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Graphical abstract 
 

Abstract 
 

The Rivest-Shamir-Adleman (RSA) algorithm, known for its slow single-precision 

multiplication (spm) and overall running time, is not commonly employed to 

encrypt user data directly. As a result, several researchers have developed 

various RSA-based cryptosystems to enhance the algorithm's performance while 

maintaining security. This paper presents a comparative analysis of different 

variants of the RSA cryptosystem, focusing on five specific cryptosystems: RSA, 

Somsuk-RSA, Modified-RSA (MRSA), Easy Simple Factoring-RSA (ESF-RSA), and 

Phony-RSA. The methodology involves evaluating the theoretical running time 

and memory usage through single-precision multiplication (spm) measurements, 

while the actual running time is estimated using Maple programming. The 

research has two primary objectives. Firstly, they examined each algorithm of 

the RSA variants and analysed them according to the proposed methodology. 

Secondly, to determine which cryptosystem consumes the most time and 

memory for key generation, encryption, and decryption. The results indicate that 

ESF-RSA and RSA are the fastest in terms of key generation, ESF-RSA is the 

quickest for encryption, and Phony-RSA excels in decryption speed. Additionally, 

ESF-RSA demonstrates the lowest memory usage, whereas MRSA requires the 

highest memory allocation for all processes. 
 

Keywords: Cryptosystem, single precision, encryption, running time, memory 

consumption 

 

 

Abstrak 
 

Algoritma Rivest-Shamir-Adleman (RSA, dikenali dengan pendaraban 

berkepersisan-tunggal serta masa larian yang perlahan, lazimnya kurang 

digunakan secara terus untuk menyulitkan data pengguna. Natijahnya, para 

penyelidik telah membangunkan pelbagai sistemkripto berasaskan RSA untuk 

meningkatkan prestasi algoritma tersebut disamping mengekalkan tahap 

keselamatannya. Kertas kajian ini mencadangkan suatu analisis perbandingan 
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terhadap pelbagai varian sistemkripto RSA, dengan penumpuan khusus 

terhadap lima sistemkripto iaitu RSA, Somsuk-RSA, RSA-Terubahsuai (MRSA), RSA-

Pemfaktoran Mudah Ringkas (ESF-RSA), serta Phony-RSA. Metodologi yang 

digunakan adalah merangkumi penilaian terhadap masa larian dan 

penggunaan memori secara teori melalui ukuran pendaraban berkepersisan-

tunggal, disamping menentukan masa larian sebenar dengan menggunakan 

pengaturcaraan Maple. Kajian ini mempunyai dua objektif utama. Pertama, 

setiap algoritma varian RSA tersebut dinilai serta dianalisa mengikut metodologi 

yang dicadangkan. Kedua, untuk menentukan sistemkripto manakah yang 

menggunakan masa serta memori yang paling tinggi dalam proses penjanaan 

kekunci, penyulitan dan penyahsulitan. Keputusan yang diperolehi 

menunjukkan bahawa ESF-RSA dan RSA adalah sistemkripto yang terlaju bagi 

proses penjanaan kekunci, manakala ESF-RSA adalah varian yang terlaju bagi 

proses penyulitan dan Phony-RSA pula cemerlang dari segi kelajuan dalam 

proses penyahsulitan. Selain itu juga, ESF-RSA menunjukkan penggunaan 

memori terendah, manakala MRSA pula memerlukan peruntukan memori 

tertinggi untuk kesemua proses tersebut. 
 

Kata kunci: Sistemkripto, berkepersisan tunggal, penyulitan, masa larian, 

penggunaan memori 
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1.0 INTRODUCTION 
 

Cryptography word comes from a combination of two 

ancient Greek words, which are "Kryptos" and 

"graphene", with the meaning "hidden, secret" and "to 

write", respectively. The Concise Oxford English 

Dictionary defines cryptography as "the art of writing 

or solving codes" [1]. In general, cryptography is about 

constructing and analysing rules to secure 

communication between two parties with the 

presence of adversaries [2]. Cryptography and 

cryptanalysis are also linked to cryptology. Before the 

early 20th century, electronic devices became a 

popular medium to transport information. Since then, 

cryptography algorithms have been heavily based on 

mathematical theory and computer science practice 

[3].  

Before the modern age, cryptography was 

effectively compatible with encryption and 

decryption. Encryption is converting ordinary 

information called plaintext into an unintelligible form 

called ciphertext. Decryption is the reversed process 

of encryption that converts ciphertext back to 

plaintext [4]. Both sender (encryptor) and receiver 

(decryptor) share a "key" to perform their operation 

successfully. The sender used the same key to encrypt 

the plaintext and the receiver to decrypt the 

ciphertext to plaintext. The key must be kept secret by 

both as no matter how obscure the algorithm for 

encryption and decryption is, it is troublesome if the 

key is not safe [5]. 

