

86:4 (2024) 181–190|https://journals.utm.my/jurnalteknologi|eISSN 2180–3722 |DOI:

|https://doi.org/10.11113/jurnalteknologi.v86.20723|

Jurnal

Teknologi

Full Paper

COMPARATIVE OF RIVEST-SHAMIR-ADLEMAN

CRYPTOSYSTEM AND ITS FOUR VARIANTS

USING RUNNING TIME AND MEMORY

CONSUMPTION ANALYSIS

Arif Mandangana, Muhammad Asyraf Asbullahb*, Syed Farid Syed

Adnanc, Mohammad Andri Budimand

aMathematics, Real-Time Graphics and Visualization Laboratory,

Faculty of Sciences and Natural Resources, Universiti Malaysia

Sabah, 88400 Kota Kinabalu, Sabah, Malaysia
bInstitute for Mathematical Research, Universiti Putra Malaysia,

43400 UPM Serdang, Malaysia
cSchool of Electrical Engineering, College of Engineering,

Universiti Teknologi Mara, 40450 Shah Alam, Malaysia
dFaculty of Computer Science and Information Technology,

Universitas Sumatera Utara, Jl. Universitas No. 9-A, Kampus USU,

Medan 20155, Indonesia

Article history

Received

13 July 2023

Received in revised form

7 January 2024

Accepted

7 January 2024

Published Online

23 June 2024

*Corresponding author

ma_asyraf@upm.edu.my

Graphical abstract

Abstract

The Rivest-Shamir-Adleman (RSA) algorithm, known for its slow single-precision

multiplication (spm) and overall running time, is not commonly employed to

encrypt user data directly. As a result, several researchers have developed

various RSA-based cryptosystems to enhance the algorithm's performance while

maintaining security. This paper presents a comparative analysis of different

variants of the RSA cryptosystem, focusing on five specific cryptosystems: RSA,

Somsuk-RSA, Modified-RSA (MRSA), Easy Simple Factoring-RSA (ESF-RSA), and

Phony-RSA. The methodology involves evaluating the theoretical running time

and memory usage through single-precision multiplication (spm) measurements,

while the actual running time is estimated using Maple programming. The

research has two primary objectives. Firstly, they examined each algorithm of

the RSA variants and analysed them according to the proposed methodology.

Secondly, to determine which cryptosystem consumes the most time and

memory for key generation, encryption, and decryption. The results indicate that

ESF-RSA and RSA are the fastest in terms of key generation, ESF-RSA is the

quickest for encryption, and Phony-RSA excels in decryption speed. Additionally,

ESF-RSA demonstrates the lowest memory usage, whereas MRSA requires the

highest memory allocation for all processes.

Keywords: Cryptosystem, single precision, encryption, running time, memory

consumption

Abstrak

Algoritma Rivest-Shamir-Adleman (RSA, dikenali dengan pendaraban

berkepersisan-tunggal serta masa larian yang perlahan, lazimnya kurang

digunakan secara terus untuk menyulitkan data pengguna. Natijahnya, para

penyelidik telah membangunkan pelbagai sistemkripto berasaskan RSA untuk

meningkatkan prestasi algoritma tersebut disamping mengekalkan tahap

keselamatannya. Kertas kajian ini mencadangkan suatu analisis perbandingan

182 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

terhadap pelbagai varian sistemkripto RSA, dengan penumpuan khusus

terhadap lima sistemkripto iaitu RSA, Somsuk-RSA, RSA-Terubahsuai (MRSA), RSA-

Pemfaktoran Mudah Ringkas (ESF-RSA), serta Phony-RSA. Metodologi yang

digunakan adalah merangkumi penilaian terhadap masa larian dan

penggunaan memori secara teori melalui ukuran pendaraban berkepersisan-

tunggal, disamping menentukan masa larian sebenar dengan menggunakan

pengaturcaraan Maple. Kajian ini mempunyai dua objektif utama. Pertama,

setiap algoritma varian RSA tersebut dinilai serta dianalisa mengikut metodologi

yang dicadangkan. Kedua, untuk menentukan sistemkripto manakah yang

menggunakan masa serta memori yang paling tinggi dalam proses penjanaan

kekunci, penyulitan dan penyahsulitan. Keputusan yang diperolehi

menunjukkan bahawa ESF-RSA dan RSA adalah sistemkripto yang terlaju bagi

proses penjanaan kekunci, manakala ESF-RSA adalah varian yang terlaju bagi

proses penyulitan dan Phony-RSA pula cemerlang dari segi kelajuan dalam

proses penyahsulitan. Selain itu juga, ESF-RSA menunjukkan penggunaan

memori terendah, manakala MRSA pula memerlukan peruntukan memori

tertinggi untuk kesemua proses tersebut.

Kata kunci: Sistemkripto, berkepersisan tunggal, penyulitan, masa larian,

penggunaan memori

© 2024 Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

Cryptography word comes from a combination of two

ancient Greek words, which are "Kryptos" and

"graphene", with the meaning "hidden, secret" and "to

write", respectively. The Concise Oxford English

Dictionary defines cryptography as "the art of writing

or solving codes" [1]. In general, cryptography is about

constructing and analysing rules to secure

communication between two parties with the

presence of adversaries [2]. Cryptography and

cryptanalysis are also linked to cryptology. Before the

early 20th century, electronic devices became a

popular medium to transport information. Since then,

cryptography algorithms have been heavily based on

mathematical theory and computer science practice

[3].

