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Abstract 
 

This research examines the vibrational response of a micro-

scale Euler beam made from two-directional functionally 

graded (2D-FG) materials and subjected to thermal effects. By 

employing a reformulated strain gradient elasticity (RSGE) 

approach, the equations of motion using Hamilton’s principle 

for clamped -clamped and clamped-simply boundary 

conditions are derived and solved them using Galerkin's 

approach. The investigation explores the impact of 

temperature, gradient index, and parameters length scale 

materials on the bidirectional graded microbeam's dynamic 

characteristics. Furthermore, the normalized frequency, as 

based on the current reformulated strain gradient elasticity 

microbeam model, consistently emerges as higher than that 

derived from the classical model. 

 

Keywords: Bidirectional FGM microbeam, RSGE, Galerkin 

method (GM), thermal effect 
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1.0 INTRODUCTION 
 

Functionally graded materials (FGMs), which possess 

highly effective mechanical and thermal properties, 

have received significant attention recently for use in 

many engineering applications, such as in aircraft, 

spacecraft, defense industries, electronics, and 

biomedical fields. [1], [2]. FGM can be created using 

a variety of material combinations, the most popular 

being metal-metal, metal-ceramic, ceramic-ceramic, 

or ceramic-polymer [3]. Properties of FGM are varied 

either in one direction [4] (i.e., thickness or 
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longitudinal) or bi-direction (in both thickness and 

longitudinal)[5]. 

Moreover, many microelectromechanical systems 

(MEMS) predominantly consist of continuous 

microstructures like microbeams, microplates, micro 

pipe [6], and micro arches [7]. Functionally graded 

nano/microscale structures represent an advanced 

category of small-scale systems with promising 

applications in both nano- and microtechnology [8], 

[9]. 

Indeed, certain studies have assumed that graded 

materials exhibit property gradients in two distinct 

directions. For instance, Şimşek [10]considered a 

graded Euler-Bernoulli beam where material 

properties vary along both axial and thickness 

directions, following a power law. Their findings reveal 

that, unlike homogeneous beams, 2D-FG beams 

display discernible buckling mode shapes. Moreover, 

shear effects exhibit heightened sensitivity in the 

behavior of double-clamped beam ends when 

compared to other types of beams. Avcar [11] 

formulated the motion equation for beams with 

varying end conditions, encompassing simply-

supported, clamped-pinned, fixed-fixed, and 

cantilever setups. This formulation was based on the 

Euler model and solved using the Newton-Raphson 

method. The outcomes of this study highlighted that 

the first three modes were influenced by both the 

geometric characteristics and the specific end 

conditions in play. Karamanli et al. [12]  analyzed the 

impact of variable Material Length Scale Parameters 

(MLSP) on the dynamic behavior of 2D FG porous 

microbeams. The outcomes of their study revealed 

that incorporating variable MLSP resulted in increased 

frequencies and buckling loads, accompanied by 

decreased displacements.   

The classical continuum theory often overlooks size 

effects, leading to inaccurate predictions for the 

behavior of micro/nano-structures [13]. Consequently, 

when studying the vibrational behaviors of small-sized 

FG nano/micro beams, non-classical theories such as 

MCST and MSGT were employed [14]. Based on 

modified couple stress (MCS) and shear deformable 

beam theories, [15] analyzed the nonlinear vibration 

of imperfect BDFG microbeams and found that 

increasing the length scale parameter results in a 

decrease in the nonlinear frequency ratio. Lam et al., 

[16] were pioneers in introducing the modified strain 

gradient theory (MSGT) as an advanced higher-order 

continuum theory. 

Akgöz and Civalek [17] investigated the buckling 

behavior of FG microbeams and concluded that the 

variance between the non-dimensional critical 

buckling loads obtained by MSGT, MCST, and classical 

continuity models gradually decreased because of 

the rise in the material length-to-thickness scale 

parameters. Ansari et al., [18] conducted an 

investigation into the free vibration behavior of micro-

sized beams. Their findings revealed that the natural 

frequencies obtained using the modified strain 

gradient theory (MSGT) were both higher and more 

accurate compared to the results obtained through 

the modified couple stress theory (MCST) as well as the 

classical theory (CT). The gradient index exhibits a 

slightly lesser influence on the dynamic behavior in the 

thickness direction compared to its effect in the length 

direction, as observed by Ref. [19]. 

