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Abstract 
 

Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) 

charts have been regularly used to monitor small process mean shifts. More 

recently, a mixture of EWMA and CUSUM charts known as mixed EWMA-CUSUM 

(MEC) control chart has been introduced for better small shift detection. However, 

like its predecessor, the MEC chart requires the normality assumption to ensure 

optimal performances. In the presence of outliers, which is the cause of non-

normality, the parameters of the chart may be overestimated, leading to an 

unreliable monitoring process. To mitigate this problem, this paper employed 

median-based estimators namely, the median and modified one-step M-

estimator (MOM), to control the location parameter via the MEC control chart. In 

this study, the performance of robust MEC charts for Phase II monitoring of location 

was compared with the standard MEC chart that is based on the sample mean. 

The performance of the robust MEC charts in terms of the average run length (ARL) 

on various g-and-h distributions clearly shows that a robust MEC chart based on 

the MOM estimator performs well regardless of the distributional shapes.    

 

Keywords: Non-normal, EWMA chart, CUSUM chart, Mixed EWMA-CUSUM chart, 

robust 

 

Abstrak 
 

Carta purata bergerak berpemberat eksponen (EWMA) dan carta hasil tambah 

longgokan (CUSUM) sering digunakan untuk memantau anjakan kecil min proses.  

Terkini, campuran carta EWMA dan CUSUM yang dikenali sebagai carta kawalan 

campuran EWMA-CUSUM (MEC) telah diperkenalkan bagi meningkatkan lagi 

prestasi carta. Namun, seperti pendahulunya, carta MEC memerlukan andaian 

normal untuk memastikan prestasi yang optimum. Apabila terdapat titik terpencil, 

yang merupakan punca ketidaknormalan, parameter carta mungkin 

dianggarkan lebih tinggi yang boleh menyebabkan ketidakbolehpercayaan 

pada proses pemantauan. Bagi mengurangkan masalah ini, kertas kerja ini 

menggunakan penganggar berasaskan median iaitu median dan penganggar-

M satu langkah terubah suai (MOM) untuk mengawal parameter lokasi melalui 

carta kawalan MEC. Dalam kajian ini, prestasi carta-carta kawalan MEC teguh 

pada pemantauan Fasa II bagi lokasi dibandingkan dengan carta MEC piawai 
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1.0 INTRODUCTION 
 

Generally, a control chart is used to observe and 

conclude whether a process is in statistical control or 

otherwise. Ideally, the control chart shall signal as soon 

as possible when the process shifts into an out-of-

control state.  Shewhart [1] developed a control chart 

called the Shewhart control chart, which can be 

effectively used to monitor processes with large shifts.  

This chart is based on the present information of the 

process and thus, it is categorized as a memoryless 

control chart. Due to this feature, the Shewhart chart 

is less sensitive in monitoring small process shifts [2, 3, 4, 

5, 6].   

To improve Shewhart’s performance in monitoring 

small to moderate shifts, the synthetic chart was 

introduced [7]. Yet, it fails to outperform the CUSUM 

and EWMA charts when the change in the process is 

relatively small [8]. This is because the synthetic chart 

also neglects past information, just like the Shewhart 

chart.  

In contrast, the CUSUM and EWMA charts, which 

are categorized as memory-type control charts, utilize 

past and current information of the data in the 

process. This feature makes the CUSUM and EWMA 

charts superior to the memoryless charts, i.e., the 

Shewhart and synthetic charts, in detecting small and 

moderate shifts [9, 10, 11, 12].  Recently, to improve the 

performance of the memory-type control charts, 

Abbas et al. [13] proposed to combine the EWMA and 

CUSUM structures into one new chart. This new chart is 

known as the MEC control chart.  
It is well known that the standard estimators, i.e., 

the sample mean and standard deviation, are 

sensitive to outliers and yet, they define the 

construction of the abovementioned memoryless and 

memory-type control charts. As such, the 

performance of the charts may deteriorate due to the 

existence of outliers. Several researchers have 

claimed that control charts constructed using robust 

estimators have performed well under non-normality 

[14, 15, 16, 17]. Castagliola [18], for example, 

introduced the median chart via the EWMA control 

structure. Meanwhile, the study by Abdul Rahman et 

al. [19] explored the effects of utilizing robust location 

estimators, specifically the median and Hodges-

Lehmann, on the performance of the CUSUM chart. In 

another robust study by Abdul-Rahman et al. [20], the 

researchers employed robust location and scale 

estimators namely, an automatic trimmed mean and 

median absolute deviation about the median 

(MADn), in Phase I of the EMWA chart. These robust 

control charts showed an improvement in the CUSUM 

and EWMA charts’ performances, particularly in 

detecting out-of-control status when the data set is 

contaminated.  