Before the modern age, cryptography was

effectively compatible with encryption and

decryption. Encryption is converting ordinary

information called plaintext into an unintelligible form

called ciphertext. Decryption is the reversed process

of encryption that converts ciphertext back to

plaintext [4]. Both sender (encryptor) and receiver

(decryptor) share a "key" to perform their operation

successfully. The sender used the same key to encrypt

the plaintext and the receiver to decrypt the

ciphertext to plaintext. The key must be kept secret by

both as no matter how obscure the algorithm for

encryption and decryption is, it is troublesome if the

key is not safe [5].

The widespread use of computers and

communications networks in the 1960s prompted a

need from the commercial sector for tools to secure

digital information and provide security services [6].

Before the mid-1970s, all cypher systems implemented

symmetric key algorithms. The sender and the

recipient used the same cryptographic key with the

underlying algorithm and had to keep it secret. The

key in every such system has to be shared in a secure

method beforehand. However, this technique could

be more practical and quickly becomes

unmanageable when the number of parties grows

when secure channels are unavailable or when keys

are often changed (as is common cryptographic

practice)[7].

[8] proposed public-key cryptography (also called

asymmetric cryptography) in the mid-1970s. In this

system, the sender and receiver are the two

participants in the asymmetric encryption workflow;

each has its own public and private keys. The sender

acquires the public key of the recipient. The sender

then encrypts the plaintext or regular, readable text

using the receiver's public key, resulting in the

ciphertext. The ciphertext is then sent to the receiver,

which decrypts the ciphertext with their private key

and returns it to plaintext [9].

[10] published a public-key cryptosystem named

RSA (Rivest–Shamir–Adleman) 1977. An RSA user

creates and publishes a public key based on two

large prime numbers and an additional value. The

prime numbers are kept secret. Anyone can encrypt

messages via the public key, but they can only be

decoded by someone who knows the prime numbers.

The RSA algorithm has three steps: key generation,

encryption and decryption. The RSA cryptosystem is

defined as follows.

Algorithm 1.1 RSA Key Generation Algorithm

1: Choose distinct random prime ,p q such that
12 , 2 .k kp q + 

2: Compute N pq= and () (1)(1).N p q = − −

3: Choose e such that 3 ()e N  and gcd(, ()) 1.e N =

4: Compute d such that 1 (mod ()).ed N

5: Return the public key (,)N e and the private key

(,).N d

183 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

Algorithm 1.2 RSA Encryption Algorithm

1: Choose integer 0 m N  such that gcd(,) 1.m N =

2: Compute (mod).ec m N

3: Return the ciphertext .c

Algorithm 1.3 RSA Decryption Algorithm

1: Compute (mod).dm c N

2: Return the plaintext .m

RSA is a relatively slow algorithm in single-precision

multiplication (spm) and actual running time. Because

of this, it is not commonly used to encrypt user data

directly [11]. Therefore, numerous variants of RSA-

based cryptosystems are created by numerous

researchers to improve the algorithm without

sacrificing security. Thus, we want to know which

algorithm runs faster in key generation, encryption

and decryption among RSA cryptosystem and

selected RSA variants cryptosystem. In addition, we

will analyse memory consumption for RSA and

selected variants in key generation, encryption and

decryption processes.

After RSA was proposed, various researchers

attempted to enhance RSA by improving its algorithm.

Most of the time, researchers improve the RSA

algorithm by applying various mathematical methods

to the algorithm without changing the basic structure

of RSA. Therefore, this section will review the RSA

variants algorithms proposed before to improve the

RSA cryptosystem.

[12] presents the new equation for RSA's

decryption process to speed up the computation

time. Note that the private key is usually created with

a higher value than the public key to avoid intrusion

from unintended parties. However, with a large

private key, the decryption procedure takes longer.

When a high private key is used, the new exponent

becomes a tiny number in the proposed method. The

experimental findings demonstrate that the proposed

approach can quickly complete the RSA decryption

process when the private key is large, especially near

the Euler value [13]. However, care must be taken for

parameter selection to avoid insecurity due to some

efficient brute force attack.

[14] proposed a Modified RSA (MRSA) scheme that

minimises the RSA system's key flaws. The main

concern in most situations is that it is readily breakable

due to the easy calculation of keys depending on N .

Original RSA N is easily traceable since it is the only

product of two prime integers. Therefore, MRSA used

four large primes rather than two. The key generation

of MRSA depends on a large factor value N ; thus, it

needs a higher key generation time. Encryption and

decryption also take longer than the RSA method

when involving four primes [15].

A new easy, and simple ESF-RSA public key

cryptosystem was based on the factoring problem

proposed by [16]. The new proposed cryptosystem

requires no inverse modular operation during secret

key generation. Moreover, if the public key and

modulus in ESF-RSA are fixed, the size and value of the

secret key are reduced. As a result, ESF-RSA

encryption and decryption operations are more

efficient than RSA [9].

[17] suggest an improved RSA method to

overcome the limitation of an integer factorisation

attack by increasing the complexities of the

factorisation process by using a phoney/fake public

key exponent f instead of e and a phoney modulus

X instead of N . This method will provide better

security than RSA by decreasing encryption and

decryption time. Furthermore, [18] analyzes potential

attacks that could be launched against the

suggested system and deliberate on its efficacy.

There are two main objectives of this research.

Firstly, to compare the running time and memory

consumption of key generation, encryption and

decryption for the RSA cryptosystem and four selected

RSA variants. Secondly, to simulate all the

cryptosystems using Maple programming and

capture the actual running time in seconds. This

research is limited to the original RSA cryptosystem,

Somsuk-RSA cryptosystem, Modified-RSA (MRSA)

cryptosystem, Easy Simple Factoring-RSA (ESF-RSA)

cryptosystem and Phony-RSA cryptosystem.

