-sebab tersebut. Dengan kemajuan dalam 

teknologi kecerdasan buatan pembelajaran mendalam mampu meningkatkan ketepatan 

sistem pencarian gas untuk mencari sumber gas. Kertas kerja ini mencadangkan sistem 

pencarian gas yang menggunakan tiga model pembelajaran mendalam yang berbeza iaitu 

dikenali sebagai DNN, 1DCNN dan 2DCNN untuk mencari sumber gas yang terdapat di 

dalam peta gas. Pendekatan yang dicadangkan melibatkan penjanaan peta penyebaran 

gas melalui platform susunan penderia gas yang besar dalam senario dunia sebenar. Model 

tersebut kemudian dilatih menggunakan pangkalan data yang dikumpul yang 

membolehkan ramalan tepat lokasi sumber gas. Prestasi setiap model pembelajaran 

mendalam yang dicadangkan telah dibandingkan untuk mencari model terbaik yang akan 

menunjukkan keberkesanan tertinggi dalam mengenal pasti kebocoran gas. Kajian ini telah 

menunjukkan bahawa 1DCNN mempunyai keberkesanan tertinggi dalam meramalkan 

sumber gas dalam julat antara 0.0 m hingga 0.3 m dengan 90.3% berbanding model DNN 

dan 2DCNN. 
 

Kata kunci: Pencarian punca gas, peta penyebaran gas, pembelajaran dalam, penyebaran 

gas berbahaya, robot penghidu bergerak 
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1.0 INTRODUCTION 
 

Gas source localization (GSL) is a critical research 

topic that aims to identify the origin of gas emissions, 

particularly in environments where hazardous gases 

may be released[1]. GSL can pose a significant 

challenge due to the slow process of molecular 

diffusion, where the released gas primarily spreads 

through airflow, creating a constantly fluctuating and 

complicated gas distribution shape, particularly in 

turbulent flows[2]. In addition, with the development of 

industries, the usage of dangerous chemical gaseous is 

increasing frequently. The release of dangerous 

chemicals in gas form is a common occurrence during 

storage and transportation processes[3] and can result 

in catastrophic events due to their chemical and 

physical properties. The toxic gases released during 

such events can form clouds that pose a threat to both 

indoor and outdoor environments[4]. Even though most 

industries are installed with the stationary gas sensor 

system yet the systems are unable to perform GSL 

tasks[5] since the system has low resolution and limited 

coverage which cannot capture the full extent of the 

gas distribution in a complex environment. Therefore, 

it is important to apply the GSL to the system in order 

to locate the gas source to prevent further harm.  

In order for GSL to achieve success, several factors 

need to be considered. Firstly, there should be a gas 

sensor capable of detecting the target gas in the air. 

Secondly, an appropriate strategy should be 

employed to decide where the measurements need to 

be taken, and effective algorithms are necessary for 

processing the gas sensor signal and estimating the 

source location[6]. Currently, there are two different 

methods to collect the gas information to perform the 

GSL which by utilizing a mobile robot or installing 

stationary gas sensors.  

In the mobile robot method, a mobile robot will be 

installed with gas sensors and carry out the sensors to 

the contaminated area and send all the information to 

the base station. This method allows the operator to 

stay in a secure location while searching for the harmful 

emission source. This method has several advantages 

such as low cost, ease of deployment, and flexibility. 

However, it is limited to mass data collection and is also 

time-consuming [7].  

In the stationary gas sensors method, usually it needs 

a large number of sensors to develop the system. It 

consists of a network of gas sensors strategically placed 

in stationary positions to continuously monitor the air for 

the presence of certain harmful gases. Normally, this 

system is installed inside a particular building area that 

has a high potential for gas leakage to happen [8]. The 

system will be triggered when any of the sensors detect 

abnormal levels of gas concentration. In addition, the 

process of system development could potentially 

demand a significant amount of time and lack 

flexibility. However, they offer more comprehensive 

insight into the surroundings and can remain in place 

for consistent data collection [9]. 

In terms of the effective algorithm for processing the 

gas sensor signal, there is an effective method to 

represent the gas dispersion from the sensor reading 

which is known as the probabilistic method. This method 

treats the gas measurement as a probabilistic 

distribution and can be divided into two distinct groups 

which are infotaxis and Gas Distribution Map(GDM). 

