
86:3 (2024) 115-125|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI: 

|https://doi.org/10.11113/jurnalteknologi.v86.20409| 

Jurnal 

Teknologi 
Full Paper 

MI-OPTNET: AN OPTIMIZED DEEP LEARNING

FRAMEWORK FOR MYOCARDIAL INFARCTION

DETECTION

Audrey Huonga*, Kim Gaik Taya, Kok Beng Ganb, Xavier Ngua 

aFaculty of Electrical and Electronic Engineering, Universiti Tun 

Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia 
bFaculty of Engineering and Built Environment, Universiti 

Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia 

Article history 

Received 

26 July 2023 

Received in revised form 

24 November 2023 

Accepted 

13 December 2023 

Published Online 

20 April 2024 

*Corresponding author 
audrey@uthm.edu.my

Graphical abstract Abstract 

The conventional means of myocardial infarction (MI) detection using a 12-lead 

electrocardiogram (ECG) system include a pretrained network and machine 

learning interpretation of the complex ECG signals. They are computationally 

inefficient and demand high-performance hardware. Here, for the first time, we 

introduce an effective framework (MI-OptNet) using the particle swarm 

optimization model (PSO) in the design of a lightweight hybrid network combining 

convolutional neural network (CNN)-long short terms memory (LSTM) for MI and 

normal ECG detection. We optimized important design and training parameters 

based on limb leads’ signals and identified leads III and VI as the best ECG leads 

for the task based on their high classification performance ranging between 80 – 

90 %, suggesting that they may provide more information about MI than the others. 

The other strategy of fusing the scores from all models at the decision level 

achieved the best result with a 10 % increase in the evaluated metrics. Our findings 

support the flexibility and adaptability of our framework for the design process 

using minimal computer efforts. We concluded that this approach may be used 

for other classification problems to assist engineers and designers in efficient 

decision-making and to solve complex signal classification and recognition 

problems. 

Keywords: Decision Support, myocardial infarction, healthcare, network design, 

optimization 

Abstrak 

Kaedah pengesanan infarksi miokardium (MI) menggunakan sistem 

elektrokardiogram (ECG) 12-elektrod termasuk menggunakan pembelajaran 

mesin bagi penafsiran isyarat ECG yang kompleks. Teknik ini tidak cekap dari segi 

keperluan perkakasan komputer berprestasi tinggi. Di sini kami memperkenalkan 

rangka kerja berkesan (MI-OptNet) menggunakan model pengoptimuman 

kawanan zarah (PSO) dalam merekabentuk rangkaian hibrid yang 

menggabungkan CNN dan model LSTM untuk pengesanan MI dan ECG. Kami 

mengoptimumkan proses reka bentuk dan parameter penting serta 

mengenalpasti elektrod III dan VI sebagai petunjuk ECG terbaik berdasarkan 

ketepatan ramalan yang tinggi dalam julat antara 80 – 90 %. Keputusan ini 

menunjukkan bahawa kedua-dua elektrod ini memberikan lebih banyak 

maklumat tentang MI daripada yang lain. Strategi lain menggabungkan skor 

daripada semua model memberikan hasil terbaik dengan peningkatan sebanyak 

10% dalam metrik yang dinilai. Penemuan kami menyokong fleksibiliti dan 

kebolehsuaian rangka kerja kami dalam proses reka bentuk. Kami menyimpulkan 

bahawa pendekatan ini boleh digunakan untuk masalah pengelasan lain bagi 
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membantu jurutera dan pereka bentuk dalam membuat keputusan dan 

menyelesaikan masalah pengelasan isyarat yang kompleks. 

 

Kata kunci: Sokongan Keputusan, infarksi miokardium, penjagaan kesihatan, reka 

bentuk rangkaian, pengoptimuman 

 

© 2024 Penerbit UTM Press. All rights reserved 

  

 

 

1.0 INTRODUCTION 
 

According to the World Health Organization, 

cardiovascular disease (CVD) ranks the number one 

global cause of death in 2019, with acute heart 

attack, medically known as MI, being a contributory 

factor [1]. This disease is a serious medical emergency 

due to tissue necrosis following disruption of blood 

supply to an area of the myocardium (i.e., myocardial 

ischemic), causing tissue injury or death. The key 

factors of MI are hypertension, coronary artery 

disease, arteriosclerosis, and fatty liver disease. Other 

causes include the effects of drugs, venom-induced 

anaphylactic shock, and vasospasm-induced 

infarction. In addition, cardiovascular complications 

associated with the Coronavirus Disease 2019 (COVID-

19) have been well-documented in recent years. A 

report by the Centers for Disease Control and 

Prevention (CDC) in [2] showed evidence of a high 

prevalence of inflammation of heart muscle (or 

myocarditis) and pericardium (known as pericarditis) 

in patients receiving mRNA-based COVID-19 

vaccines. Myocarditis is another cause of MI, as the 

initiation and progression of myocarditis-related 

inflammation leads to reduced blood flow to the heart 

muscles. Since the symptoms of MI, which include 

chest pain or fluttering and pounding heart, are either 

absent or appear late in the course of the disease [3], 

it is often referred to as a silent killer. A blood test is a 

reliable method and early tool to detect cardiac 

diseases and Heart-type fatty acid-binding protein (h-

fabp), a biomarker for MI [4]. However, there is a risk of 

blood sample contamination in the laboratory. An 

Electrocardiogram (ECG or EKG) for noninvasive and 

real-time display of heart signals remains crucial for 

regular monitoring of heart conditions. 

A three-lead ECG is the most basic existing system, 

whereas a 12-lead ECG is widely used clinically to 

provide a possible clue to cardiac diseases using the 

measurement from two sets of ECG leads — limb and 

chest lead. Limb leads consist of bipolar leads (Lead I, 

II, and III) and augmented vector leads (i.e., aVR, aVL, 

aVF). The chest limbs are unipolar cardiac leads, i.e., 

V1 to V6, positioned on the left side of the chest. The 

lead configuration of aVR through V6 is described as 

lead IV - XII. Each lead records heartbeats reflecting 

conditions of different heart regions, with limb and 

cardiac leads measuring signals in the vertical and 

horizontal directions. A normal ECG cycle comprises 

the P-wave, QRS complex, ST segment, and T wave. 