The widespread use of computers and 

communications networks in the 1960s prompted a 

need from the commercial sector for tools to secure 

digital information and provide security services [6]. 

Before the mid-1970s, all cypher systems implemented 

symmetric key algorithms. The sender and the 

recipient used the same cryptographic key with the 

underlying algorithm and had to keep it secret. The 

key in every such system has to be shared in a secure 

method beforehand. However, this technique could 

be more practical and quickly becomes 

unmanageable when the number of parties grows 

when secure channels are unavailable or when keys 

are often changed (as is common cryptographic 

practice)[7]. 

[8] proposed public-key cryptography (also called 

asymmetric cryptography) in the mid-1970s. In this 

system, the sender and receiver are the two 

participants in the asymmetric encryption workflow; 

each has its own public and private keys. The sender 

acquires the public key of the recipient. The sender 

then encrypts the plaintext or regular, readable text 

using the receiver's public key, resulting in the 

ciphertext. The ciphertext is then sent to the receiver, 

which decrypts the ciphertext with their private key 

and returns it to plaintext [9]. 

[10] published a public-key cryptosystem named 

RSA (Rivest–Shamir–Adleman) 1977. An RSA user 

creates and publishes a public key based on two 

large prime numbers and an additional value. The 

prime numbers are kept secret. Anyone can encrypt 

messages via the public key, but they can only be 

decoded by someone who knows the prime numbers.  

The RSA algorithm has three steps: key generation, 

encryption and decryption. The RSA cryptosystem is 

defined as follows. 

 

Algorithm 1.1 RSA Key Generation Algorithm 

 

1: Choose distinct random prime ,p q such that 
12 , 2 .k kp q +   

2: Compute N pq= and ( ) ( 1)( 1).N p q = − −  

3: Choose e such that 3 ( )e N  and gcd( , ( )) 1.e N =  

4: Compute d such that 1 (mod ( )).ed N  

5: Return the public key ( , )N e  and the private key

( , ).N d  
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Algorithm 1.2 RSA Encryption Algorithm 

 

1: Choose integer 0 m N  such that gcd( , ) 1.m N =  

2: Compute  (mod ).ec m N  

3: Return the ciphertext .c  

 

Algorithm 1.3 RSA Decryption Algorithm 

 

1: Compute  (mod ).dm c N  

2: Return the plaintext .m  

 

 

RSA is a relatively slow algorithm in single-precision 

multiplication (spm) and actual running time. Because 

of this, it is not commonly used to encrypt user data 

directly [11]. Therefore, numerous variants of RSA-

based cryptosystems are created by numerous 

researchers to improve the algorithm without 

sacrificing security. Thus, we want to know which 

algorithm runs faster in key generation, encryption 

and decryption among RSA cryptosystem and 

selected RSA variants cryptosystem. In addition, we 

will analyse memory consumption for RSA and 

selected variants in key generation, encryption and 

decryption processes. 

After RSA was proposed, various researchers 

attempted to enhance RSA by improving its algorithm. 

Most of the time, researchers improve the RSA 

algorithm by applying various mathematical methods 

to the algorithm without changing the basic structure 

of RSA. Therefore, this section will review the RSA 

variants algorithms proposed before to improve the 

RSA cryptosystem. 

[12] presents the new equation for RSA's 

decryption process to speed up the computation 

time. Note that the private key is usually created with 

a higher value than the public key to avoid intrusion 

from unintended parties. However, with a large 

private key, the decryption procedure takes longer. 

When a high private key is used, the new exponent 

becomes a tiny number in the proposed method. The 

experimental findings demonstrate that the proposed 

approach can quickly complete the RSA decryption 

process when the private key is large, especially near 

the Euler value [13]. However, care must be taken for 

parameter selection to avoid insecurity due to some 

efficient brute force attack. 

[14] proposed a Modified RSA (MRSA) scheme that 

minimises the RSA system's key flaws. The main 

concern in most situations is that it is readily breakable 

due to the easy calculation of keys depending on N . 

Original RSA N is easily traceable since it is the only 

product of two prime integers. Therefore, MRSA used 

four large primes rather than two. The key generation 

of MRSA depends on a large factor value N ; thus, it 

needs a higher key generation time. Encryption and 

decryption also take longer than the RSA method 

when involving four primes [15].  

A new easy, and simple ESF-RSA public key 

cryptosystem was based on the factoring problem 

proposed by [16]. The new proposed cryptosystem 

requires no inverse modular operation during secret 

key generation. Moreover, if the public key and 

modulus in ESF-RSA are fixed, the size and value of the 

secret key are reduced. As a result, ESF-RSA 

encryption and decryption operations are more 

efficient than RSA [9]. 

[17] suggest an improved RSA method to 

overcome the limitation of an integer factorisation 

attack by increasing the complexities of the 

factorisation process by using a phoney/fake public 

key exponent f instead of e and a phoney modulus 

X instead of N . This method will provide better 

security than RSA by decreasing encryption and 

decryption time. Furthermore, [18] analyzes potential 

attacks that could be launched against the 

suggested system and deliberate on its efficacy. 