More recently, Abdul-Rahman [21] proposed to 

control the location parameter via the median based 

estimators, i.e., MOM and its winsorized version, via the 

synthetic charting structure under non-normality, 

specifically using the g-and-h distributions. The finding 

indicates good in-control robustness when the median 

based synthetic charts were designed for moderate 

and large shifts. Yet, due to the characteristic of the 

memoryless chart which only focuses on the present 

process information, the study claimed a lack of in-

control robustness when the synthetic chart was 

designed for a small shift.  

To mitigate this problem, this study employed 

median based estimators, i.e., the median and MOM, 

which possess the highest breakdown point, to 

replace the mean in constructing one of the memory-

type charts, i.e., the MEC chart. The following sections 

explain in detail the structure of the MEC chart, 

together with the CUSUM and EWMA charts.  

 

 

2.0 METHODOLOGY  
 

2.1 Description of Cumulative Sum Control Chart 

 

Introduced by Page [22], the CUSUM chart displays 

the cumulative data points of the present and 

previous samples in the process. Measurements of the 

samples are taken at a specified time and used to 

compute the CUSUM statistics, 𝐶𝑖
+ and 𝐶𝑖

− which are 

defined as follows:   

 

𝐶𝑖
+ = max[0, (𝜃𝑖 − 𝜃0) − 𝐾𝜃̂ + 𝐶𝑖−1

+ ],  

for 𝑖 = 1,2,… ,𝑚;                                                 (1) 

and 

berdasarkan min sampel.  Prestasi carta-carta teguh dari segi purata panjang 

larian (ARL) pada pelbagai taburan g-dan-h jelas menunjukkan bahawa carta 

MEC teguh berdasarkan penganggar MOM memberikan prestasi yang baik 

tanpa mengira bentuk taburan. 

 

Kata kunci: Tak normal, carta EWMA, carta CUSUM, carta campuran EWMA-

CUSUM, teguh 

© 2024 Penerbit UTM Press. All rights reserved 
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𝐶𝑖
− = min[0, (𝜃𝑖 − 𝜃0) + 𝐾𝜃̂ + 𝐶𝑖−1

− ],  

for 𝑖 = 1,2,… ,𝑚,                          (2) 

where 𝜃 is the location estimator and K is the 

reference value which can be adjusted to reflect the 

desired sensitivity in detecting shift in the process. 

The initial values of the statistics, 𝐶0
+ and 𝐶0

−, are 

usually set equal to the target value, 𝜃0. The 

standardized CUSUM control chart parameters are 

𝐾𝜃̂ = 𝑘 × 𝜎𝜃̂ and 𝐻𝜃̂ = ℎ × 𝜎𝜃̂ where k and h are 

constants that correspond to a specific in-control 

average run length (ARL). Henceforth, the in-control 

ARL is denoted as ARL0. Typically, k is set to 
𝜎𝜃̂

2
. This 

approach makes the CUSUM more sensitive to the 

process shifts when the shift is relatively small [23].   

 

2.2 Description of Exponentially Weighted Moving 

Average Control Chart 

 

The idea of an EWMA control chart was originated by 

Roberts [24].  Each charting statistic in the EWMA chart 

signifies the weighted average of the present and all 

past subgroup values, giving more weight to current 

process data and less weight as the data get older. 