This paper is organized in the following outline. In

the next section, we provide the methodology of this

study from both perspectives, single-precision

multiplication and memory consumption. This

comparative study's theoretical and experimental

results are presented in Section 3, followed by a

discussion in Section 4. Finally, Section 5 concludes the

paper.

2.0 METHODOLOGY

The comparative analysis will be conducted both

theoretically and experimentally in this study. The

selected RSA variants cryptosystem are the RSA

cryptosystem, Somsuk-RSA cryptosystem, Modified-

RSA (MRSA) cryptosystem, Easy Simple Factoring (ESF)

cryptosystem, and the Phony-RSA cryptosystem.

2.1 Single-precision Multiplication

We use the single-precision multiplication (spm)

measurement to determine the running time in this

study. This method compared the complexity of each

RSA-based cryptosystem's key generation, encryption

and decryption running time. Moreover, all the

algorithms of the cryptosystem will be run in Maple

software to find out which one of the schemes is faster.

Tables 2.1 and 2.2 will show how spm is applied in

basic and modular arithmetic, respectively, as

applied by [6] and [19].

184 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

Table 2.1 Single-precision Multiplication for Basic Arithmetic

Operation [6, 19] Single-precision Multiplication (spm)

Addition

/Subtraction

Add or subtract for two bit integers

is spm.

Multiplication Multiply bit and  bit, the operation

required (1)(1) + + spm. Hence,

multiplication for two bit integers is
2 2 1 + + spm

Squaring Multiply bit integers by itself requires
2

2

 +
spm.

Division Division of bit by  bit integers

requires ()(3)  − + spm.

Table 2.2 Single-precision Multiplication for Modular

Arithmetic

Operation [6, 19] Single-precision Multiplication (spm)

Modular

Reduction
Suppose a is an integer of  bit and

n is an integer of  bit integer such

that .a n Let (mod)a n perform a

modular reduction, then this

operation requires a (1)() + spm.

Modular

Multiplication
Suppose , ,a b n are integers of  bit

integers. Let (mod)ab n performs a

modular multiplication, and then this

operation requires
24 4 + spm.

Modular Inversion A modular inversion
1 (mod)a n−

is like

30 times slower than a modular

multiplication.

Modular

Exponentiation
Suppose , ,a k n are integers of bit, 

bit and  bit, respectively. Let

 (mod)ka n be modular

exponentiation. Then this operation

requires 3(1)(1)()  + + spm.

2.2 Memory Consumption

[20] introduced a method to calculate memory

consumption using system parameters and

accumulators, which also appeared in [19]. The

descriptions below will be assessed to analyze the

memory usage of system parameters and

accumulators in an RSA-based cryptosystem.

System Parameter

A system parameter refers to a predetermined value

that may remain unchanged before any

computational operations. This parameter is

permanently stored in memory, typically embedded

in the hardware.

Accumulator

An accumulator represents a constant or variable

value associated with ongoing computational tasks,

and its resulting value is temporarily stored in memory.

After completing all necessary computations, the

accumulator's data is removed. Essentially, the

memory allocation for an accumulator is dynamically

created and cleared.

3.0 RESULTS

The running time evaluation is used for each

cryptosystem's key generation, encryption, and

decryption. Each subsection will display each process

running time evaluation results in spm term. Aside from

that, additional results on the memory cost evaluation

of each process will be reported.

3.1 Running Time and Memory Cost Evaluation for

RSA

3.1.1 Running Time Estimation for RSA Key

Generation, Encryption and Decryption

Key Generation

We recall that the algorithm for the key generation

process for RSA is as in Algorithm 1.1. For Step 2, N is the

product of two 2k -bit; thus, its running time is
24 4 1k k+ + spm. Furthermore, ()N is the product of two

2k -bit with running time
24 4 1k k+ + spm. Step 4

involves a modular inversion of two 4k -bit integers; the

running time is
21920 480k k+ spm. Hence, the total

running time for RSA key generation is
21928 488 2k k+ +

spm.

Encryption

We recall that the algorithm for the key generation

process for RSA is as in Algorithm 1.2. From Step 1, we

can see that the maximum size of m is 4k -bit. Next, in

Step 2, the modular exponentiation of a 4k -bit integer

with a 4k -bit integer is needed. The running time in

Step 2 is
3 2192 96 12k k k+ + spm, and the total running

time for RSA encryption.

Decryption

We recall that the algorithm for the key generation

process for RSA is as in Algorithm 1.3. The maximum size

for c is 4k -bit. Step 1, to compute m requires modular

exponentiation of a 4k -bit integer with a 4k -bit

integer. The running time for Step 1 is
3 2192 96 12k k k+ +

spm. Hence, the total running time for RSA decryption

is also
3 2192 96 12k k k+ + spm.

3.1.2 Memory Cost for RSA Key Generation,

Encryption and Decryption

Table 3.1, Table 3.2, and Table 3.3 show the memory

consumption of the system parameters and the

accumulators for RSA key generation, encryption, and

decryption, respectively.