However, this study will focus more on the GDM 

method. 

The GDM is a process of creating a representation 

of how the gas disperses in the environment from a set 

of temporally and spatially distributed measurements of 

relevant gas information[10]. One of the GDM methods 

known as Kernel DM was proposed by A. Lilienthal & 

Duckett (2004) which implements a statistical method 

on the grid cells to create a gas concentration 

map[11]. It represented an estimation of the gas 

distribution mean and applied an extrapolation 

algorithm by convolving a single point of gas sensor 

reading to a nearby location (i.e. neighbourhood cells) 

by using a symmetrical Gaussian kernel. Then, further 

research was done to improve the method which is 

known as the Kernel DM+V algorithm that allows a 

larger dataset to be handled by a simpler learning 

procedure[12]. The grid cells that hold the highest 

variance value are assumed to be the gas source 

location. This work showed that the GDM method was 

able to declare the gas source location accurately. 

In recent years, the learning method also has 

attracted lots of attention from researchers in the GSL 

field. This method allows the machine or system to 

perform and improve the GSL task based on the 

training process. There are several studies that focus on 

the utilization of artificial intelligence for gas localization 

assessment which uses machine learning such as 

Support vector machines (SVMs)[13] and kernel ridge 

regression[14]. Recently, H.Kim et al., (2019) have 

explored the use of Recurrent Neural Networks (RNNs) 

with Long Short-Term Memory (LSTM) and Feedforward 

Neural Network (FNN) models for identifying the source 

location of gas leaks[15]. By using Computational Fluid 

Dynamics (CFD) simulations, a total of 460 scenarios 

were generated and subsequently fed into both neural 

network models for training. Results indicate that LSTM-

RNN demonstrated approximately 20% higher 

accuracy for leak spot location assessment compared 

to the FNN model.  

Furthermore, C. Bilgera et al., (2018) performed a 

combination of Convolutional Neural Networks (CNN) 

and LSTM models to estimate gas location in outdoor 

environments by utilizing gas sensor arrays to generate 

sequential datasets for model training[1]. The results 

indicate that Artificial Neural Networks (ANN) hold 

significant promise for gas localization tasks. Another 

study done by H. L. Yu et al., (2022) attempted to 

predict the location of plastic burning using an ANN 

model, which included 16 inputs, 4 hidden, and 12 

output neurons[16]. The study generated data such as 

burning location, wind speeds, and wind direction using 

CFD simulations, and then trained the ANN model. The 

findings indicate that the trained model achieved up 

to 85.71% validity with an average error of 3.86%.  

There is also the application of DNN used to predict 

the location of the real gas source using a gas sensor 
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array in the indoor environment done by A. S. A. Yeon 

et al., (2023). However, this study only focuses on the 

DNN model without comparing it with other deep 

learning and machine learning models. The gas sensor 

reading was directly fed into the DNN model for the 

gas source prediction. The study showed that the DNN 

model is able to locate the gas source with promising 

accuracy[17].  

Based on the literature, numerous scholars have 

utilized synthetic gas map datasets generated 

through the computational fluid dynamic method 

while other studies focus on the real scenario of gas 

dispersion in order to train the machine learning 

model.  

In this study, an array of stationary gas sensors 

located on a particular platform will be used to collect 

the real scenario of gas dispersion in the indoor 

environment. Then, the collected gas sensor 

information will be converted into the GDM by using 

the Kernel DM+V algorithm to generate a substantial 

dataset to train different deep learning models. 

Finally, this study will undertake an evaluation of the 

performance of each model in order to determine the 

most appropriate model for the GSL task.   

 

 

2.0 METHODOLOGY 
 

2.1 Data Collection Using Large Gas Sensor Array 

(LGSA) Platform 

 

Notably, deep learning needs a large number of data 

to perform the learning process so that the model can 

be robust and accurate to predict the output[18]. In 

order to gather a significant amount of GDM data, it 

is necessary to employ an appropriate platform for 

conducting this research. For this work, an integrated 

mobile gas sensing testbed[19] located in the Centre 

of Excellence for Advance Sensor Technology 

(CEASTech), Universiti Malaysia Perlis was utilized as 

shown in Figure 1. It has several components where (A) 

ceiling-mounted cameras, (B) a gas sensor, (C) the 

communication module, and (D) the gas sensor 

board.  