Recently, static bending and free vibration of 

microbeams were investigated by [20], utilizing 

reformulated microbeam models and the general 

strain gradient elasticity theory (GSGET). This study 

revealed that microbeams based on non-classical 

theories, particularly GSGET, exhibit greater stiffness 

than models based on classical theory.  Based on 

(RSGET), the vibration governing equations for 

Timoshenko–Ehrenfest beam were acquired by [21]. 

The proposed analytical solution revealed a reduced 

deflection and a higher natural frequency in the non-

classical model utilized.  In Ref. [22], static and 

dynamic aspects of FG Bernoulli-Euler micro-size 

beams were conducted. The study concluded that 

the FG microbeam fundamental frequency based on 

(RSGT) was greater compared to that of (MCST). Yin et 

al., [23]  introduced analytical solutions for post-

buckling size-dependent EBT and TBT microbeams 

and examined the impact of beam thickness and 

other parameters on the post-buckling response. Yin 

et al., [24] examined the buckling behavior of size-

dependent microbeams using both exact solutions 

and the isogeometric analysis method. The study 

revealed significant variations in the critical buckling 

load obtained from RSGET, MCST, and classical theory 

as the length-to-thickness ratio (𝐿 ℎ⁄ ) decreased, and 

these variations increased as the strain gradient 

length–scale parameter (𝑙𝑠) increased. Yin et al. [25] 

introduced IGA for targeting micro-size Euler-Bernoulli 

beams, utilizing the (RSGT). They demonstrated the 

effectiveness of their approach by conducting a 

comparative analysis between their numerical results 

and established analytical solutions. Zhang and Gao 

[26] introduced the concept of the (RSGT) to study the 

free vibration of double simply Bernoulli beam. The 

authors incorporated three distinct material length 

scale parameters, providing a comprehensive 

framework to better understand the collaborative 

behavior of this modified new theory. 

On the other hand, the effect of temperature 

changes on the dynamic performance of structures 

made of functionally graded (FG) materials was 

investigated. In this regard, many studies have been 

conducted to explore the thermal and mechanical 

effects on the dynamic behavior of these 

structures[27]. Zanoosi [28] studied the effect of the 

thermal environment on the vibration response of 

porous (FG) microbeams considering (MSGT). 

Hamilton’s principle was acquired to get the simply 

supported beam governing equation and Navier's 

solution was employed to obtain the system's natural 

frequency. Tang and Ding [29] studied the hygro-

thermal nonlinear vibration of the bi-directional FG 

beam. Hamilton's principal and geometric 

nonlinearity with Bernoulli-Euler was employed to find 

https://www.tandfonline.com/author/Ansari%2C+R
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the governing equation. Their investigation revealed a 

significant finding: as the bi-directional FG indexes 

increased, the nonlinear frequency exhibited a 

decrease. In contrast, the nonlinear frequency 

increased with higher vibration amplitudes.  Utilizing 

the Modified Couple Stress Theory (MCST), [30] 

conducted an analysis of the thermal behavior 

exhibited by Functionally Graded (FG) microbeams. 

Their findings indicated that the impact of thermal 

effects was more pronounced in cases where the 

microbeams had higher values of the slenderness ratio 

(ℎ 𝑙⁄ ) ratio. In    Ref. [31] , the finite element (FE) method 

was utilized to analyze the response of a 2D-FG beam 

under the influence of a moving load. Their research 

integrated the Modified Couple Stress Theory (MCST) 

and Hamilton's principle to formulate the governing 

equations for the system. In Ref. [32], a study was 

conducted that focused on investigating the impact 

of end beam conditions on the thermal buckling load 

of a two-dimensional Functionally Graded (2D FG) 

beam. The researchers observed that the 

temperature-critical buckling for the Clamped-

Clamped beam configuration was higher compared 

to the Hinged-Hinged beam configuration. 

Additionally, they noted that the C-C beam exhibited 

the highest natural frequency in the pre-buckling 

zone, while the H-H beam showed the highest 

frequency in the post-buckling region. The Clamped-

Hinged beam configuration displayed intermediate 

behavior across all temperature ranges.  

On the other hand, the Galerkin method has been 

widely utilized by researchers due to its shorter 

computation time for disbanding governing equation 

for macro and micro structure [33]–[36].  

