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Abstract 
 

Industrial monoblock centrifugal pumps are critical pieces of rotational machinery that 

play an important role in manufacturing operations. The critical components must be in 

proper working order for the industry to continue operating. State monitoring is essential 

for monitoring and analysing the condition of equipment. Bearing failure, cavitation, a 

broken impeller, and other issues are common in monoblock centrifugal pumps. 

Traditional procedures for calculating outcomes have been proven to be time-

consuming and difficult. At regular intervals, time domain vibrational signals are collected 

for the defective pump. These vibrational indicators are evaluated to the healthy, defect-

free pump. To acquire the accuracy, these images are fed into an efficient deep 

convolutional neural network (DCNN). This research examines two types of failures outer 

race bearing seal failure and cavitation. The visuals are trained and assessed in 

proportions of 70:30. Finally, the DCNN architecture's fault diagnosis accuracy is 99.07%. 
 

Keywords: Cavitation, deep learning algorithm, fault analysis, image processing, signal 

processing 
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1.0 INTRODUCTION 
 

A pump is a mechanical component that transmits 

power from one subsystem to another. It is often used 

in mechanical transmission, which comprises of plane 

engines, turbines, pumps and so on. Centrifugal 

pumps are utilised in a wide range of technical 

applications in various industries like construction 

sites, mining activities, mineral extraction, and high 

stress applications. A minor failure in the pump has 

devastating consequences, resulting in the 

breakdown of the entire machine [1]. An 

industrial monoblock centrifugal pump's impeller and 

bearing are the two key components that have a 

direct impact on the pump's [2]. As a result, bearing 

and impeller problem identification and classification 

are required to increase centrifugal pump reliability 

and protection [3]. Vibration data analysis has 

become a hotspot of signal processing study, and it is 

crucial for identifying and analysing vibration signals 

in equipment [4]. Only the outer race defect in 

bearing seal and the cavitation fault affecting the 

impeller are examined in this paper. 

In aggregate, the four types of fault diagnostic 

procedures are knowledge-based, model-based, 

composite approach, and signal-based. The 

traditional technique to defect diagnosis focuses 

mostly on frequency characteristics and fault 

extraction of features [5]. In the past, defect 

detection technologies relied heavily on processes 

and different harmonics to resolve an issue [6]. The 

water pump fault diagnosis predominantly focuses 
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on three factors: i) the primary vibration features from 

the hydraulic equipment are generally combined 

with a large amount of extra noise, ii) there is a lack 

of controller designs capable of generalization, and 

iii) there is a lack to ensure the effectiveness of the 

systems development [7]. Because of the functional 

diversity and complexity of hydraulic systems, fault 

identification and categorization appear to be more 

difficult. As the hydraulic system's power source, the 

hydraulic pump is critical in reflecting the system's 

operational status. An important research route in 

rotating equipment fault diagnostics is to employ 

data-driven signal processing algorithms to assess 

collect signals and extract significant failure features. 

These algorithms can react to the data collected 

and remove critical statistics to assess apparatus 

condition [8]. Deep learning (DL) based strategies to 

rotary device fault diagnosis, especially pumps, 

turbines, and gears, have indeed been extensively 

used in recent years for more reliable results. The 

diagnostic capabilities of such freshly developed 

approaches are stressed in terms of offering notions 

with the application of revolutionary procedures in 

rotational equipment [9]. Deep neural networks are a 

sort of DL technology that learns numerous layers of 

numerical simulations using both supervised and 

unsupervised learning [10]. Rather than manually 

extracting fault features, deep learning approaches 

can flexibly understand the data structure from 

original data using various nonlinear transformations 

and complex nonlinearity functions. 

The defect detection process in machines has 

gained popularity as a result of the successful 

utilization of deep learning neural networks in the 

domains of image recognition and language 

processing [11]. DCNN has sparked a lot of interest in 

intelligent fault detection, which has also sparked 

interest in rotary machine fault study [12]. Building a 

nueral computational model will replicate the human 

neurological learning process as a specific focused 

approach of unlabelled data classification. In various 

research, deep neural networks have proven greater 

benefits in finding faults organically with much more 

attributes and showing massive data [13]. 