The ST segment elevation (i.e., STEMI) or depression 

(NSTEMI) and intervals related to the R peak have 

been reported to offer diagnostic information on MI. 

However, the heart disease-related physiological 

changes in the PQRST complex can be challenging to 

detect and interpret by nonspecialists. Furthermore, 

the waveform can also be easily corrupted by noises, 

such as power line interference, high-frequency 

noises, respiratory signals, and motion artifacts, 

leading to inconclusive diagnoses responsible for over 

41 % of failure, delay, and wrong diagnosis [5]. Thus, 

careful examination of all leads’ signals may disclose 

heart abnormalities and the process demands 

domain experts with rich experiences. Due to time 

constraints and difficulties associated with limited 

experts needing to deal with a large amount of data, 

machine learning or computer-aided diagnosis (CAD) 

has become an effective tool to support physicians in 

their decision-making. 

Research related to ECG signal processing in the 

past dealt with heart disease classification methods 

[5,6], denoising and filtering methods [7,8], data 

enhancement techniques [9], biometric recognition 

[10], and investigations of the telehealth opportunity 

[11, 12]. Most of these reviewed studies used MIT-BIH 

Arrhythmia, Physikalisch-Technische Bundesanstalt 

(PTB), IN-CART, and supraventricular arrhythmias (SV) 

datasets, downloadable from the PhysioNet 

website in their investigation. The MIT-BIH and PTB are 

comparatively famous for use in numerous important 

publications in the field to benchmark their 

performance against their competitors. Each 

database contains 12-lead ECG signals with a 

different diagnosis. The MI diagnosis is absent in the 

MIT-BIH database, while PTB published the highest 

number of this disease before the release of PTB-XL in 

2021. A high-class imbalance problem in these 

datasets is often the case in practice. To overcome 

this issue, [13] divided a time series signal into multiple 

cardiac cycles to enrich the training set before 

extracting their temporal characteristics for analysis. 

Others in [14] and [15] adopted an innovative strategy 

to generate data for training deep learning (DL) 

models using generative adversarial network (GAN) 
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and synthetic minority oversampling technique 

(SMOTE). Rai and Chatterjee [15] included the 

combined dataset of MIT and PTB (normal class) in 

their investigation. Since a cardiac cycle is sufficient to 

provide valuable information about heart disease, it 

has been proposed as a powerful solution to increase 

data diversity. Several recent efforts have been made 

toward cardiac cycle extraction. These include [13], 

where the ecgpuwave software is used to segment 

each wave and annotate the locations of PQRST in 

ECG signals to determine the temporal features 

related to the R peak for MI prediction. Another study 

in [16] explored strategies for detecting QRS complex 

before extracting a single pulse unit for classifying 

STEMI and NSTEMI. Śmigiel et al. [17] investigated the 

efficiency of six state-of-the-art detectors for 

determining the R-peak, which is often taken as the 

reference point for identifying a single ECG pulse. 

However, this task can be challenging as the signal is 

corrupted with noise and baseline wandering. There is 

also a high intra-patient and inter-patient variability in 

the PQRST pattern and interval. To this end, some 

works introduced raw ECG sequences to mitigate the 

effects of these variations in the training data. This 

includes Li et al. [14], which compared the 

performance of the GAN model trained using ECG 

signals of three frame lengths, i.e., 1024, 2048, and 

5120. Each window may contain several PQRST 

complexes or incomplete or truncated ECG segments 

to predict heart disease.   

Transfer learning of CNN is popular among many 

other scholars in this field. Bassiouni et al. [18] 

compared the learning capacity of ResNet50 trained 

for feature extraction and MI classification tasks using 

2D wavelet transform (ECG images) constructed from 

1-dimensional (1D) signals. In [19], the classification of 

ECG images created from 12-lead signals was 

performed on ten pretrained networks, including 

different variants of VGG, ResNet and Inception, 

MobileNet, Xception, and DenseNet. Gradient-

weighted class activation mapping (Grad-CAM) was 

employed to locate the important regions in the 

image to differentiate STEMI and NSTEMI signals. The 

results compared with three state-of-the-art machine 

learning models, i.e., Support Vector Machine (SVM), 

K-Nearest Neighbour (KNN), and Decision Tree (DT), 

showed the superiority of CNNs. Park et al. [16] 

constructed a 1D version of ResNet and VGGNet for 

the same reasons. Manimekalai and Kavitha [20] used 

CNN to automatically extract spatial features and 

LSTM for the temporal component to distinguish 

between MI and normal beats. A similar study was 

conducted by [15] to compare the efficiency 

between CNN and LSTM and a hybrid CNN-LSTM. Al 

Rahhal et al. [13] employed an autoencoder 

technique for unsupervised learning of features for 

different classes of ECG waveform: normal, 

ventricular, supra-ventricular, and the fusion of normal 

and unknown beats. Unlike the prior works that used 

the raw ECG signals, Fatimah et al. [21] proposed to 

work on frequency domain statistical features as the 

input features for their machine learning framework. 

The manual feature engineering process can be cost-

effective in providing good results at a lower 

computational cost, but it requires expert knowledge 

pertinent to the system.  