 

 
 

Figure 1 The integrated mobile robot testbed in CEASTech, 

UniMAP[19] 

 

The designed platform is also known as a Large Gas 

Sensor Array (LGSA) since it has an array of gas sensors 

to capture the reading of released gas as shown in 

Figure 2. The red diamond shape illustrated the release 

point of the gas source. The platform has been 

installed with a total of 72 Figaro TGS2600 MOX gas 

sensors to cover a 3 m x 6 m testbed area. The TGS2600 

was chosen since it is very sensitive to the ethanol 

vapor that is being used for this study. The 12-bit 

Analog-to-Digital Converter (ADC) (i.e., ADS7828) is 

paired with the gas sensor for the measurement 

process. The distance between each of the sensors is 

evenly separated by 0.5 m resulting in 12 rows and 6 

columns respectively. The data was transmitted at a 

sample rate of 1 Hz to the PC-base station using a 

MEMSIC XM2100CA Wireless Sensor Network (WSN) 

transmitter (i.e., Wi-Fi module) to reduce the effect of 

voltage drop from a long wire connection. 

 

 
Figure 2 Gas sensor configuration in the large gas sensor 

array 

 

 

All experiments were done using ethanol vapor 

which is produced by using a bubbler concept. The 

flow of clean air is forced into the bubbler by using an 

air pump so that the output of the bubbler outlet will 

emit ethanol vapor. Thus, the outlet of the bubbler 

acts as the gas source release point. There is a total of 

60 different release points of gas source on the 

testbed platform. At each point, the gas was released 

at a flow rate of 0.05 kg/s for 30 minutes which follow 

the air pump flow rate specification. The LGSA system 

recorded all the readings from the gas sensors for 30 

minutes and saved all the readings in the Excel file. 

 

2.3 Data Pre-Processing 

 

Before advancing to the next step, the collected 

readings from the gas sensor array should undergo the 

pre-processing data procedure to guarantee that all 

the data has been standardized and can be 

accommodated within the input layer of the DNN. The 

resistance of the gas sensor will vary as the gas 

concentration changes. As a result, the gas sensor's 

response can accurately identify the pattern of gas 

dispersion in the experimental area. 
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The response of the gas sensor, 𝑅𝑠 able to calculate by 

using Equation 1. From this equation, the reading of 

sensor output voltage, 𝑉𝑜𝑢𝑡 will be converted in terms 

of sensor response. 𝑉𝑖𝑛 is the reference voltage for the 

gas sensor which is set to be 3.3 V while 𝑅𝐿 is the load 

resistance for the sensor that has a value of 4.7 kΩ. The 

value of the load resistance is used at the optimum 

value which has been preferred by the manufacturer. 

This will allow the sensor to detect the gas even the 

gas at a low concentration. Then, the reading of the 

gas response is normalized (i.e., range value of [0,1)) 

by using Equation 2 by taking the aspect ratio of the 

gas response, and the baseline resistance reading. 

 

𝑅𝑠 =
𝑉𝑖𝑛𝑅𝐿

𝑉𝑜𝑢𝑡

− 𝑅𝐿 
(1) 

𝑅𝑠 = 1 −
𝑅𝑠

𝑅0

 
(2) 

Next, the normalized reading of the sensor 

response has been converted into GDM by using the 

normal Kernel DM+V method with a kernel size of 0.5 

m since it has been suggested that the estimations of 

gas source locations are often accurate in the range 

of 0.5 m to 1.5 m [20]. Another researcher also 

suggested that a reduced kernel size enhances the 

performance of the Kernel DM+V method [21].  

The size of generated GDM is the same as the size 

of the testbed platform which is 3 m x 6 m while the 

dimension of each grid map is 5 cm x 5 cm, resulting 

in a total of 120 number of column and 60 rows. 

Therefore, there are 7200 total number of grid cells in 

the GDM, and each of the grid cells contains the 

reading of the normalized gas concentration. Figure 3 

shows one of the GDM samples generated by the 

LGSA platform with the location of the gas release 

point at x = 30 y = 5 in terms of grid cells. From the 

figure, the red color indicates the high concentration 

of the gas while blue indicates the low concentration 

of gas reading. 