An iterative procedure for structuring databases is 

developed in this field of study as a precondition for 

developing algorithms for executing machine-

learning processes. When the pump is good and free 

of flaws, normal condition signals are obtained from 

the setup. Later the vibrational raw data collection is 

obtained from defective conditions from the 

equipment. The deficient situations are considered, 

and signals are obtained. The two major mechanical 

defects investigated in this study using vibrational 

signals are outer race defect in bearing and 

cavitation fault. These signals are converted to 2D 

images using the image processing technique. It is 

proposed to use the Deep Convolution Neural 

Network (DCNN) classifier. Following pre-processing, 

all samples are divided into 70:30 portions for learning 

and evaluation [14]. The categorization is then 

carried out using the deep learning algorithm DCNN, 

which anticipates the upgraded system based on 

the preset datasets by utilising different convolution 

layers, max - pooling, and an activation function 

rctified linear unit (ReLU). DCNN outperform other 

standard approaches because they rely largely on 

recovered features [15]. Eventually, the results are 

gathered and examined, and the model's fault 

accuracy is determined. 

 

 

2.0 METHODOLOGY  
 

The dataset are extracted by vibration signals in the 

industrial monoblock centrifugal pump (Manikandan 

and Duraivelu, 2023). The readings are obtained 

using an accelerometer sensor located between the 

impeller and motor housing. The most of common 

general-purpose accelerometer sensors have a 

strong enough pulse to be tracked without signal 

disturbances. The information from the sensor is 

delivered to the computer through the data 

acquisition unit (DAQ). The vibrational data is sent 

from the sensor to the DAQ in which the vibrations 

would be enhanced and filtered. The data of a good 

monoblock centrifugal pump (GP). The various sensor 

outputs classify are outer race defect in bearing and 

cavitation fault. Bearings [16] are indeed a type of 

rotating component found in a wide range of 

applications such as compressors, pumps, turbines, 

engines, and rotors. Excessive pump operation with 

insufficient preventive maintenance is the leading 

cause of outer race bearing seal failure. Cavitation is 

another major hydraulic issue in centrifugal pumps 

[17], causing increased vibration [18], noise, and a 

significant loss in pump efficiency. It is induced by a 

drop in fluid pressure, which results in the formation of 

air bubbles. Cavitation can lead to impeller blade 

wear and pitting that can lead to pump failure. Both 

the outer race bearing seal failure and the cavitation 

failure are investigated using vibration signals. These 

signals that will be in the shape of raw data will be 

processed by utilising Lab VIEW software. MATLAB 

software will transform the dataset to grayscale 

image analysis. 

In this study, a 0.5 HP rated industrial monoblock 

centrifugal pump with a flow of 120 LPM, head range 

12m to 16.5m, and rating velocity of 2900 rpm is 

employed. The test rig of a monoblock centrifugal 

pump is shown in Figure 1. In this research a DAQ NI-

9234 data collecting system with a frequency range 

of 0.5–10000 Hz. 4-channel, 5 V, 51.2 kS/s/channel 

acquisition unit with 24-bit IEPE signal conditioning 

and AC coupling is utilized. This study employs an 

uniaxial accelerometer with a sensitivity of 50 mv/g 

and a resonance frequency of 40 Hz. The sensor is 

located close to the motor and impeller housing to 

collect the amplitude and features. 
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Figure 1 Monoblock centrifugal pump test rig 

 

 

The two main steps in the process are 

convolution and pooling. Deep learning [19] 

approaches arose from the study of artificial 

neural networks. The DL network is made up of 

many concealed layers, ranging from tens to 

dozens. An input image, a max pooling layer, a 

convolutional layer, a fully connected layer, and 

an output layer constitutes in DCNN architecture. 

They are one of the most important and 

advanced machine learning models, increasing 

training by pooling and convolutional kernels, 

which use down sampling to optimise. 