Considering the highly complex and dynamic 

relationship between the ECG pattern and class 

labels, most of the previous studies relied on 

pretrained models to learn useful representations of 

the input ECG data in mapping the input layer-output 

target relationship. Nonetheless, these models may 

not be efficient and fully adaptable for the task. Thus, 

the CNN architecture design and development works 

were carried out in [17,22,23] to address the 

classification problem specific to the ECG using the 

manual approach. The nodes are arranged and 

positioned in the network by administrator control for 

reliable and cost-efficient operation. The process can 

be labor-intensive and time-consuming. These studies 

focused on recognizing cardiac patterns, i.e., ST/T 

change and conduction disturbances, which are 

well-recognized critical features for detecting 

abnormalities, such as tachycardia and arrhythmias, 

and MI. Among these diseases, MI is the most 

dangerous, with the highest mortality rate [24]. To our 

knowledge, efforts have yet to be made to 

incorporate an optimization algorithm in designing a 

deep learning network specific to ECG data. Such 

work is important to facilitate knowledge discovery, 

driven by the progressive emergence of new 

(cardiac) disease datasets, by rapidly and efficiently 

establishing the complex relationship between the 

input information and the output. In addition, 

processing all 12-lead signals may be resource and 

memory-demanding, so the optimal ECG leads for MI 

prediction remain to be discovered. Our contributions 

are three-fold as follows: First, we develop an 

optimization incorporated system for the systematic 

and automatic network design process for MI and 

normal ECG classification. Second, we propose the 

best ECG lead for MI detection. Third, we improve the 

decision-making performance by introducing an all-

inclusive (i.e., score fusion) strategy.  
 

 

2.0 METHODOLOGY 
 

2.1 Data Handling and Management 
 

We used the public resource of PTB-XL ECG signals 

published by the Physical-Technical Federal Institution 

to demonstrate our proposed framework and 

investigate our system. It is freely downloadable 

from PhysioNet’s official site (https://physionet.org). 

This current largest available database contains 2

1,837 12-lead ECG signals of five super-classes of 

diagnoses recorded from 18,885 subjects and their 

demographic profile. The objective of this study is to 

classify MI and healthy control. There are 2,685 records 

with the MI label, while the control dataset consists of 

9,528 samples. Each signal is sampled at fs = 100 Hz. 

First, we run the rdsamp function linked to the 

waveform database (WFDB) application library to 
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read the WFDB signal files before inputting its numeric 

records into MATLAB (version 2022). Each record 

contains 12 signals from limb and chest (or precordial) 

electrodes. We intend to establish our diagnosis by 

examining the limb leads, i.e., lead I through VI, 

because the signals are similar in all cardiac leads [25], 

so only the numeric data of limb leads are saved in a 

mat file for further processing. Next, the signals are 

applied with a highpass filter of 0.05 Hz to remove 

baseline drift noise and powerline interference. We 

used a third-order Butterworth filter for this purpose. We 

found that using higher order values resulted in large 

oscillation in the filtered output. Next, we split the data 

for training, validation, and testing using a ratio of 75 

%, 10 %, and 15 % to prevent data leakage. Even 

though most research acknowledged 80-10-10 % as 

the standard scheme for data partitioning, studies in 

[26,27] explored the model predictive performance 

using different split ratios. While a strict ratio, e.g., 60-

30-10 %, renders insufficient training data for learning 

important features and patterns, a lenient setting like 

90-5-5 % lacks rigorous testing of the model. Therefore, 

the data partitioning scheme adopted herein is 

chosen after considering a tradeoff between the 

sufficiency of model training and the robustness of the 

evaluation to prevent bias in the results. We applied 

the same seed number to reproduce the data for 

each run. 

 

2.2 ECG Pulse Segmentation 
 

Each recording of the 10-second ECG filtered signal 

shown in the second diagram in Figure 1 contains 

several heart pulses. We truncate the signal according 

to each heart pulse, and each should be the same 

length to ensure consistency in the input data fed into 

the network. We pursued this goal by finding the first 

maximum of an ECG waveform, and the R-peaks are 

identified as the points in the signal with amplitudes of 

at least 95 % of the value. The R peak is used as a 

reference to centralize PQRST complexes, whereas 

the duration between two R-peaks, t, in Figure 1, is the 

period of each cycle. The number of heartbeats in 

each ECG record is estimated by dividing the signal 

into segments with length t. The median cardiac cycle 

lengths in MI and normal classes are calculated as 

0.83 and 0.90 seconds, respectively. A sliding window 

of 0.83 seconds was used for the entire investigation to 

eliminate the need for data extrapolation and 

upsampling during post-processing to match the 

normal ECG resolution, thereby reducing the 

computational burden and uncertainty of the 

estimates. The ECG pulse segmentation process is 

shown in Figure 1. There are 109,908, 14,664, and 

21,984 ECG pulses extracted from training, validation, 

and test sets. 

 

2.3 Classification Model and Optimized Training 

Framework 

 

Unlike the existing pretrained CNN models developed 

for image recognition tasks, we dealt with the 1D-ECG 

signal. For this reason, we designed an automatic 

framework named MI-OptNet, combining an 

optimization technique and a convolutional-LSTM 

model for classifying MI and normal ECG signals. The 

pursuit of this task starts by defining the basic 

architecture as a hybrid CNN-LSTM to capture both 

spatial and temporal features in data. The proposed 

architecture shown in Figure 2 has a uniform structure 

and is made by stacking convolutional (conv1-conv4) 

and pooling layers. Once the architecture is fixed, the 

dimensions of the neural network (i.e., filter and max-

pooling sizes and filter numbers) are automatically 

adjusted via optimization technique for optimal depth 

estimate and cost-effective operation. 

The bounds of the network design-related 

parameters in Table 1 are chosen based on the ranges 

used in some of the popular pretrained networks, such 

as AlexNet, the variants of VGGNet, ResNet, and 

inceptions. The maximum depth (filter number) of 30 is 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 ECG signal preprocessing and segmentation 
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considerably smaller than the existing networks 

because our primary intention is to design a system 

with practical implementation in mind. This is achieved 

by designing a lightweight, high-quality model without 

demanding heavy computer effort. The stride number 

and the two LSTM hidden units’ number in the figure 

are arbitrarily set as (1 2), 1000, and 100, respectively. 