The EWMA charting statistic is defined as: 

 

𝑍𝑖 = 𝜆𝜃𝑖 + (1 − 𝜆)𝑍𝑖−1,          for 𝑖 = 1,2,… ,𝑚,                     (3) 

 

where  is a smoothing constant that can take any 

value between 0 and 1. The starting value, Zi-1, is 

typically set equal to the target mean value, 𝜃0.  The 

EWMA statistic, Zi, is plotted against the upper control 

limit (UCL) and lower control limit (LCL) which are 

defined as follows: 

 

 𝑈𝐶𝐿𝑖 = 𝜃0 + 𝐿𝜃̂√𝑉𝑎𝑟(𝜃)
𝜆

2−𝜆
(1 − (1 − 𝜆)2𝑖) ,                    (4) 

and 

𝐿𝐶𝐿𝑖 = 𝜃0 − 𝐿𝜃̂√𝑉𝑎𝑟(𝜃)
𝜆

2−𝜆
(1 − (1 − 𝜆)2𝑖) ,       (5)

  

where 𝐿𝜃̂ is a positive coefficient value.  This coefficient 

is usually set at a value that yields the pre-determined 

ARL0.   

Abbas et al. [13] made one of the most recent 

contributions where the researchers combined the 

EWMA and CUSUM charts in creating the mixed 

EWMA-CUSUM (MEC) chart.   

 

2.3 Description of Mixed EWMA-CUSUM Control Chart 

 

The salient features of CUSUM and EWMA are 

combined in the MEC chart to enhance small shift 

detection [13]. The MEC two plotting statistics are 

given as:  

 

𝑀𝐸𝐶𝑖
+ = max [0, (𝑍𝑖 − 𝜃0) − 𝐾𝜃̂ +𝑀𝐸𝐶𝑖−1

+ ],     

for 𝑖 = 1,2,… ,𝑚;                    (6) 

 

and 

 

𝑀𝐸𝐶𝑖
− = min [0, (𝑍𝑖 − 𝜃0) + 𝐾𝜃̂ +𝑀𝐸𝐶𝑖−1

− ],   

for 𝑖 = 1,2,… ,𝑚,                                    (7) 

 

where Zi denotes the EWMA statistic in Equation (3), i 

represents the sample number until m subgroups, and  

𝑀𝐸𝐶0
+ and 𝑀𝐸𝐶0

− are the upper and lower MEC 

charting statistics, respectively. Both statistics are 

initially set to 0. Meanwhile, 𝐾𝜃̂ is the time-varying 

reference value in the MEC chart.  In Equation (8), the 

value of  𝜆 ϵ (0,1] and the initial value of Zi is usually 

equal to the target mean value (𝑍0 = 𝜃0).  The 

variance of Zi, which was used in the computation of 

the parameters of the chart, is given as follows: 

 

𝑉𝑎𝑟(𝑍𝑖) = 𝜎𝜃̂
 2 [

𝜆

2−𝜆
(1 − (1 − 𝜆)2𝑖)].                                  (8) 

 

There are two standardized parameters, 𝐾𝜃̂,𝑖 =

𝑘 × √𝑉𝑎𝑟(𝑍𝑖) and 𝐻𝜃̂,𝑖 = ℎ × √𝑉𝑎𝑟(𝑍𝑖), where the 

notation 𝐻𝜃̂
 
represents the control limit, k and h are the 

constants comparable to the one utilized in the 

standard CUSUM chart, which is the reference value 

and decision limit, respectively. The values of k and h 

are set to achieve the pre-determined ARL0.  When i in 

the Equation (8) approaching infinity (𝑖 → ∞), 

𝑉𝑎𝑟(𝑍𝑖) = 𝜎𝜃̂
 2 [

𝜆

2−𝜆
], the two quantities become 𝐾𝜃̂ =

𝑘 × 𝜎𝜃̂√
𝜆

2−𝜆
 , and 𝐻𝜃̂ = ℎ × 𝜎𝜃̂√

𝜆

2−𝜆
 .

  
In utilizing the MEC chart for detecting an out-of-

control process, both of the charting statistics, i.e.,  

𝑀𝐸𝐶𝑖
+ and 𝑀𝐸𝐶𝑖

− are plotted against the control limit, 

𝐻𝜃̂. The process is said to be in statistical control if the 

two plotting statistics
 

are randomly scattered 

between 0 and 𝐻𝜃̂. If either of the charting statistics 

exceeds 𝐻𝜃̂, the process is said to be out-of-control. 

Here, choices of h, the amount of shift, , and  paired 

with a fixed value of k would give practitioners the pre-

determined ARL0 [13]. 