Convolution receives features from a specified 

feature map region. The max - pooling is simply a 

quasi down filtering technique that reduces 

computation time by lowering system 

parameters and, to some extent, controls 

overfitting. In the fully connected layer, a typical 

feed-forward neural network is used. To 

resolves the multi-categorisation problem, the 

proposed DCNN uses the ReLU function as the 

activation function [20]. 

Back propagation techniques have the 

potential to train DCNN, with the weight update 

is solved  using the following formula:  

 

𝛥𝑤𝑖𝑗(𝑡 + 1) =  𝛥𝑤𝑖𝑗(𝑡) + 𝜂
𝑎𝑐

𝑎𝑤𝑖𝑗
 

 

among them, 𝜂 is learning rate, c is cost function, 

i & j are the input unit and 𝛥𝑤𝑖𝑗 is the weight 

update of the function. 

After gathering features from transformed 2-D 

images, the DCNN technique is built using the 

MATLAB software to categorise the input signals. 

To train the classifiers, we use feature maps as 

training data. The total amount of dataset for 

analysis is 16384, with a cumulative dataset of 120 

instances per fault and a learning rate of 0.0001. 

The sampling rate used is 8.192 kHz, with a total of 

25 epochs. To distinguish the training sample from 

the test sample, 70% of our dataset is utilized for 

classification purpose and 30% for testing. Based 

on the results for the testing dataset, the research 

constructed a confusion matrix to analyse the 

correctness of our study and confirmed that the 

previously mentioned strategies are effective. 

 

 

3.0 RESULTS AND DISCUSSION 
 

According to the study, the prolonged use of 

centrifugal pumps in the manufacturing industry 

generates many faults that must be properly 

maintained for optimum pump performance. The 

cavitation defect and outer race bearing seal 

fault are considered in this research. They are 

differentiated to the good state pump. Figure 2a 

depicts the bearing in good shape, while Figure 

2b depicts the defective bearing seal failure. For 

the experiment, the healthy bearing is replaced 

with a outer race bearing seal fault, which 

generates a lot of sound in the pump and 

decreases the pump's performance. Another 

type of hydraulic failure cavitation is reproduced 

by reducing the pressure on the suction part of 

the pump, which causes the air bubbles in the 

fluid to collapse. Figures 2c and 2d show the 

preliminary healthy state impeller and defective 

impeller after cavitation. 
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The sensor installed in the centrifugal pump is 

linked to the data collecting device for getting 

the pump's factors based on vibrational 

examination. The generated defects in the 

monoblock centrifugal pump produce time 

domain signals. The time domain signals relevant 

to a healthy pump are also captured and 

analyzed eventually. The amplitude vs sample 

length raw signal for the defect pump and 

healthy pump is displayed. The cavitation fault 

raw signal is shown in Figure 3a, the defect outer 

race bearing seal raw signal in Figure 3b, and the 

effective pump raw signal is depicted in Figure 

3c. respectively. At every 15 mins from pressure 

0.1 Kg/cm2 to 1.5 Kg/cm2 the vibrational dataset 

readings are taken.
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Figure 2a Healthy bearing 

 

 

 

 

Figure 2b Outer race bearing seal failure 

Figure 3a Cavitation raw signal 

 

 

Figure 2c Normal impeller 
Figure 2d Defective Impeller  
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Image Normalization  

 

During this normalization approach by using 

energy values the vibration signals in the time 

range are changed into 2-D dimensions. 