185 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

Table 3.1 Memory Cost for RSA Key Generation

Category Register

Name

No. Of Register Bits

System

parameters
, ,N e d 3 4k 12k

Accumulators ,p q 2 2k 4k

()N 1 4k 4k

 Total 20k

Table 3.2 Memory Cost for RSA Encryption

Category Register

Name

No. Of Register Bits

System

parameters
,e N 2 4k 8k

Accumulators ,c m 2 4k 8k

 Total 16k

Table 3.3 Memory Cost for RSA Decryption

Category Register

Name

No. Of Register Bits

System

parameters
,d N 2 4k 8k

Accumulators ,c m 2 4k 8k

 Total 16k

3.2 Running Time and Memory Cost Evaluation for

Somsuk-RSA

Suppose we consider the Somsuk-RSA key generation,

encryption, and decryption as follows.

Algorithm 3.1 Somsuk-RSA Key Generation Algorithm

1: Choose distinct random prime ,p q such that
12 , 2 .k kp q + 

2: Compute N pq= and () (1)(1).N p q = − −

3: Choose d such that
/ 2 /2 12 2 .k kd + 

4: Compute x such that () .x N d= −

5: Compute e such that 1 (mod ()).ed N

6: Return the public key (,)N e and the private key

(,).N x

Algorithm 3.2 Somsuk-RSA Encryption Algorithm

1: Choose integer 0 m N  such that gcd(,) 1.m N =

2: Compute (mod).ec m N

3: Return the ciphertext .c

Algorithm 3.3 Somsuk-RSA Decryption Algorithm

1: Compute 1() (mod).xm c N−

2: Return the plaintext .m

3.2.1 Running Time Estimation for Somsuk-RSA Key

Generation, Encryption and Decryption

Key Generation

Let's refer to the Somsuk-RSA key generation process

in Algorithm 3.1. For Step 2, N is the product of two 2k

-bit; thus, its running time is 24 4 1k k+ + spm.

Furthermore, ()N is the product of two 2k -bit with

running time
24 4 1k k+ + spm. Step 4 involves

subtracting a 4k -bit integer with a 2k -bit integer, so

the running time is 2k spm. Step 5 involves a modular

inversion of two 4k -bit integers to obtain e ; then, the

running time is
21920 480k k+ spm. Hence, the total

running time for Somsuk-RSA key generation is
21928 492 2k k+ + spm.

Encryption

Let's refer to the Somsuk-RSA encryption process in

Algorithm 3.2. From Step 1, we can see that the

maximum size of m is 4k -bit. Next, in Step 2, the

modular exponentiation of a 4k -bit integer with a 4k

-bit integer is needed to obtain c . The running time in

Step 2 is
3 2192 96 12k k k+ + spm, and it is the total running

time for Somsuk-RSA encryption.

Decryption

Let's refer to the Somsuk-RSA decryption process as in

Algorithm 3.3. The maximum size for c is 4k -bit. In Step

1, computing m requires two modular exponentiations

of a 4k -bit integer with a 4k -bit integer. First, the

running time to obtain 1 (mod)c n− is
21920 480k k+ spm.

Second, the running time to obtain
1() (mod)xc n−

require
3 296 72 12k k k+ + spm. Hence, the total running

time for Somsuk-RSA decryption is
3 296 1992 492k k k+ +

spm.

3.2.2 Memory Cost for Somsuk-RSA Key

Generation, Encryption and Decryption

Table 3.4, Table 3.5, and Table 3.6 show the memory

consumption of the system parameters and the

accumulators for Somsuk-RSA key generation,

encryption, and decryption, respectively.

Table 3.4 Memory Cost for Somsuk-RSA Key Generation

Category Register

Name

No. Of Register Bits

System

parameters
,N e 2 4k 8k

x 1 k k

Accumulators ,p q 2 2k 4k

(),N d 2 4k 8k

 Total 21k

Table 3.5 Memory Cost for Somsuk-RSA Encryption

Category Register

Name

No. Of Register Bits

System

parameters
,e N 2 4k 8k

Accumulators ,c m 2 4k 8k

 Total 16k

186 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

Table 3.6 Memory Cost for Somsuk-RSA Decryption

Category Register

Name

No. Of Register Bits

System

parameters
N 1 4k 4k

x 1 k k

Accumulators ,c m 2 4k 8k

 Total 13k

3.3 Running Time and Memory Cost Evaluation for

MRSA

Suppose we consider the MRSA key generation,

encryption, and decryption as follows.

Algorithm 3.4 MRSA Key Generation Algorithm

1: Choose four distinct random prime , , ,w x y z such that
12 , , , 2 .k kw x y z + 

2: Compute N wxyz= and () (1)(1)(1)(1).N w x y z = − − − −

3: Choose e such that 1 ()e N  and gcd(, ()) 1.e N =

4: Choose f such that1 ()f N  and gcd(, ()) 1.f N =

5: Compute d such that 1 (mod ()).ed N

6: Compute g such that 1 (mod ()).fg N

7: Return the public key (, ,),N e f the private key (, ,).N d g

Algorithm 3.5 MRSA Encryption Algorithm

1: Choose integer 0 m N  such that gcd(,) 1.m N =

2: Compute ((mod)) (mod).e fc m N N

3: Return the ciphertext .c

Algorithm 3.6 MRSA Decryption Algorithm

1: Compute ((mod)) (mod).d gm c N N

2: Return the plaintext .m

3.3.1 Running Time Estimation for MRSA Key

Generation, Encryption and Decryption

Key Generation

Let's refer to the MRSA key generation process as in

Algorithm 3.4. For Step 2, N is the product of four k -

bit. Thus, its running time is
26 8 3k k+ + spm.