 

2.3.1 Robust Location Estimators 

 

In this study, 𝜃𝑖 in Equation (3) which later be used in 

computing the MEC charting statistics as 

demonstrated in Equation (6) and (7) were computed 

using two robust estimators namely, the median and 

MOM. The sample median is computed as follows: 

 

𝜃𝑖 = {

𝑋𝑛+1

2
        
,   if 𝑛 is odd

1

2
(𝑋𝑛

2

+ 𝑋𝑛+2
2

)  ,   if 𝑛 is even,           
                                 (9) 

 

where n is the sample size. Meanwhile, the MOM is 

computed as follows: 

 

𝜃𝑖 =
∑ 𝑋(𝑖)
𝑛−𝑖2
𝑖=𝑖1+1

𝑛−𝑖1−𝑖2
 ,                                      (10) 

 
where  

𝑋(𝑖) = ith ordered observation; 
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𝑖1 = number of observations 𝑋𝑖 such that (𝑋𝑖 −𝑀) <
−𝐾(𝑀𝐴𝐷𝑛); 
𝑖2 = number of observations 𝑋𝑖 such that (𝑋𝑖 −𝑀) >
𝐾(𝑀𝐴𝐷𝑛); 

with M = median, MADn = 1.4826 𝑚𝑒𝑑𝑖|𝑥𝑖 −𝑚𝑒𝑑𝑗𝑥𝑗| and 

K = 2.24.  

 

 

3.0  RESULTS AND DISCUSSION 
 

3.1 Case I: MEC Control Charts with Known 

Parameters  

 

A Monte Carlo simulation analysis was carried out to 

assess the performance of the robust MEC charts 

based on the ARL. The ARL0 assessed the in-control 

robustness of the MEC charts. Meanwhile, the true out-

of-control condition was assessed via the out-of-

control ARL (henceforth denoted as ARL1). A good 

control chart would have a reasonably large ARL0 

when the process is in-control.  Meanwhile, the ARL1 is 

expected to be as small as possible when the process 

is out-of-control [5].  

In this study, 10,000 datasets were generated using 

SAS 9.4 to compute the ARL where several variables 

were manipulated to mimic the most frequently 

encountered conditions in real life.  

The g-and-h distribution was employed to 

manipulate the shapes of the distributions.  Each 

distribution was subsequently paired with two different 

sample sizes, (n = 5, 9) and various amounts of shift, ( 

= 0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3) to test the strengths and 

weaknesses of the proposed robust MEC charts 

against the standard MEC chart.  

To generate data using the g-and-h distributions, it 

is necessary to follow the subsequent steps: 

i. Generate random variables following standard 

normal distribution, 𝑍𝑖𝑗~𝑁(0,1). 

ii.  Transform the standard normal variables into 

random variables using an equation as follows: 
 

𝑋𝑖𝑗 =  

{
 
 

 
 exp(𝑔𝑍𝑖𝑗)−1

𝑔
 exp (

ℎ𝑍𝑖𝑗
2

2
⁄ ) ,   𝑔 ≠ 0

𝑍𝑖𝑗exp (
ℎ𝑍𝑖𝑗

2

2
⁄ )                  ,   𝑔 = 0.

                         (11)    

 

The parameters g and h are responsible for 

controlling the skewness and kurtosis, respectively.  

When g = 0 and h = 0, 𝑋𝑖𝑗 = Z represents a standard 

normal distribution. As h gets larger, the tails of the 

distribution become heavier. The same goes for g, 

which controls the skewness. In this study, four different 

g-and-h distributions were generated as displayed in 

Table 1. 
 

Table 1 The g-and-h distribution employed in the study 
 

(g,h) Description 

(0,0) Normal 

(0,0.5) Symmetric heavy tail 

(0.5,0) Skewed normal tail 

(0.5,0.5) Skewed heavy tail 

In this study, the charting constants for the MEC charts, 

were derived for k = 0.5 and  = 0.13 with the pre-

determined ARL0 set at 370 under g = 0, h = 0 

distribution, which is the standard normal distribution.  

The charting constants for different n are listed in Table 

2. 