The mode of padding is set as ‘same’. Apart from the 

three design parameters mentioned above, 

important training hyperparameters, namely learner 

type, mini-batch size, and initial (Init.) learning rate, are 

also automatically fine-tuned for weight-tuning works 

to extract the most relevant features for the task. 

This setting gives us six degrees of freedom to tune 

the design parameters using the PSO model. This 

 
 

Figure 2 MI-OptNet: Optimization of the hybrid CNN-LSTM architecture design 

 

Table 1 Design and training parameters and their search range 

 

Element Parameters 
Lower 

bound 

Upper 

bound 

Network layers 

(Conv1-4) 

Filter size, n 3 10 

Filter number, N 8 30 

Network layers 

(Pool 1 and 2) 

MaxPooling size, 

α 

2 10 

Training hyperp

arameter 

Learner type, L {Adam, Sgdm, 

RMSProp} 

Mini-batch 

number, β 

23 210 

Init.learning 

rate, γ 

1e-6 1e-1 

 

 
 

Algorithm 1: PSO optimization procedure of network design 

Input:  Pre-training dataset, swarm size, training, and iteration setting: Max_iter, 

Max_epoch, Max_inc. 

Parameter:  Design and training parameters: {n, N, α, L, β, γ} 

Output:  Global minima position, PG = {nG, NG, αG, LG, βG, γG} 

 

 Initialize Position in search space, Pi = {n, N, α, L, β, γ} 

 while iter < Max_iter do 

Training network 

if epoch < Max_epoch then 

Update network weights by minimizing loss function 

Update training & validation accuracies 

   while val. accuracy increment count < Max_inc do 

   Increment epoch count 

   end while 

else 

Update last training & validation accuracies & time 

Calculate the minimization function in (1) 

Identify the current minima 

Update position, PU = {nU, NU, αU, LU, βU, γU} 

end if 

Increment iter count 

 end while  

  Get global minimum, PG = {nG, NG, αG, LG, βG, γG} 

 return PG  
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technique is based on the social behavior of a flock of 

animals with no leader by following one of the 

members with the closest position with the potential 

solution. This method performs better than other 

optimization techniques, such as genetic algorithm 

and Bayesian, especially in a high-complexity search 

space. The flow of the PSO process is shown in 

Algorithm 1. The process started by launching 20 

random points in the defined search space shown in 

Table 1. Each particle is allowed to iterate 20 times 

(i.e., Max_iter in Algorithm 1). In each iteration, each 

particle moves around the multidimensional search 

space, and its position is optimized by minimizing an 

objective function, f(AT, Av, t), given in Eq. (1). The best 

point is found, updated, and used as the new 

reference point. 

 

𝑓(𝐴𝑇 , 𝐴𝑣, 𝑡) = (100 − 𝐴𝑇)
3 + (100 − 𝐴𝑣)

4 + 𝑡
1𝑒3⁄ . 

 

AT, Av, and t are training and validation accuracy, and 

training time, respectively. The point that yields the 

lowest objective function value is selected as the final 

solution (i.e., PG in Algorithm 1). We iterate the process 

for each ECG lead (Lead I-VI).  

The best network design for each lead selected 

automatically based on training and validation set 

performances in Eq. (1) is saved for the subsequent 

evaluations on the test set. In the experiments, we kept 

the epoch number constant as 100 (i.e., Max_epoch) 

for training each model, leaving the rest of the training 

parameters other than those optimized in the present 

study as default. The early stopping criterion is based 

on the validation performance, i.e., the validation 

accuracy fails to increase for 50 successive iterations 

(i.e., Max_inc). To address the imbalance class 

problem, we used weighted entropy loss to assign 

different weights to the loss of each class. The class 

weight vector is calculated as the ratio between the 

training data size and class frequency as 4.6 and 1.3, 

respectively, for MI and normal labels. Another effort 

to reduce model overfitting is using a dropout 

regularization rate of 0.2 after each LSTM layer in 

Figure 2. 

 

2.4 Limb-Lead Networks and All-Inclusive System 

Framework 

 
There is variation in ECG signals from the examined 

limb leads as each explores a different heart region. 

Some lead signals may provide more useful 

information on MI events than others, and there is no 

golden standard on the best ECG lead for monitoring 

MI. In medical practice, medical professionals 

carefully assessed and examined all lead signals in 

their diagnosis. Their clinical importance has also 

prompted researchers in the computer vision domain 

to consider standard 12-lead ECG signals in their 

analysis. However, this is at the price of higher 

computational time and resources. 

We used signals from the bipolar (lead I, II, and III) and 

unipolar limb leads (lead IV, V, and VI) in our 

processing and analysis to lessen the computing 

power. The search process from section 2.3 gives us six 

models optimized and used independently for 

predicting signals from each lead, as shown in Figure 

3. Hence, different lead networks may produce 

different diagnoses in the testing phase. We take this 

effort to the next level by adopting an all-inclusive 

system combining the probability for MI and normal 

classes from each network, represented by P(MI) and 

P(N) in the figure. These outputs were fused by direct 

summing their values to provide further confidence in 

the result. The target class with the higher total score 

from the score fusion process (i.e., Fusion MI-OptNet) is 

chosen as the final predicted label. 

 

 

 

3.0 RESULTS AND DISCUSSION 
 

The test set is composed of 984 ECG pulses from each 

lead. These data have no role in the network 

optimization and training process shown in Figure 2 

and the steps detailed in Algorithm 1, and they are not 

a part of the validation set. The testing classification 

result from the six limb leads I-VI networks is shown in 

Figure 4. Figure 5 shows the confusion matrix from 

fusing the scores from different leads in Figure 4. The 

average inference time for each testing ECG data is 

timed as 8 ms on an i7-1165G7 CPU with 8Gb RAM.  