Received signals are then intially segmented into 

equal subareas, that are each expressed as a 

frame. The frame length and harmonic 

frequency of a signal are multiplied to get the 

quantity of a frame. By partitioning the signal, the 

researchers were able to get a certain number of 

frames that are paired with fixture size, helped 

to determine the breadth and depth of the 

matrices. The fixture size is comparable to the 

length of the matrix, while the fixture quantity is 

equivalent to the matrix's width. For instance, if 

the fixture dimension is M and the fixture volume 

is N, the optimum dimension is MxN. The specified 

fixture energy levels then are joined into the 

matrix's cells. The value of each fixture is entered 

vertically into the matrix. The initial fixture 

optimum values are let into the matrix's initial 

column, with the first value going into the initial 

cell of the first row. The second value moves 

further into the initial unit of the next row. As a 

result, the first frame's result would be stored in 

the initial cell of the last column, and every result 

will fit into the column because the matrix's 

length equals the fixture size. One by one, the 

further fixture activity levels are entered into the 

matrix. Since the breadth of the matrix 

corresponds to the number of frames, the 

majority of the images may fit within it, and the 

data of the images are now standardized in the 

band of 0-120 after all the data have been put 

into the matrix. The matrix seems to have a lowest 

quantitative value of 0 and a maximum 

reference level of 120. All numerical values are 

derived within this range depending on the ratio. 

Inside the matrix, the true results replace the 

existing values. The normalization procedure 

helps to reduce the resolution of the original 

signal. This also helps to reduce disturbance in 

the signals received. Signal attributes in the time 

domain are kept in a 2-D representation, and 

texturing characteristics of the data in 2-D can 

be restored to classify the information. This 

analysis also make use of the frequency 

-1

0

1

0 2000 4000 6000 8000 10000 12000 14000 16000

-2

-1

0

1

2

0 2000 4000 6000 8000 10000 12000 14000 16000

 
Figure 3b Outer race bearing seal raw signal 

 

 

 

Figure 3c Healthy pump raw signal 
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components which depicts the signal as a fusion 

of amplitude and phase values for each 

component frequencies. The signal are then 

converted to 2-D by using frequency domain. 

Every vibration signal is converted into frequency 

domain using the Fourier Transform. The intensities 

of the signal were then standardized to a range 

of 0-120. Figure 4a, b, c displays a 2D grey scale 

image of a healthy pump with three samples, 

while Figure 4d, e, f shows a grey scale image of 

a cavitation flaw in a pump with three samples. 

Figure 4g, h, i shows a greyscale image of a 

pump outer race bearing failure with three 

samples. Three ways are used to evaluate the 

image's rectification efficiency. 

1) To calculate the overall average 

variance to obtain the reliability of the 

image. After performing image 

corrections, calculate the standard error 

and mean to calculate the median 

precision for each section. The estimate 

of each line's accuracy is the picture's 

comparative reliability. The following is 

the formula: 
 

εi =  
1

𝐶𝑁𝑖

√
1

𝑁
𝛴𝑗=1

𝑛 [𝐶𝑁(𝑖, 𝑗) − 𝐶𝑁𝑗
̅̅ ̅̅ ̅]2 

 

ε =
1

m
𝛴𝑖=1

𝑚 𝜀𝑖 

 

Among these, 𝜀𝑖 is the image's relative 

scaling accuracy for the i-th line, and 

CNi is the image's average value for the 

i-th row. 

 

1) Average line standard deviation method. 

Calculate the corresponding standard deviation 

after calculating the average values of each 

column after image processing. The relative 

accuracy of the image is calculated by dividing 

the image average value. The following is the 

formula for calculating the relative accuracy: 
2)  

ε =  
1

CN
√

1

𝑁
𝛴𝑗=1

𝑛 [𝐶𝑁(𝑗) − 𝐶𝑁̅̅ ̅̅ ]2 

 

CN(i,j) is the CN of the j-th column of the 

i-th row of the image, where the number 

of probes is n and the image size is mxn. 