 
Table 2 The charting constants for different sample sizes (n) 

when process parameters are known 
 

n MEC-𝑿̅ MEC-𝑿̃ MEC-MOM 

5 28.02 28.30 28.15 

9 27.85 28.13 28.08 

 

 

3.1.1  Simulation Outcomes  

 

In this study, two median based MEC charts were 

constructed via the usage of the median and MOM 

estimators. Respectively, these robust charts are 

denoted as the MEC-𝑋̃ and MEC-MOM charts 

whereby their performances were compared to the 

standard chart, henceforth denoted as the MEC-

𝑋  chart, based on the ARL. The results are displayed in 

Table 3.   

Focusing on the normal distribution, when g = 0 

and h = 0, all charts yield ARL0 = 370 as they were 

initially designed in this study. In terms of the shift 

detection, all charts perform equally as shown by the 

ARL1 in Table 3. Moreover, as n increases, the value of 

ARL1 decreases for all charts, suggesting improvement 

in detecting shifts.  

When g = 0 and h = 0.5, where the distribution is 

symmetric heavy-tailed, the in-control robustness of 

the MEC-𝑋̃ and MEC-MOM charts remain unaffected 

since the values of the ARL0 are not much different 

than the pre-determined value of 370.  On the other 

hand, the standard MEC-𝑋 chart produces ARL0 

values that are significantly greater than 370, 

regardless of the sample sizes examined, suggesting a 

lack of in-control robustness under this particular data 

scenario. In terms of the shift detection, the ARL1 

values indicate that all charts have similar 

performances especially when the shift sizes are 

getting larger.  

It is noted that the in-control performances of the 

MEC-𝑋 chart and MEC-𝑋̃ chart are unaffected when 

the underlying process data follow skewed normal-

tailed distribution, i.e., g = 0.5 and h = 0. Table 3 shows 

that all charts produced ARL0 = 370 when n = 5 and n 

= 9. The MEC-MOM chart is observed with an 

improved ARL0 as n increases. In term of the shift 

detection capability, all three MEC charts perform 

similarly to the normality data scenario.  

Finally, the performances of all charts are observed 

under extreme data conditions, which is g = 0.5, h = 

0.5, i.e., skewed with the heavy tail distribution.  Under 

this data scenario, the ARL0 of the MEC-𝑋  chart is 

highly affected when compared to the robust MEC-𝑋̃  

and MEC-MOM charts.  The values in bold in Table 3 

are much larger than the pre-determined value of 

370. When n increases, the robust MEC-MOM chart 
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remains unaffected, that is, the values of the ARL0 are 

not much different than the pre-determined value of 

370.  The ARL0 values for the robust MEC-𝑋̃ deviate far 

from the pre-determined 370 when n = 5. As such, this 

standard MEC chart is no longer reliable for monitoring 

changes in the process despite showing comparable 

out-of-control performances with the median based 

MEC charts. Conversely, both median based MEC 

charts show good in-control robustness and fast 

detection when 𝛿 > 0, judging by the ARL0 that is close 

to 370 and relatively small ARL1 values as the size of 

shifts increases, respectively.  

The finding generally indicates that the in-control 

performance of standard MEC-𝑋 chart is highly 

affected under heavy-tailed distribution but relatively 

unaffected otherwise. In contrast, both robust MEC-𝑋̃ 

and MEC-MOM charts perform consistently well in 

terms of the in-control performance regardless of 

distributions.  Furthermore, the robust MEC-MOM chart 

performs better under heavy tail distribution regarding 

the in-control performance while still maintaining its 

shift detection capability across the normal and non-

normal data scenarios. 

 

 

Table 3 ARL values for the MEC charts with k = 0.5 at ARL0 = 370 when process parameters are known 
 

(g,h) n Methods 0 0.25 0.5 0.75 1 1.5 2 3 

(0,0) 

5 

MEC-𝑋̅ 370.153 27.524 14.525 10.601 8.572 6.453 5.256 4.010 

MEC-𝑋̃ 369.980 27.629 14.604 10.679 8.631 6.490 5.288 4.019 

MEC-MOM 370.063 27.534 14.523 10.633 8.599 6.477 5.274 4.017 

9 

MEC-𝑋̅ 370.091 20.349 11.484 8.527 6.925 5.220 4.222 3.067 

MEC-𝑋̃ 370.025 20.582 11.557 8.584 6.970 5.250 4.252 3.086 

MEC-MOM 370.031 20.451 11.545 8.587 6.965 5.241 4.242 3.080 

(0,0.5) 