There are two main objectives of this research. 

Firstly, to compare the running time and memory 

consumption of key generation, encryption and 

decryption for the RSA cryptosystem and four selected 

RSA variants. Secondly, to simulate all the 

cryptosystems using Maple programming and 

capture the actual running time in seconds. This 

research is limited to the original RSA cryptosystem, 

Somsuk-RSA cryptosystem, Modified-RSA (MRSA) 

cryptosystem, Easy Simple Factoring-RSA (ESF-RSA) 

cryptosystem and Phony-RSA cryptosystem. 

This paper is organized in the following outline. In 

the next section, we provide the methodology of this 

study from both perspectives, single-precision 

multiplication and memory consumption. This 

comparative study's theoretical and experimental 

results are presented in Section 3, followed by a 

discussion in Section 4. Finally, Section 5 concludes the 

paper.  

 

 

2.0 METHODOLOGY 
 

The comparative analysis will be conducted both 

theoretically and experimentally in this study. The 

selected RSA variants cryptosystem are the RSA 

cryptosystem, Somsuk-RSA cryptosystem, Modified-

RSA (MRSA) cryptosystem, Easy Simple Factoring (ESF) 

cryptosystem, and the Phony-RSA cryptosystem. 

 

2.1 Single-precision Multiplication 

 

We use the single-precision multiplication (spm) 

measurement to determine the running time in this 

study. This method compared the complexity of each 

RSA-based cryptosystem's key generation, encryption 

and decryption running time. Moreover, all the 

algorithms of the cryptosystem will be run in Maple 

software to find out which one of the schemes is faster. 

Tables 2.1 and 2.2 will show how spm is applied in 

basic and modular arithmetic, respectively, as 

applied by [6] and [19]. 
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Table 2.1 Single-precision Multiplication for Basic Arithmetic 

 

Operation [6, 19] Single-precision Multiplication (spm) 

Addition 

/Subtraction 

Add or subtract for two bit integers 

is spm. 

Multiplication Multiply bit and  bit, the operation 

required ( 1)( 1) + + spm. Hence, 

multiplication for two bit integers is 
2 2 1 + + spm 

Squaring Multiply bit integers by itself requires
2

2

 +
spm. 

Division Division of bit by  bit integers 

requires ( )( 3)  − + spm. 

 
Table 2.2 Single-precision Multiplication for Modular 

Arithmetic 

 

Operation [6, 19] Single-precision Multiplication (spm) 

Modular 

Reduction 
Suppose a is an integer of  bit and

n is an integer of  bit integer such 

that .a n Let  (mod )a n perform a 

modular reduction, then this 

operation requires a ( 1)( ) + spm. 

Modular 

Multiplication 
Suppose , ,a b n are integers of  bit 

integers. Let  (mod )ab n performs a 

modular multiplication, and then this 

operation requires 
24 4 + spm. 

Modular Inversion A modular inversion 
1  (mod )a n−

is like 

30 times slower than a modular 

multiplication. 

Modular 

Exponentiation 
Suppose , ,a k n are integers of bit, 

bit and  bit, respectively. Let 

 (mod )ka n  be modular 

exponentiation. Then this operation 

requires 3( 1)( 1)( )  + +  spm. 

 

 

2.2 Memory Consumption 

 

[20] introduced a method to calculate memory 

consumption using system parameters and 

accumulators, which also appeared in [19]. The 

descriptions below will be assessed to analyze the 

memory usage of system parameters and 

accumulators in an RSA-based cryptosystem. 

 

System Parameter 

 

A system parameter refers to a predetermined value 

that may remain unchanged before any 

computational operations. This parameter is 

permanently stored in memory, typically embedded 

in the hardware. 

  

Accumulator 

 

An accumulator represents a constant or variable 

value associated with ongoing computational tasks, 

and its resulting value is temporarily stored in memory. 

After completing all necessary computations, the 

accumulator's data is removed. Essentially, the 

memory allocation for an accumulator is dynamically 

created and cleared. 

 

 

3.0 RESULTS 
 

The running time evaluation is used for each 

cryptosystem's key generation, encryption, and 

decryption. Each subsection will display each process 

running time evaluation results in spm term. Aside from 

that, additional results on the memory cost evaluation 

of each process will be reported. 

 

3.1 Running Time and Memory Cost Evaluation for 

RSA 

 

3.1.1 Running Time Estimation for RSA Key 

Generation, Encryption and Decryption 

 

Key Generation  

 

We recall that the algorithm for the key generation 

process for RSA is as in Algorithm 1.1. For Step 2, N is the 

product of two 2k -bit; thus, its running time is 
24 4 1k k+ + spm. Furthermore, ( )N is the product of two 

2k -bit with running time
24 4 1k k+ + spm. Step 4 

involves a modular inversion of two 4k -bit integers; the 

running time is 
21920 480k k+ spm. Hence, the total 

running time for RSA key generation is
21928 488 2k k+ +  

spm. 