Furthermore, ()N is the product of four k -bit with a

running time also
26 8 3k k+ + spm. Step 5 and Step 6

involve a modular inversion of two 4k -bit integers, and

then the running time for both steps is
21920 120k k+

spm. Hence, the total running time for MRSA key

generation is
23852 256 6k k+ + spm.

Encryption

Let's refer to the MRSA encryption process as in

Algorithm 3.5. From Step 1, we can see that the

maximum size of m is 4k -bit. Step 2 involves two

modular exponentiations of integer with 4k -bit integer

to obtain c . The running time in Step 2 is

3 2384 192 24k k k+ + spm, and it is the total running time

for MRSA encryption.

Decryption

Let's refer to the MRSA decryption process in

Algorithm 3.6. The maximum size for c is 4k -bit. In Step

1, computing m also required two modular

exponentiations of a 4k -bit integer with a 4k -bit

integer. The running time for Step 1 is
3 2384 192 24k k k+ + spm. Hence, the total running time

for MRSA decryption is also
3 2384 192 24k k k+ + spm.

3.3.2 Memory Cost for MRSA Key Generation,

Encryption and Decryption

Table 3.7, Table 3.8, and Table 3.9 show the memory

consumption of the system parameters and the

accumulators for MRSA key generation, encryption,

and decryption, respectively.

Table 3.7 Memory Cost for MRSA Key Generation

Category Register Name No. Of Register Bits

System

parameters
, , , ,N e d f g 5 4k 20k

Accumulators , , ,w x y z 4 k 4k

()N 1 4k 4k

 Total 28k

Table 3.8 Memory Cost for MRSA Encryption

Category Register

Name

No. Of Register Bits

System

parameters
, ,e f N 3 4k 12k

Accumulators ,c m 2 4k 8k

 Total 20k

Table 3.9 Memory Cost for MRSA Decryption

Category Register

Name

No. Of Register Bits

System

parameters
, ,N d g 3 4k 12k

Accumulators ,c m 2 4k 8k

 Total 20k

3.4 Running Time and Memory Cost Evaluation for

ESF-RSA

Suppose we consider the ESF-RSA key generation,

encryption, and decryption as follows.

Algorithm 3.7 ESF-RSA Key Generation Algorithm

1: Choose distinct random prime ,p q such that
12 , 2 .k kp q + 

2: Compute .N pq=

3: Find ,r s where /r s is simple fraction of (1) / (1).p q− −

4: Compute w such that (1) 1 (1) 1.w s p r q= − + = − +

5: Find u where | .u w

6:Obtain v where .w uv=

6: Return the public key (,)N u and the private key (,).N v

187 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

Algorithm 3.8 ESF-RSA Encryption Algorithm

1: Choose integer 0 m N  such that gcd(,) 1.m N =

2: Compute (mod).uc m N

3: Return the ciphertext .c

Algorithm 3.9 ESF-RSA Decryption Algorithm

1: Compute (mod).vm c N

2: Return the plaintext .m

3.4.1 Running Time Estimation for ESF-RSA Key

Generation, Encryption and Decryption

Key Generation

Let's refer to the ESF-RSA key generation process as in

Algorithm 3.7. For Step 2, N is the product of two 2k -

bit; thus, its running time is
24 4 1k k+ + spm. Step 3

involves the division of a 2k -bit integer with a 2k -bit

integer, so the running time is k spm. In Step 4,

computing w involves the multiplication of two 2k -bit

integers. Then the running time is
24 4 1k k+ + spm. Step

5 involves factorisation of w to find u since u is a divisor

of w . However, no precise measurement for the

factorisation process is available in the literature;

therefore, it is represented as  spm. Step 6 requires
23 9k k+ spm for division of 4k -bit with k -bit. Hence, the

total running time for ESF-RSA key generation is
211 17 2k k+ + + spm.

Encryption

Let's refer to the ESF-RSA encryption process as in

Algorithm 3.8. From Step 1, we can see that the

maximum size of m is 4k -bit. Next, in Step 2, the

modular exponentiation of a 4k -bit integer with a 4k

-bit integer is needed. The running time in Step 2 is
3 248 60 12k k k+ + spm, and it is the total running time for

ESF-RSA encryption.

Decryption

Let's refer to the ESF-RSA decryption process as in

Algorithm 3.9. The maximum size for c is 4k -bit. In Step

1, to compute m it required modular exponentiation of

a 4k -bit integer with a 4k -bit integer with
3 2144 84 12k k k+ + spm. Hence, the total running time for

ESF-RSA decryption is
3 2144 84 12k k k+ + spm.

3.4.2 Memory Cost for ESF-RSA Key Generation,

Encryption and Decryption

Table 3.7 Memory Cost for ESF-RSA Key Generation

Category Register

Name

No. Of Register Bits

System

parameters
N 1 4k 4k

u 1 k k

v 1 3k 3k

Accumulators , , ,p q r s 4 2k 8k

w 1 4k 4k

 Total 20k

Table 3.8 Memory Cost for ESF-RSA Encryption

Category Register

Name

No. Of Register Bits

System

parameters

u 1 k k

N 1 4k 4k

Accumulators ,c m 2 4k 8k

 Total 13k

Table 3.9 Memory Cost for ESF-RSA Decryption

Category Register

Name

No. Of Register Bits

System

parameters

v 1 3k 3k

N 1 4k 4k

Accumulators ,c m 2 4k 8k

 Total 15k

3.5 Running Time and Memory Cost Evaluation for

Phony-RSA

Suppose we consider the Phony-RSA key generation,

encryption, and decryption as follows.