5 

MEC-𝑋̅ 916.526 26.590 14.342 10.501 8.516 6.364 5.108 4.007 

MEC-𝑋̃ 369.248 27.585 14.601 10.663 8.632 6.483 5.274 4.018 

MEC-MOM 366.699 27.578 14.549 10.601 8.597 6.460 5.255 4.014 

9 

MEC-𝑋̅ 976.950 19.921 11.351 8.455 6.961 5.084 4.070 3.016 

MEC-𝑋̃ 369.284 20.555 11.573 8.583 6.977 5.244 4.236 3.082 

MEC-MOM 370.789 20.515 11.549 8.561 6.965 5.235 4.236 3.074 

(0.5,0) 

5 

MEC-𝑋̅ 372.452 27.588 14.532 10.596 8.584 6.451 5.257 3.990 

MEC-𝑋̃ 372.962 27.739 14.625 10.673 8.633 6.488 5.300 3.995 

MEC-MOM 364.845 27.581 14.555 10.617 8.594 6.463 5.290 3.996 

9 

MEC-𝑋̅ 365.538 20.408 11.472 8.513 6.948 5.212 4.223 3.055 

MEC-𝑋̃ 372.261 20.545 11.586 8.571 6.970 5.250 4.257 3.072 

MEC-MOM 373.628 20.537 11.569 8.559 6.969 5.249 4.255 3.076 

(0.5,0.5) 

5 

MEC-𝑋̅ 1455.208 26.837 14.302 10.531 8.621 6.413 5.001 3.991 

MEC-𝑋̃ 385.235 27.799 14.655 10.693 8.607 6.484 5.291 3.989 

MEC-MOM 378.589 27.694 14.584 10.621 8.614 6.460 5.265 3.989 

9 

MEC-𝑋̅ 2320.710 19.864 11.341 8.506 6.951 4.994 4.000 2.998 

MEC-𝑋̃ 370.140 20.592 11.568 8.578 6.976 5.240 4.249 3.064 

MEC-MOM 377.572 20.589 11.558 8.552 6.972 5.242 4.242 3.061 

 

 

3.2 Case II: MEC Control Charts with Unknown 

Parameters  

 
When the in-control parameters of the process are 

unknown, they have to be estimated based on the 

historical data in Phase I. Similar to the Case I, the 

performance of the MEC-MOM, MEC-𝑋̃ and MEC-𝑋  

charts are assessed and compared using the ARL.  

The simulation process in Case II follows similar 

procedures as in Case I in computing the ARL (Phase 

II). An extra step was included prior to that to estimate 

parameters of the process based on a total subgroup 

of m = 50 with n = 5, 9 when g = 0 and h = 0 (Phase I). 

Specifically, Phase I involved two series of 

simulation procedures. The first series was for 

determining the standard deviation of the sampling 

distribution of the location estimator, (𝜎𝜃̂), based on 

106 iterations. The second series involves 10,000 trials of 

50 in-control Phase I with sample size n to estimate the 

process mean (𝜃). 
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Let the Phase I data be represented by 𝑋𝑖𝑗 =

{𝑋1𝑗 , … , 𝑋𝑛𝑗} where 𝑗 = 1,2,…𝑚. We assume that 𝑋𝑖𝑗 to 

be independent and identically distributed (i.i.d) 

following an unknown distribution W which has mean 

𝜃0 and standard deviation 𝜎𝜃̂, 𝑋𝑖𝑗~𝑊(𝜃0, 𝜎𝜃̂). The 𝜃0 

was estimated using the mean of 𝜃, given by: 

 

𝜃0 =
∑ 𝜃̂𝑗
𝑚
𝑗=1

𝑚
      (12) 

 

The charting constants for different sample sizes (n) 

are listed in Table 4. 

 
Table 4 The charting constants for different sample sizes (n) 

when process parameters are unknown 

 
n MEC-𝑿̅ MEC-𝑿̃ MEC-MOM 

5 36.61 37.00 36.74 

9 37.00 36.78 36.87 

 

 

3.2.1  Simulation Outcomes  

 

The ARL results are displayed in Table 4. Focusing on 

the normal distribution, when g = 0, h = 0, all control 

charts yield ARL0 = 370 as they were initially designed 

in this study.  In terms of the shift detection, all charts 

perform equally.  Moreover, with an increase in the 

sample size, the value of the ARL1 decreases for all 

charts, suggesting an improvement in detecting shifts.  