(1) 

 

Figure 3 Prediction networks and score fusion strategy 
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Based on the results in Figures 4 and 5, the 

classification performance of the limb networks and 

fusion strategy is evaluated using the formula of 

accuracy (Acc), sensitivity (Sens), specificity (Spec), 

balanced accuracy (BAcc), precision (Prec), and f1-

score (F1) expressed in Eq. (2)-(7). The calculated 

performance metrics (in percentage value) are 

shown in Table 2. A comparison with prior literature 

that used the same dataset is in Table 3. Since the prior 

works in [17,22,23] adopted manual method in 

developing a 1D network for the same problem, 

repeating their past successful experiences adds 

redundancy to the existing knowledge. Hence, only 

the automated method is implemented in this study 

and reported in the table. 
 

Acc = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
   (2) 

              Sens = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (3) 

     Spec = 
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (4) 

Prec = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
    (5) 

 

 

Figure 4 Limb networks classification result. Top: Lead I (left), 

Lead II (middle), and Lead III (right); bottom: Lead IV (left), Lead 

V(middle), and Lead VI (right) 

 

 
 

Figure 5 Classification result from all-inclusive system 

 
Table 2 Optimal limb networks parameters and their performance metrics 

 
Network 

(ECG Lead) 

Optimized parameters 

{n, N, α, L, β, γ}† 

Final network 

weight 
Evaluation metrics  

I 10, 12, 2, Adam, 1024, 0.0375 

 

8,474,186 

Acc: 81.5 % 

Sens: 57 % 

Spec: 88.4 % 

Prec: 58 % 

BAcc: 73 % 

F1: 57.5 % 

II 10, 14, 6, RMSProp, 809, 0.019 

 

8,479,740 

Acc: 88 % 

Sens: 64 % 

Spec: 94 % 

Prec: 76 % 

BAcc: 79 % 

F1: 69 % 

III 6, 16, 5, Sgdm, 711, 0.0789 

 

8,482,498 

Acc: 87 % 

Sens: 84 % 

Spec: 87 % 

Prec: 65 % 

BAcc: 86 % 

F1: 74 % 

IV 10, 22, 4, Adam, 715, 0.0197 

 

8,504,606 

Acc: 85.2 % 

Sens: 50.1 % 

Spec: 90.5 % 

Prec: 66.4% 

BAcc: 70 % 

F1: 57.1 % 

V 8, 23, 7, RMSProp, 1024, 0.022 

 

8,504,758 

Acc: 85.6 % 

Sens: 50.1 % 

Spec: 96 % 

Prec:76.3 % 

BAcc: 72.8% 

F1: 60.5 % 

VI 7, 29, 10, Sgdm, 562, 0.00252 

 

8,521,814 

Acc: 87.7 % 

Sens: 80 % 

Spec: 90 % 

Prec: 69 % 

BAcc: 85 % 

F1: 74 % 

Score fusion - 

 

- 

Acc: 92 % 

Sens: 80 % 

Spec: 94 % 

Prec: 81 % 

BAcc: 88 % 

F1: 81 % 

† N: filter number, α: Pooling size, L: Learner type, β: Minibatch no., γ: Initial learning rate 
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         BAcc = 
𝑆𝑒𝑛𝑠+𝑆𝑝𝑒𝑐

2
     (6) 

 

            F1 = 
2(𝑃𝑟𝑒𝑐∗𝑆𝑒𝑛𝑠)

𝑃𝑟𝑒𝑐+𝑆𝑒𝑛𝑠
    (7) 

 
TP and TN are the accurate prediction of MI and 

normal ECG, respectively. FN is the incorrect 

prediction of MI as normal, whereas FP is the 

misclassification of normal signal as MI class.  

The conventional means of MI prediction using a 

pretrained model, or its cloned version, are 

computationally expensive and memory intensive, 

hindering their deployment in critical real-world tasks. 

It is challenging to design and build a light and 

efficient network for different tasks. We addressed this 

problem using the PSO method in our hybrid network 

design with minimal computing resources. Our findings 

in Table 2 showed an overall good performance for all 

lead networks, implying our proposed framework’s 

high flexibility and adaptability. This process produces 

networks of thin layers with depth in the 12-29 range, 

as shown in Table 2. These networks are comparatively 

lightweight, with about 8.5 million trainable 

parameters as compared to most traditional CNNs, 

such as AlexNet (with 62 million parameters), ResNet 

variants (11-58 million), and VGGNets (138-143 million). 

This significant reduction in the network parameters 

(by 1.3 – 17 folds) is capable of a great reduce in the 

computational time by the same fold as widely 

reported in the literature [28]. The inconsistency in the 

design parameters’ value for each lead network in this 

table is due to differences in the input dataset 

containing measurements from different heart 

locations. These thin deep networks are 

computationally efficient, with an average inference 

time of 8 ms, which suggests that they can be used for 

real-time applications or home-based monitoring 

where quick and reliable single-lead ECG 

classification is required. 
Based on the comparison results in Table 2, there 

exists a high consistency in the accuracy performance 

of systems, with the values ranging between 81-88 %. 

However, the lead I system performs inferior to the rest. 

The figures in this table also showed its much poorer 

sensitivity performance, with a score of 57 %. Since this 

metric carries information on the misdiagnosis rate of 

abnormal or MI cases, a high sensitivity score is often 

desired to allow prompt treatment. In recognizing 

normal ECG, all the lead networks achieved a high 

recognition rate with a considerably high specificity 

rate of around 90 %. We attribute this to the better 

generalization of the model for normal ECG using the 

extensive training data of the class. Investigating the 

Table 3 Classification performance of Fusion MI-OptNet compared with literature reports using PTB-XL dataset 

 

Investigator Strategy/model Accuracy 
Balanced 

accuracy 
Sensitivity Specificity Precision f1-score 

Proposed Fusion 

MI-OptNet 

Network design 

optimization/ Score 

fusion  

92 % 88 % 80 % 94 % 81 % 81 % 

Strodthoff et al. 