Algorithm 3.10 Phony-RSA Key Generation Algorithm

1: Choose four distinct random prime , , ,w x y z such that
12 , , , 2 .k kw x y z + 

2: Compute N wxyz= and () (1)(1)(1)(1).N w x y z = − − − −

3: Find () 1X N v= + where X N is a prime and .v

4: Compute () 1.X X = −

5: Choose ,j g such that 1 , 2 .kj g 

6: Compute private key exponent .d jg=

7: Find public key exponent
1 (mod ()).e d X−=

6: Return the public key (,)N u and the private key (,).N v

Algorithm 3.11 Phony-RSA Encryption Algorithm

1: Choose integer 0 m N  such that gcd(,) 1.m N =

2: Compute (mod).uc m N

3: Return the ciphertext .c

Algorithm 3.12 Phony-RSA Decryption Algorithm

1: Compute (mod).vm c N

2: Return the plaintext .m

3.5.1 Running Time Estimation for Phony-RSA Key

Generation, Encryption and Decryption

Key Generation

Let's refer to the Phony-RSA key generation process as

in Algorithm 3.10. For Step 2, N and ()N is the product

of four k -bit; thus, both running time is
26 8 3k k+ + spm

each. In step 3, X is the product of 4k -bit with k -bit,

and the running time is
24 5 1k k+ + spm. In addition,

there is also involved looping of primality testing to

ensure X is prime and it represented as  spm. Finding

188 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

d in Step 6 required 22 4 2k k+ + since it is the product

of two k -bit. In step 7, e is the modular inversion of 5k

-bit; therefore, the process requires
2480 240k k+ spm.

In step 8, finding f involves multiplying 5k -bit with k

-bit integer and required
25 6 1k k+ + spm.

Consequently, the total running time for Phony-RSA

key generation is
2503 271 10k k + + + spm.

Encryption

Let's refer to the Phony-RSA encryption process as in

Algorithm 3.11. From Step 1, we can see that the

maximum size of m is 4k -bit. Next, in Step 2, the

modular exponentiation of a 4k -bit integer with a 5k

-bit integer is needed. The running time in Step 2 is
3 2360 150 15k k k+ + spm, and it is the total running time

for Phony-RSA encryption.

Decryption

Let refer to the Phony-RSA decryption process as in

Algorithm 3.12. The maximum size for c is 5k -bit. In Step

1, to compute m it required modular exponentiation

of a 5k -bit integer with a 5k -bit integer with
3 275 90 15k k k+ + spm. Hence, the total running time for

Phony-RSA decryption is
3 275 90 15k k k+ + spm.

3.5.2 Memory Cost for Phony-RSA Key Generation,

Encryption and Decryption

Table 3.10 Memory Cost for Phony-RSA Key Generation

Category Register

Name

No. Of Register Bits

System

parameters
X 1 5k 5k

g 1 k k

f 1 6k 6k

Accumulators , , ,w x y z 4 k 4k

, ()N N 2 4k 8k

d 1 2k 2k

e 1 5k 5k

j 1 k k

 Total 32k

Table 3.11 Memory Cost for Phony-RSA Encryption

Category Register

Name

No. Of Register Bits

System

parameters
f 1 6k 6k

X 1 5k 5k

Accumulators ,c m 2 4k 8k

 Total 19k

Table 3.12 Memory Cost for Phony-RSA Decryption

Category Register

Name

No. Of Register Bits

System

parameters

g 1 k k

X 1 5k 5k

Accumulators ,c m 2 4k 8k

 Total 14k

4.0 DISCUSSION

4.1 Overall Running Time in Single-precision

Multiplication

This section studies running time in terms of spm for RSA

and its selected variants. Table 4.1 below shows all

collected data from the section before.

Table 4.1 Running Time in Single Precision Multiplication.

Cryptosystem Key Gen. (spm) Encryption (spm) Decryption (spm)

RSA 21928 488 2k k+ +
3 2192 96 12k k k+ +

3 2192 96 12k k k+ +

Somsuk-RSA 21928 488 2k k+ +
3 2192 96 12k k k+ +

3 296 1992 492k k k+ +

MRSA 23852 256 6k k+ +
3 2384 192 24k k k+ +

3 2384 192 24k k k+ +

ESF-RSA 211 17 2k k+ + +
3 248 60 12k k k+ +

3 2144 84 12k k k+ +

Phony-RSA 2503 271 10k k + + + 3 2360 150 15k k k+ +
3 275 90 15k k k+ +

RSA has the lowest spm measurement for a key

generation, while MRSA has the highest. Even though

ESF-RSA and Phony-RSA seem to have the lowest spm,

both have  and  variables whose size is

immeasurable. The higher spm required in MRSA is due

to two modular inversion processes to find d and g

during the key generation. A modular inversion is like

30 times slower than a modular multiplication.

Next, ESF-RSA has the lowest spm for encryption,

which is
3 248 60 12 ,k k k+ + compared to MRSA, which

has the highest spm, which is
3 2384 192 24k k k+ + spm.

The lower spm for ESF-RSA to encrypt the plaintext was

because the public key u is small. On the other hand,

MRSA encryption involves two modular

exponentiations causing the spm to be higher. For RSA

and Somsuk-RSA, the spm reading shows the same

measurement since both cryptosystems have the

same encryption algorithm. Also, Phony-RSA is a

second higher spm for encryption because it performs

encryption using larger phony public key .f

For decryption, Phony-RSA has five times lower spm

than MRSA because Phony-RSA uses only a small

phony private key g rather than MRSA, which has the

largest spm measurement requiring two modular

exponentiations to decrypt the ciphertext. RSA and

ESF-RSA almost have the same spm measurement

189 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

because the algorithm for decrypting is the same but

different in the private key size.

