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1.0 INTRODUCTION 
 

The use of computed tomography (CT) for diagnosing 

disease has increased rapidly [1-5]. CT scans utilize X-

ray radiation to generate patient images [6, 7]. Each 

tissue has a unique X-ray attenuation coefficient [8-

10]. The different attenuations result in a variation of 

pixel values in the CT image. Pixel values in the images 

are converted to CT numbers in Hounsfield units (HU) 

[11-13]. 

The CT number has a paramount role in diagnosis 

with quantitative computed tomography (QCT) [14-

16]. For example, QCT has been widely used to 

diagnose patients with anaemia. An abnormality is 

identified by comparing the attenuation of blood in a 

non-contrast examination with the attenuation of the 
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Abstract 
 

This study aims to develop an algorithm for automatically measuring CT 

number linearity in three different types of Catphan phantom. We used a 

sensitometry module image from three Catphan phantoms (types 500, 504, 

and 604). Each phantom and its air material were segmented. Based on the 

centroid of the air material, the coordinates for every object within the 

sensitometry modules were determined. The average CT numbers for every 

object were calculated and graphs of CT number linearity were 

automatically generated. Accurate segmentation of each object in the 

sensitometry modules produced accurate graphs of CT number linearity for 

each phantom. The linear regression of the Catphan 604 failed to pass the 

tolerance level, while the other two phantoms passed with R2 > 0.99. The 

automatic CT number linearity measurements were easy, fast, and more 

objective than manual measurements.    
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adjacent vessel wall or myocardium [17-19]. QCT is 

also widely used for the early detection of 

asymptomatic coronary heart disease with the 

Agatston score method [20, 21]. Recently, QCT has 

played a significant role in diagnosing patients with 

COVID-19 pneumonia [22-24]. It is vitally important to 

ensure the accuracy of the CT numbers to avoid 

misdiagnosis [25]. 

One way to ensure the accuracy of the CT 

numbers is to conduct a CT number linearity test, i.e. 

by evaluating the relationship between the CT 

number and the density of the material being imaged 

[26, 27]. The testing must be carried out periodically, 

since the CT number linearity is prone to alter within a 

specific period [28,29]. Various phantoms can be used 

for this testing, including the ACR phantom [30,31], the 

AAPM phantom [32,33], and the Catphan phantom 

[34-36]. 

For the Catphan phantom, there are many 

applications available to automatically perform the 

CT number linearity tests, such as Smari [37], AutoQA 

Plus [38], QA Master [39], QA Pilot [40], and CTQI [41], 

although some of these applications can only be used 

on certain types of Catphan phantom. However, they 

all require the phantom to be positioned at the iso-

center. They cannot accurately measure CT numbers 

of objects within the phantom if there is slight mis-

alignment or rotation of the phantom. This study aims 

to develop an algorithm to automatically measure CT 

number linearity on three different types of Catphan 

phantoms, even when the phantoms are not properly 

located at the iso-center. 
 

 

2.0 METHODOLOGY 
 

2.1 Catphan Phantom Images 

 

A method to automatically measure the CT number 

linearity was applied to three types of Catphan 

phantom, i.e., Catphan 500, Catphan 504, and 

Catphan 604. The Catphan® phantoms were 

manufactured by Phantom Laboratory, Salem, New 

York, USA.  Each phantom consists of several modules 

to test many image qualities. The CT number linearity 

test was carried out by scanning module #1 for CTP 

500 and CTP 504 and #2 for CTP 604, as shown in Figure 

1. The tests were performed with circular sensitometry 

objects in the edge area of the phantoms. Each 

phantom has a different number of sensitometry 

objects. CTP 500 has four objects: air, Teflon, acrylic, 

and LDPE. CTP 504 consists of eight objects with two 

circular air objects and Teflon, DelrinTM, acrylic, 

polystyrene, low density polyethylene (LDPE), and 

polymethylpentene (PMP) objects. CTP 604 has the 

same eight objects as CTP 504 and two additional 

objects, namely bone-50% and bone-20%. The 

phantoms were positioned at their iso-centers on the 

table and scanned with the parameters tabulated in 

Table 1. 

It is important to note that the sensitometry 

modules do not only contain objects for measuring CT 

number linearity. However, in this study, all objects 

other than those for measuring CT number linearity 

were not considered. 