[31] 

Transfer learning (TL)/ 

ResNet 
84-85 % NA NA NA NA NA 

TL/LSTM 83-84 % NA NA NA NA NA 

TL/Ensemble 85 % NA NA NA NA NA 

TL/Inception 84 % NA NA NA NA NA 

Mehari and 

Strodthoff [32] 

TL/ResNet 72-92 % NA NA NA NA NA 

multilayer perceptron 

(MLP) -LSTM 
71-93 % NA NA NA NA NA 

Self-supervised/ MLP-

LSTM 
92-94 % NA NA NA NA NA 

Pałczyński et al. 

[33] 

Few shot learning/KNN 88 % 

 
NA 86-87 % 89 % NA 86-87 % 

Few shot learning/SVM 68-88 % NA 66-88 % 68-90 % NA 66-87 % 

Zhu et al. [22] Feature elimination/ 

Own developed 1D 

CNN 

87-89% NA 87-91 % NA 87-90 % 87-90 % 

Śmigiel et al. [17] Entropy feature/ Own 

developed 1D CNN 
83-91 % NA NA NA NA 83-91 % 

Śmigiel et al. [23] TL/SincNet 85.8% NA 85.4 % NA 85.5 % 85.5 % 

Entropy feature/ Own 

developed 1D CNN 
89.2 % NA 89.3 % NA 88.9 % 89.1 % 
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balanced accuracy that factorizes class imbalance 

revealed an excellent and comparable performance 

between the lead III and VI networks. Their BAcc 

readings and the high sensitivity rate of 80-84 % 

suggest that signals from both leads can be used to 

detect MI. Therefore, these leads should be chosen for 

future research using a single lead for MI prediction. 

The elevation in the ST-segment in the lead III signals 

and abnormal Q-waves in the lead VI signals, as 

reported in the earlier studies [29,30], are likely the 

factors most responsible for accurate MI prediction. 

However, their precision and F1 score range between 

64 – 74 % due to the high misclassification rate of 

normal ECG as MI remains unsatisfactory. This can be 

improved by exploring deeper and wider 

architectural alternatives or increasing the degree of 

freedom for the system to learn more powerful 

representations of the inputs. Several other factors 

have been identified as the possible reasons for 

compromising the system’s performance. Poor ECG 

signal quality and inconsistent PQRST patterns are the 

leading causes of most misclassification. In addition, 

inter and intra-person heartbeat variability is another 

challenge because a fixed input length is needed to 

meet the key requirement of neural network models. 

Noises, or the high-frequency component that the 

filter has not removed completely, and different R 

peak intervals aggravate these inconsistencies. All the 

factors mentioned above affect the splitting process 

and have an important impact on the feature 

extraction ability of the model. Although this limitation 

can be avoided by manually examining each ECG 

data after the automatic segmentation to remove 

poor-quality signals from the datasets, this data 

cleaning process may introduce bias in our results due 

to the use of optimistic data.  

Since different electrodes measured ECG from 

different heart regions, distortions in one of the leads 

do not necessarily appear in the others. So, combining 

the scores from all networks (i.e., Fusion MI-OptNet) 

achieves 92 % prediction accuracy and the best 

overall performance improvement with an average 

increase of 10 %. This system gives better confidence 

in the predicted results without significant efforts 

needed in the data cleaning and pre-processing 

stage. The f1-score and precision metric increase are 

particularly distinct (near 20 %) compared to 

individual limb networks. A comparison in Table 3 

shows obvious superiority in the performance of our 

framework as compared to the earlier works that used 

pretrained models [31,32] and binary classifiers [33]. 

This method also shows competitiveness in 

performance and efficiency compared to the CNN 

models derived from domain experts [17,22,23]. Even 

though model overfitting (to the normal ECG) is 

identified as the primary cause for the misclassification 

of MI, compromising the classification precision, 

sensitivity, and f1-score, ranging between 80-81 % in 

Table 3, we do not rule out the presence of irrelevant 

and redundant features extracted from the dataset, 

which affects the classification performance. This 

interpretation is supported by the fact that the 

competing studies in [17,22,23,33] have suggested 

innovative feature selection strategies to eliminate less 

relevant features, allowing their proposed model to 

focus on critical features, leading to the improved 

obtained results. Such approaches and dataset 

enhancement techniques might be worth exploring in 

future research. It must also be acknowledged that 

the proposed automated framework and the manual 

network design methods in [17,22,23] approach 

problem-solving differently (i.e., the former involves 

statistical and systematic exploration of design space 

while the latter is an intuitive process based on 

experiential-knowledge and learning), therefore 

comparison in terms of computational efficiency 

between the two techniques is not directly possible. 

Our findings open an exciting direction for cost and 

energy-efficient network design techniques, 

especially for 1D signal applications. This study 

chooses MI and normal ECG for demonstration; the 

proposed strategy can also be implemented for 

detecting diverse heart diseases from ECG signals, 

such as irregular heartbeats (i.e., arrhythmias), 

fibrillation and tachycardia, by including their 

datasets in the training process. Some possible future 

directions worth pursuing include implementing a fully 

automated and unsupervised pipeline approach 

involving several steps, from data segmentation and 

cleansing to automatic architecture exploration and 

joint optimization of network design and training 

processes. Others include the opportunity for field 

experiments or home-based care using a 

computationally efficient single-lead ECG system. 
 

 

4.0 CONCLUSION 
 

While there have been considerable efforts in the past 

to identify the best strategy for ECG classification, they 

mostly rely on a computation-heavy pretrained 

model. Thus, their practical implementation remains a 

major problem. In this paper, we demonstrated the 

efficiency of the proposed MI-OptNet using the PSO 

algorithm in designing a light and effective CNN-LSTM 

model for identifying MI ECG signals. We showed that 

our strategy produces a network that gives 

considerably good classification performances even 

with the minimal degree of freedom of the problem in 

our design process. We recommend leads III and VI as 

the best ECG leads for monitoring MI. Our findings also 

revealed that using score fusion that combines 

probability outputs from all considered leads 

enhances the confidence of our estimates without 

tedious signal pre-processing. This research is 

important and can be the start of exciting new 

ventures in this domain in the future, especially for 

signal-related deep-learning tasks. A straightforward 

approach like ours may also be adopted and used in 

other scientific fields for exploratory research and 

decision-making tasks. 