This paper aims to analyze the thermal vibrational 

behavior of two-directional functionally gradient non-

classical (FG) microbeams based on the reformulated 

strain gradient elasticity (RSGE) approach. The 

governing equations of motion are derived using 

Hamilton's principle with the two end conditions (i.e.,  

C-C and C-S). The resulting equations are solved using 

the Galerkin method, then the dimensional equations 

are converted to non-dimensional equations to 

obtain more comprehensive results. The obtained 

results from the 2D-FG microbeam are compared with 

the results of previous research. The effect of 

temperature, the material gradient index (𝑘),the axial 

gradient index (𝛽), and different material length scale 

parameters on non-dimensional natural frequencies 

of the 2D-FG RSGT microbeam model are discussed. 

 

 

2.0 METHODOLOGY 
 

The schematic diagram of (BDFG) microbeam is 

shown in Figure 1. The distance between the two 

supports is denoted as L, the cross-sectional width as  

b, and the thickness as h. The top and bottom beam 

surfaces are composed of ceramic and metal, 

respectively. 

 

 

 

 

 

 

 
 

 

 

   

 

 

 

 

 

 

 

 

 
 

Figure 1 Scheme diagram of double-clamped and 

clamped-simply supported ends of 2D-FG microbeam and 

cross-sections 
 

 

2.1 BDFG Microbeams Governing Equation 

 

The material properties used in this work vary 

continuously in two directions. The effective modulus 

of elasticity 𝐸(𝑥, 𝑧), effective density 𝜌(𝑥, 𝑧), and 

effective thermal expansion 𝛼(𝑥, 𝑧) coefficient in two- 

directions are given as follows [37]: 

 

𝐸(𝑥, 𝑧) = 𝑓1(𝑥)𝐸(𝑧) = 𝑓1(𝑥) [(𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+

1

2
)

𝑘
+ 𝐸𝑚]    (1) 

𝜌(𝑥, 𝑧) = 𝑓2(𝑥)𝜌(𝑧) = 𝑓2(𝑥) [(𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+

1

2
)

𝑘
+ 𝜌𝑚]     (2)                           

𝛼(𝑥, 𝑧) = 𝑓3(𝑥)𝛼(𝑧) = 𝑓3(𝑥) [(𝛼𝑐 − 𝛼𝑚) (
𝑧

ℎ
+

1

2
)

𝑘
+ 𝛼𝑚]    (3)   

 

In the x direction, the material properties change 

according to the exponential function, as given by [5]: 

 

                𝑓1(𝑥) = 𝑓2(𝑥) = 𝑓3(𝑥) = 𝑒𝛽
𝑥

𝐿                               (4) 

 
where 𝛽 represents the axial FG index, It should be 

noted that the characteristics of the mentioned 

material elements are not linear functions of 

temperature and can be described as follows [38]: 

 

      𝐻 = 𝐻0(𝐻−1𝑇−1 + 1 + 𝐻1𝑇 + 𝐻2𝑇2 + 𝐻3𝑇3)              (5) 

 

Here, as shown in Table 1, 𝐻0, 𝐻−1, 𝐻1, 𝐻2 𝑎𝑛𝑑 𝐻3 are the 

specific temperature (T, Kelvin) dependent material 

coefficients, where 𝑇 = 𝑇0 + ∆𝑇,  𝑇0 = 300𝐾. This work 

omitted the consideration of linear and non-linear 

temperature distributions [39]. 
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Table 1 Si3N4 and SUS304 coefficients properties vary with temperature [39]  

Material Property 𝑯−𝟏 𝑯𝟎 𝑯𝟏 𝑯𝟐 𝑯𝟑 𝑯 (T=300K) 

𝑆𝑖3𝑁4 𝐸(𝑃𝑎) 0 348.43e + 9 -3.070e-4 2.160e-7 -8.946e-11 3.2227e+11 

 𝜐 0 0.24 0 0 0 0.24 

 𝛼(1𝐾−1) 0 5.8723e-6 9.095e-4 0 0 7.4746e-06 

 𝜌(𝑘𝑔/𝑚3) 0 2370 0 0 0 2370 

𝑆𝑈𝑆304 𝐸(𝑃𝑎) 0 201.04e+9 3.079e-4 -6.534e-7 0 207.7877e+9 

 𝜐 0 0.3262 -2.002e-4 3.97e-7 0 0.3177 

 𝛼(1𝐾−1) 0 12.33e-6 8.086e-4 0 0 15.32e-6 

 𝜌(𝑘𝑔/𝑚3) 0 8166 0 0 0 8166 

 