Similar to Case I, even with deviation from the 

normality assumption, for example, when g = 0, h = 0.5, 

the in-control performance of the robust MEC charts 

remains unaffected.  This is supported by the values of 

the ARL0 in Table 5 which are very close to 370. On the 

other hand, the ARL0 for the MEC-𝑋 chart is 

significantly greater than 370 regardless of the sample 

sizes examined.  In terms of the shift detection, the 

ARL1 value indicates that all charts have similar 

performances in out-of-control status. 

It is noted that the in-control performances of both 

median based control charts, i.e., the MEC-𝑋̃ and 

MEC-MOM charts are not affected when the 

underlying process data follow skewed normal-tailed 

distribution, i.e., g = 0.5, h = 0, just like in Case I. Table 5 

shows that both charts produced ARL0 = 370 when n = 

5 and n = 9. In addition, the out-of-control 

performance of charts under this data condition are 

comparable to the standard MEC chart.  

Finally, the performances of MEC charts are 

observed under an extreme data condition, which is 

g = 0.5, h = 0.5, i.e., skewed with heavy tail distribution.  

The finding indicates that the ARL0 of the MEC-𝑋  chart 

is highly affected when compared to the robust MEC 

charts.  The bold values in Table 5 exceed the pre-

determined value of 370.  In addition, the ARL1 of MEC-

𝑋  chart is larger for small shifts (0.25 ≤ 𝛿 ≤ 0.75) when 

compared to the robust MEC charts. This implies 

delayed detection by the standard MEC chart when 

the change in the process is very small. When n 

increases, the robust MEC-MOM chart remains 

unaffected, where the values ARL0 are not much 

different than 370 suggesting good in-control 

robustness. 

The finding indicates that the in-control robustness 

of the MEC-𝑋 chart is highly affected under the heavy-

tailed distribution despite being able to perform well 

under skewed data scenario.  In contrast, both robust 

MEC charts perform consistently in terms of the in-

control robustness regardless of underlying 

distributions. Between the two median based robust 

charts investigated in this study, i.e., the MEC-𝑋̃ and 

the MEC-MOM chart, the latter performs better under 

heavy tail distribution in terms of the in-control 

robustness. With good in-control robustness, the 

performances of these median based MEC charts are 

highly reliable in detecting shifts in the process across 

all distributions considered in this study, unlike the 

MEC-𝑋 chart. 

 
Table 5 ARL values for the MEC charts with k = 0.5 at ARL0 = 370 when process parameters are unknown 

 

(g,h) n Methods 0 0.25 0.5 0.75 1 1.5 2 3 

(0,0) 

5 

MEC-𝑋̅ 369.610 37.287 17.397 12.578 10.161 7.629 6.257 4.839 

MEC-𝑋̃ 369.824 37.498 17.520 12.662 10.224 7.686 6.294 4.878 

MEC-MOM 369.790 37.156 17.463 12.609 10.188 7.647 6.264 4.848 

9 

MEC-𝑋̅ 369.438 25.974 13.785 10.206 8.309 6.270 5.123 3.996 

MEC-𝑋̃ 370.348 25.808 13.754 10.141 8.279 6.240 5.106 3.994 

MEC-MOM 370.890 25.945 13.759 10.158 8.285 6.251 5.108 3.995 

(0,0.5) 

5 

MEC-𝑋̅ 948.992 36.342 17.388 12.610 10.126 7.790 6.130 4.962 

MEC-𝑋̃ 371.070 37.663 17.499 12.665 10.204 7.680 6.282 4.891 

MEC-MOM 374.396 37.571 17.446 12.622 10.186 7.639 6.262 4.862 

9 

MEC-𝑋̅ 1052.478 26.159 13.731 10.187 8.274 6.138 5.030 3.998 

MEC-𝑋̃ 371.103 25.877 13.791 10.148 8.295 6.239 5.098 3.993 

MEC-MOM 372.934 25.895 13.791 10.169 8.292 6.256 5.104 3.994 

(0.5,0) 5 MEC-𝑋̅ 368.318 37.674 17.409 12.619 10.147 7.634 6.256 4.836 
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(g,h) n Methods 0 0.25 0.5 0.75 1 1.5 2 3 