 

3) Generalized noise method. Unlike the 

other two techniques, the generalised 

noise method determines the average 

value of each column after image 

corrections, as well as the image mean 

value. The absolute value is obtained 

first, then second the estimated value, 

and finally the percentage of the 

normalised value of the complete 

image. The formula for calculating the 

average value is as follows: 
 

ε =
1

CN

1

𝑁
𝛴𝑗=1

𝑛 [𝐶𝑁(𝑗) − 𝐶𝑁̅̅ ̅̅ ]

 
 

 
 
 
 
 
 
 
 
 
 
                (a)                                                                            (b)                                                                         (c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



157                            Manikandan S & Duraivelu K / Jurnal Teknologi (Sciences & Engineering) 85:5 (2023) 151–162 

 

 

 
 
 
 
 
 
 
 
 
 
 
                (d)                                                                            (e)                                                                         (f) 

 
 
 
 
 
 
 
 
 
 
 

 
 
                (g)                                                                            (h)                                                                         (i) 

 
Figure 4 Grey level image for healthy pump, cavitation defect & bearing defect failure

 
 

Defect Categorization Using Deep Learning 

Algorithm 

 

To improve the process, the created system is put 

though the deep convolutional neural network 

layers. The DCNN is made up of several layers 

that work together to process the input layer 

(convolutional layers, fully linked layers, pooling 

layers, activation function, and severalfeasible 

output layers) as shown in Figure 5. The DCNN 

variables that were are evaluated are listed in 

Table 1. The fault accuracy of the centrifugal 

pump is examined for the method developed by 

CNN's multiple computational levels. From the 

whole dataset of 16384 instances, the training set 

has 11468 instances and the test dataset includes 

4916 instances.The overall samples are analyzed 

in the system by a sampling rate of 8.192 kHz. The 

training data consideration is about of 70% and 

the testing data consideration of 30%.The main 

primary component of CNN is the convolution 

layer. The layer has many kernels present in the 

image. During the training process the numbers 

of kernels present in the image are learnt. The 

beginning layers are designed for extracting the 

general features, and as the network becomes 

deeper, the complex components are 

eliminated. 
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Figure 5 DCNN architecture 

 
Table 1 Description of DCNN parameters 

 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

S.No Description Value 

1 No.of Convolution 3 

2 Kernel pixel (256, 512) 

3 Size of kernel (5x1,5x1) 

4 Max pooling layers 2 

5 Size of pooling layer (3x1,3x1) 

6 Activation function ReLU 

7 Learning rate 0.0001 

8 Max Simulations 75 

9 Mini group size 32 

10 Iteration considered 25 

11 Simulation per epoch 3 
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Figure 6 Training data validation 

 
 

The features are filtered for data validation 

using the DCNN classifier, and the testing data 

set is also extracted for feature selection using 

the classifier, and the dataset are classified. 

Figure 6 shows the training data validation for the 

two faults and a healthy good pump considered. 

The overall validation precision of the present 

system is analyzed as 99.07 % for the testing and 

training, the processing time for the CNN classifier 

is 1 min 27 seconds, having the epochs of 25 with 

three iterations per epoch at the learning rate of 

0.0001.  

The predicted class accuracy and true class 

accuracy for the classified fault conditions are 

shown in the Table 2. The fault conditions are 

analyzed with the good pump compared with 

the fault conditions are Cavitation fault and 

outer race bearing seal failure. The Prediction 

class accuracy for the GP, CF and BS classes is 

97.3%, 100% and 100%. Similarly, the CNN 

classifier’s true class accuracy for the GP, CF and 

BS are 100%, 100% and 97.2%. Finally, the overall 

accuracy of the proposed system with DCNN 

architecture is calculated as 99.07%. 
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Table 2 Predicted class accuracy and true class accuracy 
 

Fault condition Predicted class accuracy True class accuracy 

Healthy Pump 97.3% 100 % 

Cavitation 100% 100 % 

Outer race bearing seal fault 100 % 97.2% 

 

 

Comparison with ML Algorithm 

 

The vibrational features obtained from the good 

pump and other faulty conditions are taken for 

statistical analysis using the Waikato Environment for 

Knowledge Analysis software. From the received 

vibration features 50 samples are taken for 

comparison with ML algorithms. In this research the 

features are classified through random forest to find 

the fault accuracy. To facilitate the feature 

extraction process, the mean, median, mode, 

minimum, maximum, range, skewness etc., are 

computed and few sample readings are shown in 

Figure 7. 