 

Encryption 

 

We recall that the algorithm for the key generation 

process for RSA is as in Algorithm 1.2. From Step 1, we 

can see that the maximum size of m is 4k -bit. Next, in 

Step 2, the modular exponentiation of a 4k -bit integer 

with a 4k -bit integer is needed. The running time in 

Step 2 is
3 2192 96 12k k k+ + spm, and the total running 

time for RSA encryption.  

 

Decryption 

 

We recall that the algorithm for the key generation 

process for RSA is as in Algorithm 1.3. The maximum size 

for c is 4k -bit. Step 1, to compute m requires modular 

exponentiation of a 4k -bit integer with a 4k -bit 

integer. The running time for Step 1 is
3 2192 96 12k k k+ +

spm. Hence, the total running time for RSA decryption 

is also
3 2192 96 12k k k+ + spm. 

 

3.1.2 Memory Cost for RSA Key Generation, 

Encryption and Decryption 

 

Table 3.1, Table 3.2, and Table 3.3 show the memory 

consumption of the system parameters and the 

accumulators for RSA key generation, encryption, and 

decryption, respectively. 
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Table 3.1 Memory Cost for RSA Key Generation 
 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
, ,N e d  3 4k  12k  

Accumulators ,p q  2 2k  4k  

( )N  1 4k  4k  

  Total 20k  

 
Table 3.2 Memory Cost for RSA Encryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
,e N  2 4k  8k  

Accumulators ,c m  2 4k  8k  

  Total 16k  

Table 3.3 Memory Cost for RSA Decryption 
 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
,d N  2 4k  8k  

Accumulators ,c m  2 4k  8k  

  Total 16k  

 

 

3.2 Running Time and Memory Cost Evaluation for 

Somsuk-RSA 

 

Suppose we consider the Somsuk-RSA key generation, 

encryption, and decryption as follows. 

 

Algorithm 3.1 Somsuk-RSA Key Generation Algorithm 
 

1: Choose distinct random prime ,p q such that 
12 , 2 .k kp q +   

2: Compute N pq= and ( ) ( 1)( 1).N p q = − −  

3: Choose d such that
/ 2 /2 12 2 .k kd +   

4: Compute x such that ( ) .x N d= −  

5: Compute e such that 1 (mod ( )).ed N  

6: Return the public key ( , )N e  and the private key

( , ).N x  

 

Algorithm 3.2 Somsuk-RSA Encryption Algorithm 
 

1: Choose integer 0 m N  such that gcd( , ) 1.m N =  

2: Compute  (mod ).ec m N  

3: Return the ciphertext .c  

 

Algorithm 3.3 Somsuk-RSA Decryption Algorithm 
 

1: Compute 1( )  (mod ).xm c N−  

2: Return the plaintext .m  

 

 

3.2.1 Running Time Estimation for Somsuk-RSA Key 

Generation, Encryption and Decryption 

 

Key Generation  

 

Let's refer to the Somsuk-RSA key generation process 

in Algorithm 3.1. For Step 2, N is the product of two 2k

-bit; thus, its running time is 24 4 1k k+ + spm. 

Furthermore, ( )N is the product of two 2k -bit with 

running time
24 4 1k k+ + spm. Step 4 involves 

subtracting a 4k -bit integer with a 2k -bit integer, so 

the running time is 2k spm. Step 5 involves a modular 

inversion of two 4k -bit integers to obtain e ; then, the 

running time is
21920 480k k+ spm. Hence, the total 

running time for Somsuk-RSA key generation is
21928 492 2k k+ + spm. 

  

Encryption 

 

Let's refer to the Somsuk-RSA encryption process in 

Algorithm 3.2. From Step 1, we can see that the 

maximum size of m is 4k -bit. Next, in Step 2, the 

modular exponentiation of a 4k -bit integer with a 4k

-bit integer is needed to obtain c . The running time in 

Step 2 is
3 2192 96 12k k k+ + spm, and it is the total running 

time for Somsuk-RSA encryption. 

  

Decryption 

 

Let's refer to the Somsuk-RSA decryption process as in 

Algorithm 3.3. The maximum size for c is 4k -bit. In Step 

1, computing m requires two modular exponentiations 

of a 4k -bit integer with a 4k -bit integer. First, the 

running time to obtain 1 (mod )c n−  is
21920 480k k+ spm. 

Second, the running time to obtain
1( )  (mod )xc n−

require
3 296 72 12k k k+ + spm. Hence, the total running 

time for Somsuk-RSA decryption is
3 296 1992 492k k k+ +

spm. 