 

 

 



124                                           Huong et al. / Jurnal Teknologi (Sciences & Engineering) 86:3 (2024) 115-125 

 

 

Conflicts of Interest 
 

The authors declare that there is no conflict of interest 

regarding the publication of this paper.  

 

 
Acknowledgement 

 
This research was supported by Universiti Tun Hussein 

Onn Malaysia (UTHM) through Tier 1 (Q381) and 

Ministry of Higher Education (MOHE) through 

Fundamental Research Grant Scheme (FRGS) 

(FRGS/1/2020/TK0/UTHM/02/28). 

 

 

References 
 
[1] World Health Organization. 2019. WHO Reveals Leading 

Causes of Death and Disability Worldwide 2000-2019.  

[Online] Available at https://www.who.int/news/item/09-

12-2020-who-reveals-leading-causes-of-death-and-

disability-worldwide-2000-2019.html [Accessed on 28 June 

2023]. 

[2] Centers for Disease Control and Prevention. 2022. 

Myocarditis and Pericarditis After mRNA COVID-19 

Vaccination. [Online] Available at 

https://www.cdc.gov/coronavirus/2019-

ncov/vaccines/safety/myocarditis.html [Accessed on 12 

June 2023]. 

[3] Schneider, R. R., & Seckler, S. G. 1981. Evaluation of Acute 

Chest Pain. Med. Clin. N. 65(1): 53-66. Doi: 

https://doi.org/10.1016/S0025-7125(16)31539-5. 

[4] Ghani, F., Wu, A. H. B., Graff, L., Petry, C., Armstrong, G., 

Prigent, F., Brown, M. 2000. Role of Heart-Type Fatty Acid-

binding Protein in Early Detection of Acute Myocardial 

Infarction, Clin. Chem. 46(5): 718-719. Doi: 

https://doi.org/10.1093/clinchem/46.5.718. 

[5] Feng, Y., Geng, S., Chu, J., Fu, Z., & Hong, S. 2022. Building 

and Training a Deep Spiking Neural Network for ECG 

Classification. Biomed. Signal Process Control. 77(103749). 

Doi: https://doi.org/10.1016/j.bspc.2022.103749. 

[6] Xu, P., Liu, H., Xie, X., Zhou, S., Shu, M., & Wang Y. 2022. 

Interpatient ECG Arrhythmia Detection by Residual 

Attention CNN. Comput. Math. Methods Med. 2022: 1-13. 
Doi: https://doi.org/10.1155/2022/2323625. 

[7] Chatterjee, S., Thakur, R. S., Yadav, R. N., Gupta, L., & 

Raghuvanshi, D. K. 2020. Review of Noise Removal 

Techniques in ECG Signals. IET Signal Process. 14(9): 569-590. 

Doi: https://doi.org/10.1049/iet-spr.2020.0104. 

[8] Xu, B., Liu, R., Shu, M., Shang, X., & Wang, Y. 2021. An ECG 

Denoising Method based on the Generative Adversarial 

Residual Network. Comput. Math. Methods Med. 2021: 1-

23. Doi: https://doi.org/10.1155/2021/5527904. 

[9] Ma, S., Cui, J., Xiao, W., & Liu, L. 2022. Deep Learning-based 

Data Augmentation and Model Fusion for Automatic 

Arrhythmia Identification and Classification Algorithms. 

Comput. Intell. Neurosci. 2022: 1-17. Doi: 

https://doi.org/10.1155/2022/1577778. 

[10] Ingale, M., Cordeiro, R., Thentu, S., Park, Y., & Karimian, N. 

2020. ECG Biometric Authentication: A Comparative 

Analysis. IEEE Access. 8: 117853-117866. Doi: 

https://doi.org/10.1109/ACCESS.2020.3004464. 

[11] Hamil, H., Zidelmal, Z., Azzaz, M. S., Sakhi, S., Kaibou, R., 

Djilali, S., & Abdeslam, D. O. 2022. Design of a Secured 

Telehealth System based on Multiple Biosignals Diagnosis 

and Classification for IoT Application. Expert Syst. 39(4): 1-

27. Doi: https://doi.org/10.1111/exsy.12765 

[12] Chang, R. K. 2022. Resting 12‑lead ECG Tests Performed by 

Patients at Home Amid the COVID-19 Pandemic — Results 

from the First 1000 Patients. J. Electrocardiol. 73(2022): 108-

112. Doi: https://doi.org/10.1016/j.jelectrocard.2022.06.006. 

[13] Al Rahhal, M. M., Bazi, Y., AlHichri, H., Alajlan, N., Melgani, F. 

& Yager, R. R. 2016. Deep Learning Approach for Active 

Classification of Electrocardiogram Signals. Inf. Sci. (NY). 

345: 340-354. Doi: https://doi.org/10.1016/j.ins.2016.01.082. 

[14] Li, W., Tang, Y. M., Yu, K. M., & To, S. 2022. SLC-GAN: An 

Automated Myocardial Infarction Detection Model based 

on Generative Adversarial Networks and Convolutional 

Neural Networks with Single-lead Electrocardiogram 

Synthesis. Inf. Sci. (NY). 589: 738-750. 

DoI: https://doi.org/10.1016/j.ins.2021.12.083. 

[15] Rai, H. M., & Chatterjee, K. 2022. Hybrid CNN-LSTM Deep 

Learning Model and Ensemble Technique for Automatic 

Detection of Myocardial Infarction using Big ECG Data. 

Appl. Intell. 52: 5366-5384. Doi: 

https://doi.org/10.1007/s10489-021-02696-6. 

[16] Park, Y., Yun, I. D., & Kang, S. H. 2019. Preprocessing Method 

for Performance Enhancement in CNN-based STEMI 

Detection from 12-lead ECG. IEEE Access. 7: 99964-99977. 