  

Figure 7 Feature extraction 
 

 

After completing the statistical feature extraction, 

the variables are generated to categorize the 

features. The statistical element is utilized during the 

selection of features. descriptive statistical features 

were computed using Microsoft Excel. After opening 

a raw signal, the appropriate statistical tool from the 

data processing device pack are utilized to 

calculate the statistical parameters of the signal. The 

above procedure must be repeated for each of the 

files, so a macro coding is created in order to 

achieve the data. The end product will be a unique 

file stored in .CSV (comma separated value) that ML 

classifiers could use as input for training process. 

 

Classification using Random Forest 

 

In the Waikato Environment for Knowledge Analysis 

(Weka) there are various variety of classifiers using ML 

algorithms such as trees, bayes, functions, meta etc., 

Initially, the training is performed using a tree-based 

approach. In the tree type RF technique is utilized to 

find the accuracy of correctly classified instances. 

From the study 70 % of the data are used for training. 

Total data set taken for study is 150 with 50 samples 

per fault for training using the algorithm. The 

confusion matrix is shown in Table 3. From the Table 3 

the main inference for good pump is that they don’t 

have any misclassification whereas for cavitation 

fault and outer race bearing fault there is 

misclassification identified. 
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Table 3 Confusion matrix using random forest 

 

Good Pump Cavitation Outer race bearing 

seal 

Classification 

50 0 0 Good Pump 

9 41 0 Cavitaion 

8 0 42 Outer race bearing seal 

 

 

From the statistical analysis the stratified cross 

validation with respect to random forest algorithm is 

shown in Table 4. The correctly classified instances is 

high at 96.51% for random forest Ml algorithm and 

the proposed DCNN algorithm shows an accuracy of 

99.07% respectively as shown in Table 5.

 

 
Table 4 Cross validation using random forest 

 

Features Random Forest 

Correctly Classified Instances         96.51% 

Incorrectly Classified Instances       3.29% 

Kappa coefficient           0.96 

Mean absolute error                     0.031 

RMS error              0.0954 

Relative absolute error                10.95% 

Root relative squared error      27.76% 

Total Number of Instances               150  Nos 

 
 

Table 5 Comparison with proposed DCNN algorithm 

 

S.No Algorithm Individual fault accuracy 

1 Random Forest 96.71 % 

2 Proposed Deep Convolutional Neural Network 99.07 % 

 

 

4.0 CONCLUSION 
 

For fault detection, neural network algorithms are 

employed in a variety of industrial applications such 

as turbines, pumps, and hydraulic equipment. For 

quicker solutions and optimum accuracy, experiment 

analyzes for industrial monoblock centrifugal pump 

defect diagnosis are performed. The suggested 

method integrates vibration signals with grey level 

pictures based on normalisation, with the outcomes 

acquired at high resolution for great accuracy. The 

given DCNN system categorises grey imaging using 

its convolution, pooling, and fully connected layers, 

with ReLU serving as the activation layer. For more 

precise findings, time domain vibrational signals 

relevant to good pump, outer race bearing seal 

failure, and cavitation fault are identified and 

trained. From the confusion matrix the true class 

accuracy and the predicted class accuracy for the 

faults in the monoblock centrifugal pump are 

calculated. From the fault diagnosis based on the 

DCNN classifier for the pump the overall efficiency is 

found to be 99.07% after training. With the same 

dataset using Random forest algorithm the individual 

fault accuracy is 96.71 %. The proposed DCNN 

algorithm is found to be the highest when compared 

with the random forest algorithms. In the future work 

the other faults in the centrifugal pump can be 
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analyzed by using the same DCNN classifier for better 

results.  

 

Future Scope 

 

The suggested method of fault analysis can be 

extended with other faults, such as motor fault, fitting 

fault, seal fault etc. In the industrial pump, faults can 

occur for many reasons that may prevent the plant 

from properly functioning. The causes of the multiple 

faults need to be examined, and the same 

methodology must be carried out to determine the 

accuracy of the predictive fault diagnosis. 
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