 

3.2.2 Memory Cost for Somsuk-RSA Key 

Generation, Encryption and Decryption 

 

Table 3.4, Table 3.5, and Table 3.6 show the memory 

consumption of the system parameters and the 

accumulators for Somsuk-RSA key generation, 

encryption, and decryption, respectively. 

 
Table 3.4 Memory Cost for Somsuk-RSA Key Generation 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
,N e  2 4k  8k  

x  1 k  k  

Accumulators ,p q  2 2k  4k  

( ),N d  2 4k  8k  

  Total 21k  

 
Table 3.5 Memory Cost for Somsuk-RSA Encryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
,e N  2 4k  8k  

Accumulators ,c m  2 4k  8k  

  Total 16k  
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Table 3.6 Memory Cost for Somsuk-RSA Decryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
N  1 4k  4k  

x  1 k  k  

Accumulators ,c m  2 4k  8k  

  Total 13k  

 

 

3.3 Running Time and Memory Cost Evaluation for 

MRSA 

 

Suppose we consider the MRSA key generation, 

encryption, and decryption as follows. 

 

Algorithm 3.4 MRSA Key Generation Algorithm 

 

1: Choose four distinct random prime , , ,w x y z such that 
12 , , , 2 .k kw x y z +   

2: Compute N wxyz= and ( ) ( 1)( 1)( 1)( 1).N w x y z = − − − −  

3: Choose e such that 1 ( )e N  and gcd( , ( )) 1.e N =  

4: Choose f such that1 ( )f N  and gcd( , ( )) 1.f N =  

5: Compute d such that 1 (mod ( )).ed N  

6: Compute g such that 1 (mod ( )).fg N  

7: Return the public key ( , , ),N e f the private key ( , , ).N d g  

 

Algorithm 3.5 MRSA Encryption Algorithm 

 

1: Choose integer 0 m N  such that gcd( , ) 1.m N =  

2: Compute (  (mod )) (mod ).e fc m N N  

3: Return the ciphertext .c  

 

Algorithm 3.6 MRSA Decryption Algorithm 

 

1: Compute (  (mod )) (mod ).d gm c N N  

2: Return the plaintext .m  

 

 

3.3.1 Running Time Estimation for MRSA Key 

Generation, Encryption and Decryption 

 

Key Generation  

 

Let's refer to the MRSA key generation process as in 

Algorithm 3.4. For Step 2, N is the product of four k -

bit. Thus, its running time is
26 8 3k k+ + spm. 

Furthermore, ( )N is the product of four k -bit with a 

running time also
26 8 3k k+ + spm. Step 5 and Step 6 

involve a modular inversion of two 4k -bit integers, and 

then the running time for both steps is
21920 120k k+

spm. Hence, the total running time for MRSA key 

generation is
23852 256 6k k+ + spm. 

  

Encryption 

 

Let's refer to the MRSA encryption process as in 

Algorithm 3.5. From Step 1, we can see that the 

maximum size of m is 4k -bit. Step 2 involves two 

modular exponentiations of integer with 4k -bit integer 

to obtain c . The running time in Step 2 is 

3 2384 192 24k k k+ + spm, and it is the total running time 

for MRSA encryption. 

Decryption 

Let's refer to the MRSA decryption process in 

Algorithm 3.6. The maximum size for c is 4k -bit. In Step 

1, computing m also required two modular 

exponentiations of a 4k -bit integer with a 4k -bit 

integer. The running time for Step 1 is 
3 2384 192 24k k k+ + spm. Hence, the total running time 

for MRSA decryption is also
3 2384 192 24k k k+ + spm. 

 

3.3.2 Memory Cost for MRSA Key Generation, 

Encryption and Decryption 

 

Table 3.7, Table 3.8, and Table 3.9 show the memory 

consumption of the system parameters and the 

accumulators for MRSA key generation, encryption, 

and decryption, respectively. 

 
Table 3.7 Memory Cost for MRSA Key Generation 

 

Category Register Name No. Of Register  Bits 

System 

parameters 
, , , ,N e d f g  5 4k  20k  

Accumulators , , ,w x y z  4 k  4k  

( )N  1 4k  4k  

  Total 28k  

 

Table 3.8 Memory Cost for MRSA Encryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
, ,e f N  3 4k  12k  

Accumulators ,c m  2 4k  8k  

  Total 20k  

 
Table 3.9 Memory Cost for MRSA Decryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
, ,N d g  3 4k  12k  

Accumulators ,c m  2 4k  8k  

  Total 20k  

 

3.4 Running Time and Memory Cost Evaluation for 

ESF-RSA 

 

Suppose we consider the ESF-RSA key generation, 

encryption, and decryption as follows. 