MEC-𝑋̃ 370.313 38.376 17.504 12.659 10.230 7.684 6.286 4.864 

MEC-MOM 371.415 37.505 17.511 12.619 10.170 7.639 6.265 4.845 

9 

MEC-𝑋̅ 379.081 25.938 13.789 10.200 8.309 6.263 5.106 3.990 

MEC-𝑋̃ 367.213 25.848 13.752 10.131 8.284 6.240 5.099 3.987 

MEC-MOM 371.620 26.074 13.754 10.182 8.279 6.259 5.099 3.989 

(0.5,0.5) 

5 

MEC-𝑋̅ 1667.373 42.473 18.615 13.053 10.302 7.754 6.041 4.969 

MEC-𝑋̃ 382.854 38.790 17.572 12.671 10.212 7.679 6.283 4.888 

MEC-MOM 362.879 38.503 17.466 12.619 10.177 7.648 6.260 4.867 

9 

MEC-𝑋̅ 2845.329 27.619 13.923 10.349 8.112 6.024 4.999 3.998 

MEC-𝑋̃ 366.454 25.891 13.790 10.143 8.282 6.233 5.084 3.985 

MEC-MOM 375.956 26.237 13.752 10.170 8.287 6.243 5.086 3.985 

 

 

4.0 REAL APPLICATION 

 
To demonstrate the application of the MEC chart on 

real data, all three charts in this study were applied on 

a projected rainfall (in milliliter, mm) in Kedah, a state 

in northwest Malaysia. The data were attained from 

2019 until 2020 consisting of 104 samples of size 7 as 

presented in Figure 1.  

The first half of the data was used to construct the 

control limits (Phase I) and the latter half was used to 

monitor out-of-control samples (Phase II).  For n = 7, 

when the values of  and k are fixed at 0.13 and 0.5, 

respectively (as in the simulated studies), h becomes 

27.86. The outputs of the proposed charts are given in 

Figures 2-4 where both statistics, 𝑀𝐸𝐶𝑖
+ and 𝑀𝐸𝐶𝑖

−, are 

plotted against the control limits, H and H−, 

respectively.   

Figure 2 represents the output for the MEC-𝑋  chart. 

The chart shows 29 out-of-control samples (samples 14 

– 41). Meanwhile, Figure 3 indicates 31 out-of-control 

samples (samples 11 – 41) MEC-𝑋̃ was applied on the 

data. Figure 4 shows that the output for the robust 

MEC-MOM chart with 48 out-of-control samples 

(samples 5 – 52). This implies that the robust MEC-𝑋̃  

and MEC-MOM charts are more sensitive to the small 

changes in the data as indicated by this rainfall data 

scenario.  

 

 
 

Figure 1 The Scatter Plot of Weekly Rainfalls 
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Figure 2 The Standard MEC-𝑋̅ Chart 

 

 
 

Figure 3 The Robust MEC Chart based on the median 

 

 
 

Figure 4 The Robust MEC Chart based on MOM 
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5.0 CONCLUSION 
 

The MEC control chart is targeted to enhance the 

performance of the EWMA and CUSUM charts under 

the normality assumption. This study proposed to 

improve the performance of the MEC chart under non-

normality via the usage of median based estimators. 

The comparison of the MEC-𝑋̃ and MEC-MOM charts 

with MEC-𝑋 chart based on the ARL shows that the in-

control robustness of the MEC-𝑋̃  and MEC-MOM charts 

are not affected under various g-and-h distributions 

unlike the MEC-𝑋 chart. The standard MEC chart, 

namely, the MEC-𝑋  chart, is easily perturbed when the 

distribution is heavy tail in nature. In general, this study 

observes that MEC-𝑋̃ and MEC-MOM charts can 

withstand various tested conditions and perform well on 

actual data. The findings indicate that robust MEC-

MOM is not easily perturbed regardless of distributional 

shapes, shifts, and sizes. Thus, they are reliable to be 

used across various conditions that may be 

encountered in real life, unlike the MEC-𝑋 chart. 
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