4.2 Total Memory Cost and Actual Running Time

This subsection analyses total memory cost in bits and

actual running time in seconds for RSA and its selected

variants. Table 4.2 below shows all collected total

memory costs and running times for all cryptosystems

from the chapter before.

Actual running time is collected by running the

algorithms in Maple software to acquire the average

actual running time of the cryptosystems. Algorithms

were run 200 times with constant m for each

cryptosystem to acquire the average running time.

Table 4.2 Total Memory Cost and Actual Running Time.

Cryptosystem Key Gen. Encryption Decryption

bits second bits second bits second

RSA 20k 0.820 16k 0.026 16k 0.024

Somsuk-RSA 21k 0.880 16k 0.028 13k 0.010

MRSA 28k 7.276 20k 0.044 20k 0.043

ESF-RSA 20k 1.163 15k 0.003 13k 0.025

Phony-RSA 32k 4.901 19k 0.032 14k 0.009

From the table above, Phony-RSA has the largest

total memory consumption in key generation. Phony-

RSA key generation produces four types of key

exponent and uses phony modulus X causing it to

consume large memory. In addition, MRSA has a

second larger total memory consumption, which is

28k -bits; consequently, MRSA also generates four key

exponents. In the key generation process, RSA and

ESF-RSA have the same total memory consumption at

20k -bits. RSA has the fastest key generation among

other variants with 0.820 sec. ESF-RSA is slower than

RSA since it involves finding .u

Similarly, Phony-RSA is even slower than ESF-RSA

caused by the looping of the primality testing

algorithm to obtain .X On the contrary, MRSA is the

slowest algorithm to generate keys because MRSA

generates four different keys rather than two. MRSA

also has two modular inversions that make it even

slower.

Then, in encryption, ESF-RSA consumes the smallest

memory at 13k -bit because of storing a smaller public

key .u Following ESF-RSA are RSA and Somsuk-RSA,

which have 16k -bit in total memory consumption due

to RSA and Somsuk-RSA having the same size as the

key and modulus .N However, MRSA must store two

different public key exponents during the encryption

process, making MRSA the largest total memory

consumption at 20k -bits. Although slower during key

generation, ESF-RSA is the fastest algorithm to encrypt

plaintext. The smaller public key u caused the ESF-RSA

to compute quicker with an average of 0.003 sec only.

Nevertheless, MRSA has the slowest running time,

almost 15 times slower than ESF-RSA for encryption,

requiring two modular exponentiations. RSA and

Somsuk-RSA have identical actual time taken

because both have the same encryption algorithm.

Using a larger public key f makes Phony-RSA come to

the second slower algorithm.

Besides, in decryption, MRSA also has the largest

total memory consumption at 20k -bits because MRSA

stored different private keys d and .g Other RSA

variants have slightly different sizes of total memory

consumption because they vary in size of the private

key and modulus N or .X Phony-RSA becomes the

fastest decryption algorithm with an average of 0.009

sec. Using a small private key g caused Phony-RSA to

take less decrypting time than other variants. They are

following Phony-RSA is Somsuk-RSA which runs at an

average of 0.010 sec and uses a small private key .x

Then, RSA and ESF-RSA have the same running time

even though their private key and modulus differ.

Lastly, MRSA is the slowest algorithm because it uses

two modular exponentiations when decrypting.

5.0 CONCLUSION

This study conducted a comparative analysis of RSA

and selected variants of the cryptosystem. The

selected RSA variants are Somsuk-RSA, MRSA, ESF-RSA,

and Phony-RSA.

The first objective is to compare the running time

and memory consumption of key generation,

encryption, and decryption for the RSA cryptosystem

and four selected RSA variants cryptosystem. Using

single-precision multiplication (spm) and actual

running time via Maple, this study found that RSA is the

fastest cryptosystem for key generation, ESF-RSA for

encryption, and Phony-RSA for encryption-decryption.

MRSA is the slowest cryptosystem of all processes.

Then, for memory consumption, it is proven by analysis

that RSA and ESF-RSA consume the smallest memory

for key generation. ESF-RSA also uses the least memory

for encryption, whereas Phony-RSA uses the least

memory for decryption. Although Phony-RSA

consumes the smallest memory for decryption, it uses

the largest memory space for the key generation

process, whereas MRSA uses the largest for encryption

and decryption.

190 Mandangan et al. / Jurnal Teknologi (Sciences & Engineering) 86:4 (2024) 181–190

The second objective, which is to simulate the RSA

cryptosystem and four selected RSA variants

cryptosystem using Maple programming, is achieved

with several adjustments to the original algorithm. The

change was made to adapt the algorithm with Maple

coding since some algorithms cannot be translated

into Maple coding. Even though some modifications

were made, the modified algorithm still produces the

same output as the original algorithm. However, the

results of this study were acquired only using Maple

programming. As a result, instead of utilizing Maple,

various alternative programming languages such as

MATLAB, Java and C programming can be used to

improve the results.

Conflicts of Interest

The author(s) declare(s) that there is no conflict of

interest regarding the publication of this paper.

Acknowledgement

The authors extend their appreciation to Universiti

Malaysia Sabah for funding this work through

Research Grant SBk0508-2021.