 

 
Figure 3 Gas distribution map (GDM) 

 

 

There is a total of 5900 GDM samples produced 

from the LGSA platform and the samples were split into 

training and testing by the ratio of 0.33 to let the model 

have adequate testing data for evaluating the model 

performance and to prevent overfitting. Hence, the 

total amount of data for training and testing is 3953 

and 1947 respectively. Since the model needs to be 

validated, the data for the validation purpose was 

taken from the testing dataset by a splitting ratio of 

0.33. This will produce 1304 number of testing datasets 

and 643 number of validation datasets. All the dataset 

splitting process was done by the Scikit-learn 

package. 

 

2.4 Deep Neural Network (DNN) Model 

 

DNN is a type of machine learning that mimics the way 

the brain learns. It managed to learn from the input by 

using the probability method[22]. The reason DNN is 

chosen is because it increases the accuracy of the 

machine learning model. It also utilizes the hidden 

layer as a place to store and evaluate how significant 

one of the inputs to the output. It means all the 

information regarding the input’s importance is stored 

in the hidden layer in terms of weight. The DNN used 

to supervise machine learning which means it’s used 

labeled datasets to train the model and predict the 

outcome accurately.  
 

 
 

Figure 4 Deep neural network architecture 
 

 

Figure 4 shows the complete model architecture of 

DNN that was developed by using Python 3.6 on the 

Google Collab platform. The DNN model consists of 

three major layers which are the input layer, hidden 

layer, and output layer. The GDM sample will be used 

as the input. Firstly, the two-dimensional (2D) (i.e., 60 x 

120) array of the gas map was flattened into a one-

dimensional (1D) array (i.e., 7200 x 1) shape before 

they fed through the input layer of DNN. The flattening 

was done to reduce the complexity of the model to 

be trained. This model consists of 7200 number of 

nodes in the input layer that represent the number of 

each grid cell in the flattened GDM sample. By 

entering the input layer with the reading of gas 

concentration from the flattened array, it will be 

performing the multiplying between the first layer 

node, 𝑥𝑖 and synaptic weight, 𝜔𝑖  connected to the first 

hidden layer to get the result for the first hidden layer 

node as shown in Equation 3. The overall input for the 
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neuron is calculated through the weighted sum of the 

output signals that are received from the neurons in 

the previous layer: 

 

𝑢 = ∑ 𝑥𝑖𝜔𝑖

𝑛

𝑖−𝑛

 
(3) 

Where 𝑥𝑖 is shown in Equation 4: 

𝑥𝑖 =  𝑋𝑛 (4) 

 

Furthermore, the DNN model comprises two 

hidden layers utilizing the Rectified Linear Unit (ReLU) 

activation function. ReLU has become the default 

choice due to its ease of training and superior 

performance in various neural networks. The ReLU 

activation function defined all negative values of u to 

be 0 or otherwise to be a positive value of u itself as 

shown in Equation 5: 

 

𝑓(𝑢) = {
𝑢 𝑓𝑜𝑟 𝑢 ≥ 0
0 𝑓𝑜𝑟 𝑢 ≤ 0

 (5) 

 

Based on the equation, 𝑢 is the input ,and 𝑓(𝑢) is the 

output. As a result, if 𝑢 is greater than 0, the derivative 

value is 1, and even if input data go through both 

hidden layers, the characteristics of the data remain 

similar without disappearing to the output layer. 

Each hidden layer contains 1000 number of nodes. 

To prevent overfitting and long computational time, 

dropout function 0.2 was employed. The last 

component in the model which is the output layer 

consists of two nodes. The first node will represent the 

output of the gas source location on the x-axis while 

the second node will represent the output of the gas 

source location on the y-axis. Both of the output nodes 

used the linear activation function and the output will 

represent the location estimation of the gas source 

location in the continuous value in the range of 0 until 

60 for the x-axis and in the range of 0 until 120 for the 

y-axis. Finally, during the training process, Mean 

Absolute Error (MAE) was implemented into the model 

as the loss and metric while the Adaptive Moment 

estimation (Adam) optimizer was chosen for the 

model optimizer to help the model optimize the 

learning process. The summary of the model is 

presented in Table 1. 