 

Algorithm 3.7 ESF-RSA Key Generation Algorithm 

 

1: Choose distinct random prime ,p q such that 
12 , 2 .k kp q +   

2: Compute .N pq=   

3: Find ,r s where /r s is simple fraction of ( 1) / ( 1).p q− −  

4: Compute w such that ( 1) 1 ( 1) 1.w s p r q= − + = − +  

5: Find u where | .u w  

6:Obtain v where .w uv=  

6: Return the public key ( , )N u  and the private key ( , ).N v  
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Algorithm 3.8 ESF-RSA Encryption Algorithm 
 

1: Choose integer 0 m N  such that gcd( , ) 1.m N =  

2: Compute  (mod ).uc m N  

3: Return the ciphertext .c  

 

Algorithm 3.9 ESF-RSA Decryption Algorithm 
 

1: Compute  (mod ).vm c N  

2: Return the plaintext .m  
 

 

3.4.1 Running Time Estimation for ESF-RSA Key 

Generation, Encryption and Decryption 
 

Key Generation  
 

Let's refer to the ESF-RSA key generation process as in 

Algorithm 3.7. For Step 2, N is the product of two 2k -

bit; thus, its running time is
24 4 1k k+ + spm. Step 3 

involves the division of a 2k -bit integer with a 2k -bit 

integer, so the running time is k spm. In Step 4, 

computing w involves the multiplication of two 2k -bit 

integers. Then the running time is 
24 4 1k k+ + spm. Step 

5 involves factorisation of w to find u since u is a divisor 

of w . However, no precise measurement for the 

factorisation process is available in the literature; 

therefore, it is represented as  spm. Step 6 requires 
23 9k k+ spm for division of 4k -bit with k -bit. Hence, the 

total running time for ESF-RSA key generation is
211 17 2k k+ + + spm. 

  

Encryption 
 

Let's refer to the ESF-RSA encryption process as in 

Algorithm 3.8. From Step 1, we can see that the 

maximum size of m is 4k -bit. Next, in Step 2, the 

modular exponentiation of a 4k -bit integer with a 4k

-bit integer is needed. The running time in Step 2 is 
3 248 60 12k k k+ + spm, and it is the total running time for 

ESF-RSA encryption. 

  

Decryption 
 

Let's refer to the ESF-RSA decryption process as in 

Algorithm 3.9. The maximum size for c is 4k -bit. In Step 

1, to compute m it required modular exponentiation of 

a 4k -bit integer with a 4k -bit integer with
3 2144 84 12k k k+ + spm. Hence, the total running time for 

ESF-RSA decryption is
3 2144 84 12k k k+ + spm. 

 

3.4.2 Memory Cost for ESF-RSA Key Generation, 

Encryption and Decryption 

 
Table 3.7 Memory Cost for ESF-RSA Key Generation 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
N  1 4k  4k  

u  1 k  k  

v  1 3k  3k  

Accumulators , , ,p q r s  4 2k  8k  

w  1 4k  4k  

  Total 20k  

Table 3.8 Memory Cost for ESF-RSA Encryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 

u  1 k  k  

N  1 4k  4k  

Accumulators ,c m  2 4k  8k  

  Total 13k  

 
Table 3.9 Memory Cost for ESF-RSA Decryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 

v  1 3k  3k  

N  1 4k  4k  

Accumulators ,c m  2 4k  8k  

  Total 15k  

 

 

3.5 Running Time and Memory Cost Evaluation for 

Phony-RSA 

 

Suppose we consider the Phony-RSA key generation, 

encryption, and decryption as follows. 

 

Algorithm 3.10 Phony-RSA Key Generation Algorithm 

 

1: Choose four distinct random prime , , ,w x y z such that 
12 , , , 2 .k kw x y z +   

2: Compute N wxyz= and ( ) ( 1)( 1)( 1)( 1).N w x y z = − − − −  

3: Find ( ) 1X N v= + where X N is a prime and .v  

4: Compute ( ) 1.X X = −   

5: Choose ,j g  such that 1 , 2 .kj g   

6: Compute private key exponent .d jg=  

7: Find public key exponent
1 (mod ( )).e d X−=  

6: Return the public key ( , )N u  and the private key ( , ).N v  

 

Algorithm 3.11 Phony-RSA Encryption Algorithm 

 

1: Choose integer 0 m N  such that gcd( , ) 1.m N =  

2: Compute  (mod ).uc m N  

3: Return the ciphertext .c  

 

Algorithm 3.12 Phony-RSA Decryption Algorithm 

 

1: Compute  (mod ).vm c N  

2: Return the plaintext .m  

 

 

3.5.1 Running Time Estimation for Phony-RSA Key 

Generation, Encryption and Decryption 

 

Key Generation  

 

Let's refer to the Phony-RSA key generation process as 

in Algorithm 3.10. For Step 2, N and ( )N is the product 

of four k -bit; thus, both running time is 
26 8 3k k+ + spm 

each. In step 3, X is the product of 4k -bit with k -bit, 

and the running time is
24 5 1k k+ + spm. In addition, 

there is also involved looping of primality testing to 

ensure X is prime and it represented as  spm. Finding
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d in Step 6 required 22 4 2k k+ + since it is the product 

of two k -bit. In step 7, e is the modular inversion of 5k

-bit; therefore, the process requires 
2480 240k k+ spm. 