 

 
 

Figure 1 Schematic of Catphan phantom modules for 

measuring CT number linearity: (a) Catphan 500, (b) 

Catphan 504, and (c) Catphan 604. Objects for measuring 

CT number linearity are indicated by arrows 
 

Table 1 Exposure parameters for scanning each Catphan 

phantom in this study 

 

Parameter 

Phantom type 

Catphan 500 
Catphan 

504 

Catphan 

604 

Scanner 

Siemens 

Somatom 

Definition 

AS+ 

Varian 

OBI 

CBCT 

GE 

Medical 

Revolution 

Tube 

voltage (kV) 
120 120 120 

Tube current 

(mA) 
86 80 340 

Field of view 

(mm) 
250 250 250 

Slice 

thickness 

(mm) 

2.0 2.5 5.0 

Revolution 

time (s) 
1.0 1.0 1.0 

Kernel UB Ram-Lak Standard 

Scan mode Axial Axial Helical 

 

 

2.2 CT Number Linearity 

 

The CT number linearity was measured automatically 

from phantom images using a modification of a 

previous algorithm used for an ACR phantom [42]. It 

uses the segmentation-rotation method [43].  

There are several stages in measuring the CT 

number linearity on a Catphan phantom (Figure 2). 

First, the phantom was segmented and its centroid 

was determined. Then, the air object within the 

phantom was segmented. The air object was chosen 

because it was the easiest to segment since the CT 

number difference with the background is around 

1000 HU. In the CTP 504 and CTP 604 Phantoms, we 

used the air object located at the 12 o’clock position. 

The centers of the phantom and air object were used 

as references to determine the coordinates of the 

other objects. 
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The next step was to rotate the coordinates with a 

specific angle with respect to the centroid of the air 

object. The magnitude of the rotation angle used in 

each phantom was unique and is shown in Table 2. 

After the center coordinates of each material were 

obtained, ROIs with a radius of 12 pixels around each 

object were created and the average CT numbers 

within each ROI were calculated. Graphs of CT 

number vs. the density of each object were plotted. 

To pass the CT number linearity test R2 should be 

greater than 0.99 [44]. 

 
Table 2 Rotation angle for obtaining coordinates of objects 

 

Object 

Angle (°) 

Catphan 

500 

Catphan 

504 

Catphan 

604 

Teflon 90 30 30 

Acrylic 180 150 150 

LDPE 270 270 270 

Air  - 180 180 

DelrinTM - 90 90 

Polystyrene - 210 210 

PMP - 330 330 

Bone-50% - - 120 

Bone-20% - - 300 

 

 

Figure 2 Steps of an automatic measurement of CT number 

linearity in the Catphan 500. (a) result of phantom 

segmentation and its centroid, (b) result of air object 

segmentation and its centroid, (c) rotating coordinate with 

reference of the centroids of phantom and air object. The 

centroid coordinates of the air object were rotated by 90°, 

180°, and 270° to acquire the center coordinates of Teflon, 

acrylic, and LDPE, respectively, (d) creating ROIs around 

each objects, (e) calculation of the average CT number 

within each ROI of all objects, and (f) plotting the graph of 

the CT number linearity 

 

3.0 RESULTS AND DISCUSSION 
 

The segmentation results on the three Catphan 

phantoms are shown in Figure 3. Our software was 

successful in automatically segmenting all objects in 

the three different types of phantoms. The ROIs were 

accurately located within each object for each 

phantom. The CT numbers of each object are 

tabulated in Table 3. The results show that the CT 

number of most of the objects, except the Teflon 

objects, were within the reference range. However, 

the CT numbers of Teflon in Catphan 500 and 

Catphan 604 were below the range, and its value in 

Catphan 504 was above the range. The CT numbers 

of DelrinTM and Bone-20% were also out of the 

recommended range. The CT number of DelrinTM in 

Catphan 504 and Catphan 604 were 413.5 HU and 

317.2 HU, respectively, while the CT number of Bone-

20% in Catphan 604 was 208.7 HU. The CT numbers of 

the water, PMP, LDPE, polystyrene, and acrylic objects 

were all within the recommended range.  

 

  
 
Figure 3 Automatic objects segmentation results for the three 

different types of Catphan phantom: (a) Catphan 500, (b) 

Catphan 504, and (c) Catphan 604 

 
 

Figure 4 shows the graphs of CT number linearity for 

the three Catphan phantoms. Two of the phantoms, 

i.e. Catphan 500 and Catphan 504, passed the CT 

number linearity tolerance test with R2 values greater 

than 0.99, but the Catphan 604 failed to pass the 

tolerance level. 
 