 
Table 1 Summary of the DNN model 

 

Layer Output Shape Number of 

Parameters 

input (120, 60) 0 

flatten (7200) 0 

Dense 1 (1000) 7201000 

Dense 2 (1000) 1001000 

Dense X 1 1001 

Dense Y 1 1001 

 

2.5 One-dimensional (1D) Convolutional Neural 

Network (CNN) 

 

In this study, 1DCNN has been trained using the GDM 

dataset for the gas source location prediction. It was 

chosen since the 1DCNN is able to identify the pattern 

in the 1D array and predict the output in terms of 

continuous value. 

 

 
Figure 5 1DCNN model architecture 

 

 

Figure 5 shows the architecture of the 1DCNN 

model to predict the location of the gas source. It 

consists of an input layer, 3 convolutional networks, a 

pooling layer, and 2 dense layers. For the input layer, 

it used the same method to insert the GDM data into 

the DNN model which means the 2D array (i.e., 60 x 

120) of GDM is flattened to be a 1D array (i.e., 7200 x 

1). Then, the data will pass through the first CNN layer 

which consists of 64 number of filters with a kernel size 

of 10 along with ReLU as the activation function. This 

layer takes the first layer as the input and transforms 

the sample into a 7191 x 64 array shape vector. After 

passing through the first CNN layer the sample passes 

through the dropout layer with a 0.1 rate that turns off 

10% of the neurons to prevent overfitting. Then, it is 

followed by the second CNN layer consisting of 32 

number of filters with a kernel size of 5 and utilizes ReLU 

as the activation function. The last CNN layer was 

consisting 16 number of layers with a kernel size of 3 

and ReLU as the activation function. The last CNN 

layer was followed by max-pooling which has a pool 

size of 16. The utilization of max pooling helps to 

reduce the complexity and computational cost for 

the model to process the sample. Afterward, 2 dense 

layers were employed using the ReLU activation 

function to represent the location estimation of the 

gas source location in the continuous value in the 

range of 0 until 60 for the x-axis and in the range of 0 

until 120 for the y-axis. 

Finally, for the model compilation during the 

training process, Mean Absolute Error (MAE) was 

implemented into the model as the loss and metric 

while the Adaptive Moment estimation (Adam) 

optimizer was chosen for the model optimizer to help 

the model optimize the learning process. The summary 

of the model is presented in Table 2. 
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Table 2 Summary of the 1DCNN model 

 

Layer Output Shape Number of 

Parameters 

Conv1D (7191, 64) 704 

Dropout (7191, 64) 0 

Conv1D (7187, 32) 10272 

Conv1D (7185, 16) 1552 

MaxPooling1D (2395, 16) 0 

Flatten 38320 0 

Dense 32 1226272 

Dense 2 66 

 

 

2.6 Two-dimensional (2D) Convolutional Neural 

Network (CNN) 

 

The third deep learning model which is the 2DCNN 

model consists of three main layers which are a 

convolutional layer, a pooling layer, and a fully 

connected layer. The difference between the 2DCNN 

and 1DCNN is only the number of dimensions of each 

layer. The 2DCNN primarily emphasizes the analysis of 

data in 2D shapes, whereas the 1DCNN places 

greater emphasis on understanding the data's 1D 

shape. 

 

 
 

Figure 6 2DCNN model architecture 
 

 

Figure 6 shows the model’s architecture of 2DCNN 

for gas localization prediction. The model consists of 3 

convolutional layers, 2 pooling layers 1 dense layer. For 

the input layer, the GDM dataset will not go through 

the flattening process as done in 1DCNN. The 60 x 120 

array shape of the GDM was fed directly into the 

2DCNN. Then, it passes through the first CNN layer 

which consists of 12 filters with a kernel size of 3 x 3 

along with ReLU as the activation function. Next, max 

pooling reduces the number of dataset parameters 

by a size of 5 x 5. It is followed by the second 

convolutional layer which consists of 6 filters with a 

kernel size of 3 x 3 along with ReLU as the activation 

function. Then, the second pooling layer reduces the 

size of the dataset by a size of 5 x 5. Next, for the last 

convolutional layer, it utilizes two filters with a kernel 

size of 1 x 1 along with ReLU as the activation function. 