In step 8, finding $f$ involves multiplying 5k -bit with k

-bit integer and required
25 6 1k k+ + spm. 

Consequently, the total running time for Phony-RSA 

key generation is 
2503 271 10k k + + + spm. 

  

Encryption 

 

Let's refer to the Phony-RSA encryption process as in 

Algorithm 3.11. From Step 1, we can see that the 

maximum size of m is 4k -bit. Next, in Step 2, the 

modular exponentiation of a 4k -bit integer with a 5k

-bit integer is needed. The running time in Step 2 is 
3 2360 150 15k k k+ + spm, and it is the total running time 

for Phony-RSA encryption.  

  

Decryption 

 

Let refer to the Phony-RSA decryption process as in 

Algorithm 3.12. The maximum size for c is 5k -bit. In Step 

1, to compute m  it required modular exponentiation 

of a 5k -bit integer with a 5k -bit integer with
3 275 90 15k k k+ + spm. Hence, the total running time for 

Phony-RSA decryption is 
3 275 90 15k k k+ + spm. 

 

3.5.2 Memory Cost for Phony-RSA Key Generation, 

Encryption and Decryption 

 
Table 3.10 Memory Cost for Phony-RSA Key Generation 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
X  1 5k  5k  

g  1 k  k  

f  1 6k  6k  

Accumulators , , ,w x y z  4 k  4k  

, ( )N N  2 4k  8k  

d  1 2k  2k  

e  1 5k  5k  

j  1 k  k  

  Total 32k  

 

Table 3.11 Memory Cost for Phony-RSA Encryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 
f  1 6k  6k  

X  1 5k  5k  

Accumulators ,c m  2 4k  8k  

  Total 19k  

 
Table 3.12 Memory Cost for Phony-RSA Decryption 

 

Category Register 

Name 

No. Of Register  Bits 

System 

parameters 

g  1 k  k  

X  1 5k  5k  

Accumulators ,c m  2 4k  8k  

  Total 14k  

 

4.0 DISCUSSION 
 

4.1 Overall Running Time in Single-precision 

Multiplication 

 

This section studies running time in terms of spm for RSA 

and its selected variants. Table 4.1 below shows all 

collected data from the section before.
 

Table 4.1 Running Time in Single Precision Multiplication. 

 

Cryptosystem Key Gen. (spm) Encryption (spm)  Decryption (spm) 

RSA 21928 488 2k k+ +  
3 2192 96 12k k k+ +  

3 2192 96 12k k k+ +  

Somsuk-RSA 21928 488 2k k+ +  
3 2192 96 12k k k+ +  

3 296 1992 492k k k+ +  

MRSA 23852 256 6k k+ +  
3 2384 192 24k k k+ +  

3 2384 192 24k k k+ +  

ESF-RSA 211 17 2k k+ + +  
3 248 60 12k k k+ +  

3 2144 84 12k k k+ +  

Phony-RSA 2503 271 10k k + + +  3 2360 150 15k k k+ +  
3 275 90 15k k k+ +  

 

 

RSA has the lowest spm measurement for a key 

generation, while MRSA has the highest. Even though 

ESF-RSA and Phony-RSA seem to have the lowest spm, 

both have  and  variables whose size is 

immeasurable. The higher spm required in MRSA is due 

to two modular inversion processes to find d and g

during the key generation. A modular inversion is like 

30 times slower than a modular multiplication. 

Next, ESF-RSA has the lowest spm for encryption, 

which is
3 248 60 12 ,k k k+ + compared to MRSA, which 

has the highest spm, which is 
3 2384 192 24k k k+ + spm. 

The lower spm for ESF-RSA to encrypt the plaintext was 

because the public key u is small. On the other hand, 

MRSA encryption involves two modular 

exponentiations causing the spm to be higher. For RSA 

and Somsuk-RSA, the spm reading shows the same 

measurement since both cryptosystems have the 

same encryption algorithm. Also, Phony-RSA is a 

second higher spm for encryption because it performs 

encryption using larger phony public key .f  

For decryption, Phony-RSA has five times lower spm 

than MRSA because Phony-RSA uses only a small 

phony private key g rather than MRSA, which has the 

largest spm measurement requiring two modular 

exponentiations to decrypt the ciphertext. RSA and 

ESF-RSA almost have the same spm measurement 
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because the algorithm for decrypting is the same but 

different in the private key size. 

 

4.2 Total Memory Cost and Actual Running Time 

 

This subsection analyses total memory cost in bits and 

actual running time in seconds for RSA and its selected 

variants. Table 4.2 below shows all collected total 

memory costs and running times for all cryptosystems 

from the chapter before.  