References

[1] Canetti, R., Halevi, S. and Katz, J. 2004. Chosen-ciphertext

Security from Identity-based Encryption. Advances in

Cryptology-EUROCRYPT 2004: International Conference on

the Theory and Applications of Cryptographic Techniques,

Interlaken, Switzerland, May 2-6, 2004. Springer Berlin

Heidelberg. 23: 207-222.

Doi: https://doi.org/10.1007/978-3-540-24676-3_13.

[2] Barakat, M., Eder, C. and Hanke, T., 2018. An Introduction

to Cryptography. Timo Hanke at RWTH Aachen University.

1-145. Retrieved: 1 July 2023.

[3] Alqad, Z., Oraiqat, M., Almujafet, H., Al-Saleh, S., Al Husban,

H. and Al-Rimawi, S. 2019. A New Approach for Data

Cryptography. International Journal of Computer Science

and Mobile Computing. 8(9): 30-48.

[4] Saloma, A. 2006. Public-key Cryptography. 2nd edition.

Springer Science & Business Media.

[5] Pal, S. K. and Mishra, S. 2019. An TPM based Approach for

Generation of Secret Key. International Journal of

Computer Network and Information Security. 11(10): 45-50.

Doi: https://doi.org/10.5815/ijcnis.2019.10.06.

[6] Menezes, A. J., Van Oorschot, P. C. and Vanstone, S. A.

2018. Handbook of Applied Cryptography. CRC Press.

Doi: https://doi.org/10.1201/9781439821916.

[7] Asbullah, M. A. and Ariffin, M. R. K. 2014. Comparative

Analysis of Three Asymmetric Encryption Schemes based

Upon the Intractability of Square Roots Modulo N= p^ 2 q.

4th International Cryptology and Information Security

Conference. 24-26.

[8] Diffie, W. and Hellman, M. E. 2022. New Directions in

Cryptography. Democratizing Cryptography: The Work of

Whitfield Diffie and Martin Hellman. 365-390.

Doi: https://doi.org/10.1145/3549993.3550007.

[9] Hue, S. Y., Sarmin, N. H., Ismail, E. S. and Chin, J. J. 2020.

December. Easy Simple Factoring-based Digital Signature

Scheme. 2020 15th International Conference for Internet

Technology and Secured Transactions (ICITST). 1-4). IEEE.

Doi: https://doi.org/10.23919/ICITST51030.2020.9351341.

[10] Rivest, R.L., Shamir, A. and Adleman, L. 1978. A Method for

Obtaining Digital Signatures and Public-key Cryptosystems.

Communications of the ACM. 21(2): 120-126.

Doi: https://doi.org/10.1145/359340.359342.

[11] Al Hasib, A. and Haque, A. A. M. M. 2008. A Comparative

Study of the Performance and Security Issues of AES and

RSA Cryptography. 2008 Third International Conference on

Convergence and Hybrid Information Technology. IEEE. 2:

505-510.

Doi: https://doi.org/10.1109/ICCIT.2008.179.

[12] Somsuk, K. 2017, November. The New Equation for RSA's

Decryption Process Appropriate with High Private Key

Exponent. 2017 21st International Computer Science and

Engineering Conference (ICSEC). IEEE. 1-5.

Doi: https://doi.org/10.1109/ICSEC.2017.8443858.

[13] Somsuk, K. 2021. A New Methodology to Find Private Key of

RSA Based on Euler Totient Function. Baghdad Science

Journal. 18(2): 338-348.

Doi: https://doi.org/10.21123/bsj.2021.18.2.0338.

[14] Islam, M. A., Islam, M. A., Islam, N. and Shabnam, B. 2018. A

Modified and Secured RSA Public Key Cryptosystem based

on “n” Prime Numbers. Journal of Computer and

Communications. 6(03): 78.

Doi: https://doi.org/10.4236/jcc.2018.63006.

[15] Imam, R., Anwer, F. and Nadeem, M. 2022. An Effective and

Enhanced RSA based Public Key Encryption Scheme

(XRSA). International Journal of Information Technology.

14(5): 2645-2656. Doi: https://doi.org/10.1007/s41870-022-

00993-y

[16] Ismail, E. S., Zaharidan, M. Z. and Samat, F. A. I. E. Z. A. 2018.

ESF: Suatu Kriptosistem Mudah Ringkas Berasaskan Masalah

Pemfaktoran. Journal of Quality Measurement and Analysis

JQMA. 14(2): 81-89.

[17] Raghunandan, K. R., Aithal, G. and Shetty, S. 2019. Secure

RSA Variant System to Avoid Factorization Attack using

Phony Modules and Phony Public Key Exponent. Int J Innov

Technol Exploring Eng (IJITEE). 8(9).

Doi: https://doi.org/10.35940/ijitee.I7807.078919.

[18] Puneeth, B. R., Raghunandan, K. R., Bhavya, K., Shetty, S.,

NS, K. R., Dodmane, R. and Islam, S. M. 2022. Preserving

Confidentiality against Factorization Attacks using Fake

Modulus ($\zeta $) Approach in RSA and its Security

Analysis. 2022 IEEE 9th Uttar Pradesh Section International

Conference on Electrical, Electronics and Computer

Engineering (UPCON) IEEE. 1-6.

[19] Asbullah, M. A., Ariffin, M. R. K. and Mahad, Z. 2016. Analysis

on the Rabin-p Cryptosystem. AIP Conference Proceedings

AIP Publishing. 1787(1).

Doi: https://doi.org/10.1063/1.4968151.

[20] Vuillaume, C. 2003. Efficiency Comparison of Several RSA

Variants Master Thesis. Fachbereich Informatik der

TUDarmstadt.