Afterward, after flattening the output from the 

convolutional layer, 2 dense layers were employed 

using the ReLU activation function to represent the 

location estimation of the gas source location in the 

continuous value in the range of 0 to 60 for the x-axis 

and in the range of 0 until 120 for the y-axis. 

Finally, Mean Absolute Error (MAE) was 

implemented into the model as the loss and metric 

while the Adaptive Moment estimation (Adam) 

optimizer was chosen for the model optimizer to help 

the model optimize the learning process. A summary 

of the model is presented in Table 3. 

 
Table 3 Summary of the 2DCNN model 

 

Layer Output Shape Number of 

Parameters 

Conv2D (120, 60,12) 120 

MaxPooling2D (24,12,12) 0 

Conv2D (11,5,6) 654 

MaxPooling2D (2,1,6) 0 

Conv2D (1,1,2) 14 

Flatten 2 0 

Dense 2 2 

 

 

3.0 RESULTS AND DISCUSSION 
 

3.1 Comparison Between DL model performance 

 

In this section, all the deep learning models will be 

compared to each other and they also will be 

compared with other machine learning models such 

as Artificial Neural Networks (ANN) and Linear 

Regression. This comparison helps to determine the 

most suitable model that is able to perform the gas 

localization task in the gas map. It will be compared in 

terms of the accuracy of the model to predict the gas 

source location and the minimum Euclidian distance 

error that the model was able to obtain. 

The statistical analysis has been conducted for all 

the generated models by comparing the minimum 

value, maximum value, mean, standard deviation, 

and variance for the model Euclidian distance error 

between the actual gas source and the predicted 

gas source. Table 4 summarizes the statistical results 

obtained from each of the models. The lowest 

average or mean Euclidean distance value was 

obtained by the 1DCNN model with a value of 0.061 

m while the highest mean was obtained by the linear 

regression model with a value of 0.728 m. This result 

implies that the deep learning application is better 

compared to the machine learning algorithm in terms 

of localizing the gas source. Even though 2DCNN has 

a larger error compared to other deep learning 

models the error is still smaller when compared to the 

machine learning model. The DNN and ANN models 

also show a promising result when the mean error has 

a small difference compared to the 1DCNN error and 

the error is in the acceptable range. The smallest 

standard deviation also was obtained by 1DCNN 

which shows less spread of Euclidian distance error 

compared to 2DCNN and linear regression model.
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Table 4 Euclidian distance error statistic comparison between different model 

 

 

 

To get better visualization for each model error, all 

the error in Table 4 has been plotted using the box plot 

as shown in Figure 7.  

 

 
 

Figure 7 Euclidean distance error whisker plot for a different 

model   

 

 

The whisker plot functions to visualize the maximum 

and minimum error that the models have obtained 

from the prediction result. The small circle in the box 

plot indicates the mean error for each model. The box 

plot shows that the 2DCNN model has the longest 

whisker for the maximum error and is followed by the 

linear regression model. However, when looking at the 

median and mean for the linear regression model it 

has a larger error compared to the 2DCNN model and 

other models. The 1DCNN has the smallest data 

distribution followed by the DNN model and ANN 

model. This result indicates that all of these models 

namely DNN, 1DCNN, and ANN have a promising 

result in predicting the gas source within the gas map. 

However, 1DCNN shows better accuracy and 

performance compared to both mentioned models. 

Figure 8 shows the performance of each model 

after being given some random GDM dataset to 

perform the gas localization prediction. There are four 

different ranges for the Euclidian distance error 

between the predicted and actual gas source 

location. The distance range between 0.0 m to 0.3 m 

was considered the most accurate, a distance range 

between 0.3 m to 0.7 m was considered to be 

moderately accurate, the distance between 0.7 m to 

1.0 m was considered to be less accurate, and lastly, 

distance more than 1.0 m was considered as not 

accurate. From the figure, it shows that the 1DCNN 

model gains a higher percentage of occurrence to 

predict the location of gas sources between the 

range 0.0 m to 0.3 m with 90.3%. Then it was followed 

by the DNN model with 89% and the ANN model with 

79.3%. This result supports the result from the whisker 

plot which shows these three models have a high 

tendency to be considered to predict the location of 

the gas source. The graph agrees with the previous 

statistical result. For 2DCNN and linear regression 

model they have moderate accuracy since most of 

Model Type Distance range 
Euclidian Distance Error (m) 