Actual running time is collected by running the 

algorithms in Maple software to acquire the average 

actual running time of the cryptosystems. Algorithms 

were run 200 times with constant m for each 

cryptosystem to acquire the average running time. 

 
 

Table 4.2 Total Memory Cost and Actual Running Time. 

 

Cryptosystem Key Gen. Encryption Decryption 

bits second bits second bits second 

RSA 20k  0.820 16k  0.026 16k  0.024 

Somsuk-RSA 21k  0.880 16k  0.028 13k  0.010 

MRSA 28k  7.276 20k  0.044 20k  0.043 

ESF-RSA 20k  1.163 15k  0.003 13k  0.025 

Phony-RSA 32k  4.901 19k  0.032 14k  0.009 

 

 

From the table above, Phony-RSA has the largest 

total memory consumption in key generation. Phony-

RSA key generation produces four types of key 

exponent and uses phony modulus X causing it to 

consume large memory. In addition, MRSA has a 

second larger total memory consumption, which is 

28k -bits; consequently, MRSA also generates four key 

exponents. In the key generation process, RSA and 

ESF-RSA have the same total memory consumption at 

20k -bits. RSA has the fastest key generation among 

other variants with 0.820 sec. ESF-RSA is slower than 

RSA since it involves finding .u  

Similarly, Phony-RSA is even slower than ESF-RSA 

caused by the looping of the primality testing 

algorithm to obtain .X  On the contrary, MRSA is the 

slowest algorithm to generate keys because MRSA 

generates four different keys rather than two. MRSA 

also has two modular inversions that make it even 

slower. 

Then, in encryption, ESF-RSA consumes the smallest 

memory at 13k -bit because of storing a smaller public 

key .u Following ESF-RSA are RSA and Somsuk-RSA, 

which have 16k -bit in total memory consumption due 

to RSA and Somsuk-RSA having the same size as the 

key and modulus .N However, MRSA must store two 

different public key exponents during the encryption 

process, making MRSA the largest total memory 

consumption at 20k -bits. Although slower during key 

generation, ESF-RSA is the fastest algorithm to encrypt 

plaintext. The smaller public key u caused the ESF-RSA 

to compute quicker with an average of 0.003 sec only. 

Nevertheless, MRSA has the slowest running time, 

almost 15 times slower than ESF-RSA for encryption, 

requiring two modular exponentiations. RSA and 

Somsuk-RSA have identical actual time taken 

because both have the same encryption algorithm. 

Using a larger public key f makes Phony-RSA come to 

the second slower algorithm. 

Besides, in decryption, MRSA also has the largest 

total memory consumption at 20k -bits because MRSA 

stored different private keys d and .g  Other RSA 

variants have slightly different sizes of total memory 

consumption because they vary in size of the private 

key and modulus N or .X Phony-RSA becomes the 

fastest decryption algorithm with an average of 0.009 

sec. Using a small private key g caused Phony-RSA to 

take less decrypting time than other variants. They are 

following Phony-RSA is Somsuk-RSA which runs at an 

average of 0.010 sec and uses a small private key .x

Then, RSA and ESF-RSA have the same running time 

even though their private key and modulus differ. 

Lastly, MRSA is the slowest algorithm because it uses 

two modular exponentiations when decrypting. 

 

 

5.0 CONCLUSION 

 
This study conducted a comparative analysis of RSA 

and selected variants of the cryptosystem. The 

selected RSA variants are Somsuk-RSA, MRSA, ESF-RSA, 

and Phony-RSA.  

The first objective is to compare the running time 

and memory consumption of key generation, 

encryption, and decryption for the RSA cryptosystem 

and four selected RSA variants cryptosystem. Using 

single-precision multiplication (spm) and actual 

running time via Maple, this study found that RSA is the 

fastest cryptosystem for key generation, ESF-RSA for 

encryption, and Phony-RSA for encryption-decryption. 

MRSA is the slowest cryptosystem of all processes. 

Then, for memory consumption, it is proven by analysis 

that RSA and ESF-RSA consume the smallest memory 

for key generation. ESF-RSA also uses the least memory 

for encryption, whereas Phony-RSA uses the least 

memory for decryption. Although Phony-RSA 

consumes the smallest memory for decryption, it uses 

the largest memory space for the key generation 

process, whereas MRSA uses the largest for encryption 

and decryption.  
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The second objective, which is to simulate the RSA 

cryptosystem and four selected RSA variants 

cryptosystem using Maple programming, is achieved 

with several adjustments to the original algorithm. The 

change was made to adapt the algorithm with Maple 

coding since some algorithms cannot be translated 

into Maple coding. Even though some modifications 

were made, the modified algorithm still produces the 

same output as the original algorithm. However, the 

results of this study were acquired only using Maple 

programming. As a result, instead of utilizing Maple, 

various alternative programming languages such as 

MATLAB, Java and C programming can be used to 

improve the results. 
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