 

2.2 Kinematic Relation 

 

This research adopts the (RSGET), which was first 

introduced by[26]. The advantage of this theory lies in 

its utilization of two scale parameters, one to capture 

the effect of couple stress and the other to account 

for the effect of strain gradient. The strain energy U 

based on the RSGET, considering an isotropic linear 

elastic body, is calculated as follows: 

 

        𝑈 =
1

2
∫ ∫ (𝜎𝑖𝑗𝜀𝑖𝑗 + 𝜏𝑖𝑗𝑘

𝑠 𝜂𝑖𝑗𝑘
𝑠 + 𝑚𝑖𝑗𝜒𝑖𝑗)𝑑𝐴𝑑𝑥

𝐴

𝐿

0
          (6) 

where the Cauchy stress tensor, 𝜎𝑖𝑗, the symmetric part 

of the double-stress tensor, 𝜏𝑖𝑗𝑘
𝑠 , and the couple-stress 

tensor, 𝑚𝑖𝑗, are given by 

            𝜎𝑖𝑗 = 𝜆(𝑥, 𝑧)𝜀𝑘𝑘𝛿𝑖𝑗 + 2𝜇(𝑥, 𝑧)𝜀𝑖𝑗                        (7) 

            𝜏𝑖𝑗𝑘
𝑠 = 2𝑙𝑠

2𝜇(𝑥, 𝑧)𝜂𝑖𝑗𝑘
𝑠                                          (8) 

            𝑚𝑖𝑗 = 2𝑙𝑚
2 𝜇(𝑥, 𝑧)𝜒𝑖𝑗                                          (9) 

where 𝜆 and 𝜇 are the Lamé parameters, the symbol 

𝛿𝑖𝑗 refers to the Kronecker delta. The quantities of 𝜀𝑖𝑗, 

𝜂𝑖𝑗𝑘
𝑠 , 𝜃𝑖 , and, 𝜒𝑖𝑗, are, respectively, expressed by: 

 

𝜀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)                       (10) 

𝜂𝑖𝑗𝑘
𝑠 =

1

3
(𝑢𝑖,𝑗𝑘 + 𝑢𝑗,𝑘𝑖 + 𝑢𝑘,𝑖𝑗)       (11) 

        𝜒𝑖𝑗 =
1

2
(𝜃𝑖,𝑗 + 𝜃𝑗,𝑖),     𝜃𝑖 =

1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗                      (12) 

 

The displacements of slender microbeams can be 

depicted using the Euler-Bernoulli theory as: 

 

               𝑢1 = −𝑧
𝜕𝑤(𝑥)

𝜕𝑥
 ,  𝑢2 = 0,  𝑢3 = 𝑤(𝑥)                  (13) 

 

The strain component, gradient second-order, and 

curve vector are obtained by inserting displacement 

Equation (13) into Equations (10-12). 

 

   𝜀𝑥𝑥 = −𝑧
𝜕2𝑤

𝜕𝑥2 ,   𝜂𝑥𝑥𝑥
𝑠 = −𝑧

𝜕3𝑤

𝜕𝑥3  ,   𝜂𝑥𝑥𝑧
𝑠 = −

1

3

𝜕2𝑤

𝜕𝑥2             (14a)                                                                                                 

         𝜒𝑥𝑦 = −
1

2

𝜕2𝑤

𝜕𝑥2 ,          𝜃𝑦 = −
𝜕𝑤

𝜕𝑥
                            (14d) 

 

As 𝜂𝑥𝑥𝑥
𝑠  is higher order than the displacement gradient 

𝜂𝑥𝑥𝑧
𝑠  [40], [41]. Because of this, 𝜂𝑥𝑥𝑥

𝑠  effect is ignored 

throughout the formulation[24] 

                     𝜎𝑥𝑥 = −𝐸(𝑥, 𝑧)𝑧
𝜕2𝑤

𝜕𝑥2
                                (15a) 

     𝜏𝑥𝑥𝑧
𝑠 = −

2

3
𝑙𝑠

2𝜇(𝑥, 𝑧)
𝜕2𝑤

𝜕𝑥2
  = −

1

3
𝑙𝑠

2 𝐸(𝑥,𝑧)