Doi: https://doi.org/10.1109/ACCESS.2019.2930770. 

[17] Śmigiel, S., Pałczyński, K., & Ledziński, D. 2021. Deep 

Learning Techniques in the Classification of ECG Signals 

using R-peak Detection based on the PTB-XL Dataset. 

Sensors. 21(8174): 1-18. Doi: 

https://doi.org/10.3390/s21248174. 

[18] Bassiouni, M., Hegazy, I., Rizk, N., El-Dahshan, S. A., & Salem, 

A. M. 2022. Deep Learning Approach based on Transfer 

Learning with Different Classifiers for ECG Diagnosis. Int. J. 

Intell. Comput. Inf. Sci. 22(2): 44-62. Doi: 

https://doi.org/10.21608/ijicis.2022.105574.1137. 

[19] Kavak, S., Chiu, X. D., Yen, S. J., & Chen, M. Y. C. 2022. 

Application of CNN for Detection and Localization of STEMI 

using 12-lead ECG Images. IEEE Access. 10: 38923-38930. 

Doi: https://doi.org/10.1109/ACCESS.2022.3165966. 

[20] Manimekalai, K., & Kavitha, A. 2020. Deep Learning 

Methods in Classification of Myocardial Infarction by 

Employing ECG Signals. Indian J. Sci. Technol. 13(28): 2823-

2832. DOI: https://doi.org/10.17485/IJST/v13i28.445. 

[21] Fatimah, B., Singh, P., Singhal, A., Pramanick, D., Pranav, S., 

& Pachori, R. B. 2021. Efficient Detection of Myocardial 

Infarction from Single Lead ECG Signal. Biomed. Signal 

Process Control. 68: 1-14. Doi: 

https://doi.org/10.1016/j.bspc.2021.102678. 

[22] Zhu, J., Lv, J., & Kong, D. 2022. CNN-FWS: A Model for the 

Diagnosis of Normal and Abnormal ECG with Feature 

Adaptive. Entropy. 24(471): 1-13. 

Doi: https://doi.org/10.3390/e24040471. 

[23] Śmigiel, S., Pałczyński, K., & Ledziński, D. 2021. ECG Signal 

Classification using Deep Learning Techniques based on 

the PTB-XL Dataset. Entropy. 23(1121): 1-20. Doi: 

https://doi.org/10.3390/e23091121. 

[24] Gaziano, T., Reddy, K. S., Paccaud, F., Horton, S., & 

Chaturvedi, V. 2006. Disease Control Priorities in Developing 

Countries. 2nd ed. New York: Oxford University Press. 

[25] Gursoy, H. T., Dereagzi, S. F., Caliskan, U., Dogru, C. Y., 

Kulekci, F., Kaplan, Z., Bahtiyar, B., Al, A., & Ozeke, O. 2021. 

An Electrocardiographic Clue for Pseudo-myocardial 

Infarction due to Arterial Pulse–tapping Artifact: Aslanger’s 

Sign. J. Innov. Card. Rhythm Manag. 12: 4685-4687. Doi: 

https://doi.org/10.19102/icrm.2021.120904. 

[26] Pandey, R. K., Dahiya, A. K., Pandey, A. K., & Mandal, A. 

2022. Optimized Deep Learning Model Assisted Pressure 

Transient Analysis for Automatic Reservoir Characterization. 

Pet Sci Technol. 40(6): 659-677. Doi: 

https://doi.org/10.1080/10916466.2021.2007122. 

[27] Naseri, H., Waygood, E. O. D., Wang, B., & Patterson, Z. 2023. 

Interpretable Machine Learning Approach to Predicting 

Electric Vehicle Buying Decisions. Transp. Res. Rec. 1-14. Doi: 

https://doi.org/10.1177/03611981231169533. 

[28] Lee, K. S., Lee, E., Choi, B., & Pyun, S. B. 2021. Automatic 

Pharyngeal Phase Recognition in Untrimmed 

Videofluoroscopic Swallowing Study Using Transfer Learning 



125                                           Huong et al. / Jurnal Teknologi (Sciences & Engineering) 86:3 (2024) 115-125 

 

 

with Deep Convolutional Neural Networks. Diagnostics. 

11(2): 1-15. Doi: https://doi.org/10.3390/diagnostics11020300 

[29] Al-Mansouri, L. A., Al-Obaidi, F. R., & Raheem Al-Humrani, A. 

H. 2019. Higher ST-Segment Elevation in Lead III than Lead II 

in Acute Inferior Myocardial Infarction can be a Predictor of 

Short-term Morbidity and Mortality. Iraqi J. M. S. 17(3&4): 168-

174. Doi: https://doi.org/10.22578/IJMS.17.3-4.2. 

[30] Islam, M., Bhattacharjee, B., Chowdhury, M., Siddique, A. 

N., & Rezaul Karim, A. M. 2016. Outcome of Acute 

Myocardial Infarction Patients Admitted in a Tertiary. Med. 

Today. 28(1): 6-8. Doi: 

https://doi.org/10.3329/medtoday.v28i1.30960. 

[31] Strodthoff, N., Wagner, P., Schaeffter, T., & Samek, W. 2021. 

Deep Learning for ECG Analysis: Benchmarks and Insights 

from PTB-XL. IEEE J. Biomed. Heal. Informatics. 25: 1519-1528. 

Doi: https://doi.org/10.1109/JBHI.2020.3022989. 

[32] Mehari T., & Strodthoff, N. 2022. Self-supervised 

Representation Learning from 12-lead ECG Data. Comput. 

Biol. Med. 141(105114): 1-15. Doi: 

https://doi.org/10.1016/j.compbiomed.2021.105114. 

[33] Pałczyński, K., Śmigiel, S., Ledziński, D., & Bujnowski, S. 2022. 

Study of the Few-Shot Learning for ECG classification based 

on the PTB-XL dataset. Sensors. 22(3): 1-25. Doi: 

https://doi.org/10.3390/s22030904. 

 

 

 