 
 

Figure 4 Graphs of CT number linearity for the three Catphan 

phantoms: (a) Catphan 500, (b) Catphan 504, and (c) 

Catphan 604   
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Table 3 Measured CT number from each object in the three different types of Catphan phantom 

 

Object 

Density 

(gram/ 

cm3) 

CT number 

reference 

(HU) 

Measured CT number (HU) 
CT number difference to the midle of 

reference (HU) 

Catphan 

500 

Catphan 

504 

Catphan 

604 

Catphan 

500 

Catpha

n 504 

Catphan 

604 

Air 0.00 
-1046 to -

986 
-983.9 -998.9 -998.2 -32.1 17.1 17.8 

PMP 0.83 -220 to -172 - -203.6 -187.4 - 7.6 8.6 

LDPE 0.92 -121 to -87 -88.8 -101.3 -98.3 -15.2 5.7 5.7 

Polystyren

e 
1.03 -65 to -29 - -36.1 -42.4 - 10.9 4.6 

Acrylic 1.18 92 to 137 126.2 145.5 118.3 -11.7 31 3.8 

Bone-20% 1.14 211 to 263 - - 208.7 - - 28.3 

DelrinTM 1.42 344 to 387 - 413.5 317.2 - 48 48.3 

Bone-50% 1.40 667 to 783 - - 692.9 - - 32.1 

Teflon 2.16 941 to 1060 854.0 1136.8 903.2 146.5 136.3 97.3 

 

 

The CT numbers presented in a CT image are 

widely used for diagnosing diseases in patients, e.g., 

anemia, coronary heart disease, and pulmonic. The 

CT number linearity test evaluates whether the CT 

numbers in an image correspond to the tissue densities 

of the objects or not. The current study aimed to 

develop an algorithm that could automatically 

measure CT number linearity on three types of 

Catphan phantom even when their positions are not 

ideally located. Our algorithm accurately segmented 

the objects within all three types of Catphan 

phantoms, i.e. CTP 500, CTP 504, and CTP 604. It 

automatically generated CT number linearity graphs 

to facilitate further assessment. 

We found that measured values for Teflon and 

Delrin were 30-80 HU above the recommended limits. 

And Bone-20% values in Catphan 604 a little low, 

about 3 HU lower than the minimum of the 

recommended range, as was air in Catphan 500. The 

CT numbers for the other materials were all within 

range. Garayoa et al. [35] examined the Catphan 600 

phantom with a Varian OBI CBCT and found that 

Teflon was about 60 HU above the reference value, 

while other materials were less than 35 HU from the 

recommended range. Won et al. [36] using a Varian 

Truebeam Linac found that Teflon and DelrinTM in the 

Catphan 504 phantom had a significant difference 

with a p-value <0.05 as a consequence of increasing 

the tube current above the head and chest protocol. 

Obtaining a CT number similar to the reference is 

quite tricky, especially for materials with high density. 

This is because the probability of Compton scatter 

increases in materials with high densities. In the 

Catphan phantom, the insert size, which is relatively 

small in high-density materials such as Delrin, Teflon, 

and Bone-20%, cannot accommodate the scatter 

radiation. This results in a dramatic difference in the CT 

number values obtained for these materials from the 

manufacturer's reference values [37-40]. Studies 

(Hatton [45], Guang [46]) revealed that the difference 

between measurement and reference could be up to 

260 HU, depending on the scatter volume length. This 

explains why the CT number linearity often fails to pass 

the standard, as in Catphan 604. Materials with a 

lower density are more likely to result in accurate CT 

numbers. 

Although deviation in CT number does not have a 

significant impact on the radiation dose [45,46], it 

does carry the risk of misdiagnosing patients when 

using QCT. The situation requires periodic monitoring 

of the CT scanner performance in producing an 

accurate CT number. Institute of Physics and 

Engineering in Medicine (IPEM) recommends 

measuring water and a high-density material such as 

Teflon in daily or weekly testing. Annual quality control 

can include materials other than these two [47]. It is 

recommended that quality control should be carried 

out with several variations that affect the output CT 

number, such as tube voltage, reconstruction 

algorithm, and slice thickness [48-50]. 

This study has some limitations. The algorithm was 

tested on a limited number of Catphan phantoms, 

namely Catphan 500, Catphan 504, and Catphan 

604. There are other types of Catphan phantom such 

as Catphan 600 and Catphan 704 which were not 

included in this software. Also, the current software has 

not been compared with other software. Testing the 

algorithm with more phantoms and a comparison with 

other existing software needs to be done in the future 

to fully test the performance of this algorithm. 

 

 

4.0 CONCLUSION 
 

Our algorithm has successfully measured CT number 

linearity on three types of Catphan phantoms, i.e. 

Catphan 500, Catphan 504, and Catphan 604, quickly 

and accurately. Two phantoms, Catphan 500 and 
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504, yielded pass results (R2 > 0.99) while the Catphan 

604 was out of the tolerance limit. We found that 

higher density materials are more likely to result in CT 

numbers different from the reference values.   
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