Mean (m) 

Standard 

Deviation 

(m) 

Variance 

(m2) 
Average Min.  Max 

DNN 

(0,0.3] 0.097 

0.000 0.776 0.120 0.109 0.012 
(0.3,0.7] 0.400 

(0.7,1.0] 0.739 

>1.0 nan 

1DCNN 

(0,0.3] 0.062 

0.000 0.749 0.061 0.040 0.002 
(0.3,0.7] 0.497 

(0.7,1.0] 0.731 

>1.0 nan 

2DCNN 

(0,0.3] 0.181 

0.013 3.572 0.594 0.479 0.230 
(0.3,0.7] 0.482 

(0.7,1.0] 0.821 

>1.0 1.500 

ANN 

(0,0.3] 0.129 

0.004 1.561 0.209 0.186 0.283 
(0.3,0.7] 0.395 

(0.7,1.0] 0.782 

>1.0 1.561 

Linear 

Regression 

(0,0.3] 0.194 

0.013 3.382 0.728 0.540 0.291 
(0.3,0.7] 0.480 

(0.7,1.0] 0.835 

>1.0 1.492 
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the predicted gas location falls between the range of 

0.3 m to 0.7 m with 36.5% and 35.9% respectively. 

However, the linear regression model has the lowest 

performance compared to 2DCNN and other models 

because 26.2% of the samples’ gas source was 

predicted to exceed 1 m from the actual location. The 

graph agrees with the previous statistical result. 
 

 

 

 
Figure 8 Percentage of occurrence for a different model 

 
 

Table 5 shows six different random samples of GDM 

that represent the gas distribution concentration by 

the yellowish color for clear visualization. The higher 

the intensity of the yellow color the higher the gas 

concentration. There is five different shapes and color 

that represent the actual location of the gas source 

and the location of gas that is predicted by the 

different method. The actual gas source is 

represented by the white triangle while the red 

square, pink diamond, and green star are represented 

by gas predicted by the DNN, 1DCNN, and 2DCNN 

respectively. There is also a blue circle that represents 

the conventional method namely Global 

Maximum[20]. This method represents the highest 

value of concentration in the gas map.  

From the table, it can be observed that most of the 

locations of gas predicted by the Global Maximum 

method were far away from the actual gas source 

since the gas plume may move away from the actual 

gas location. It revealed that the conventional 

method has a low accuracy since it always assumes 

the region of high gas concentration has a high 

tendency to be the gas source. The location of gas 

predicted by the 1DCNN and DNN was near to the 

actual gas source and in addition, the locations 

predicted by both models also were near to each 

other. However, the location of gas predicted by the 

2DCNN model was far from the actual gas source but 

it is better than the Global Maximum method. 

Table 5 Location of predicted gas by different artificial intelligence model  
 

 

 Actual location    DNN location  1DCNN  2DCNN   Global Maxima 

 

 

 

GDM 
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4.0 CONCLUSION 
 

In conclusion, this research paper introduces a gas 

source localization system that employs three distinct 

deep learning techniques, namely DNN, 1DCNN, and 

2DCNN. These models are trained using a real-

scenario of gas distribution map database to 

determine the location of gas within the gas map. 

Notably, the 1DCNN model is observed to outperform 

the DNN and 2DCNN models with an accuracy rate of 

90.3%, compared to 89.0% and 26.7% respectively. It 

reveals that the 1DCNN effectively captures gas 

dispersion patterns from array reading and accurately 

predicts the gas source location compared to the 

2DCNN model which is better suited for image data. 

Furthermore, the findings also suggest that the 1DCNN 

and DNN models surpass traditional machine learning 

models which are ANN and linear regression. The 

accuracy rates of these machine learning models are 

only 79.3% and 21.1%, respectively. Overall, the 

1DCNN model is capable of predicting gas source 

locations with the highest accuracy, with an 

Euclidean distance range of 0 m to 0.7 m between the 

actual and predicted locations.  
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