(1+𝑣)

𝜕2𝑤

𝜕𝑥2
                (15b) 

      𝑚𝑥𝑦 = −𝜇(𝑥, 𝑧)𝑙𝑚
2 𝜕2𝑤

𝜕𝑥2
 = −𝑙𝑚

2 𝐸(𝑥,𝑧)

2(1+𝑣)

𝜕2𝑤

𝜕𝑥2
                   (15c) 

The strain energy of the BDFG microbeam, resulting 

from the strain and stress, can be obtained using 

Equations (14), (15), and (6): 

 

𝑈𝑆 =
1

2
∫ (𝑓1(𝑥)𝐸𝐼𝑒𝑞(

𝜕2𝑤

𝜕𝑥2
)2 + 𝑓1(𝑥)

𝐸𝐴𝑒𝑞

2(1+𝑣)
𝑙𝑚

2 (
𝜕2𝑤

𝜕𝑥2
)2  +

𝐿

0

                 
1

3
𝑓1(𝑥)

𝐸𝐴𝑒𝑞

(1+𝑣)
𝑙𝑠

2(
𝜕2𝑤

𝜕𝑥2 )2) 𝑑𝑥                                   (16) 

 

The kinetic energy of bi-directional FG microbeam 

is given as: 

𝐾𝐸 =
1

2
∫ ∫ 𝜌(𝑥, 𝑧, 𝑡) (

𝜕𝑤

𝜕𝑡
)

2𝐿

0𝐴
𝑑𝑥𝑑𝐴  

                         = ∫ 𝑓2(𝑥) 𝜌𝐴𝑒𝑞 (
𝜕𝑤

𝜕𝑡
)

2
𝑑𝑥

𝐿

0
                       (17) 

 

Due to the thermal load applied to the microbeam, 

the external work is expressed as follows:   

 

𝑊 =
1

2
∫ 𝑁𝑇 (

𝜕𝑤

𝜕𝑥
)

2
𝑑𝑥

𝐿

0
,  𝛿𝑊 = ∫ (𝑁𝑇) (

𝜕𝑤

𝜕𝑥
)

𝐿

0
𝛿 (

𝜕𝑤

𝜕𝑥
) 𝑑𝑥      (18) 

 

In the case of rising temperatures, 𝑁𝑇 can be written 

as: 

𝑁𝑇 = ∫ 𝐸(𝑥, 𝑧, 𝑡) 𝛼(𝑥, 𝑧, 𝑡)
𝐴

 ∆𝑇𝑑𝐴 = ∆𝑇 𝑓1(𝑥)𝑓3(𝑥)𝑁̅𝑇  

            =    ∆𝑇 𝑓1(𝑥)𝑓3(𝑥)   𝐸𝑐𝛼𝑐𝐴𝛾2                                (19) 

 

Hamilton's precept general form is given as: 

 

                ∫ (𝛿𝐾𝐸 − 𝛿𝑈𝑆 + 𝛿𝑊)𝑑𝑡 = 0
𝑡2

𝑡1
                          (20) 

 

After inserting the expressions for strain energy (16), 

kinetic energy (17), and external work (18) into 

Hamilton's principal equation (20) and applying 

integration by parts, the dynamic equation of 
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bidirectional FG Euler microbeams is derived as 

follows.: 

 

[𝐸𝑙𝑒𝑞 +
𝐸𝐴𝑒𝑞

2(1+𝑣)
𝑙𝑚

2 +
2

3

𝐸𝐴𝑒𝑞

2(1+𝑣)
𝑙𝑠

2] (𝑓1(𝑥) (
𝜕4𝑤

𝜕𝑥4
) + 2𝑓1

′(𝑥) (
𝜕3𝑤

𝜕𝑥3
) +

𝑓1
′′(𝑥) (

𝜕2𝑤

𝜕𝑥2
)) + [𝑓1(𝑥)𝑓3(𝑥) 𝐸𝑐𝛼𝑐𝐴𝛾2∆𝑇] (

𝜕2𝑤

𝜕𝑥2
) +

[𝑓1(𝑥)𝑓3
′(𝑥) + 𝑓1

′(𝑥)𝑓3(𝑥)] 𝐸𝑐𝛼𝑐𝐴𝛾2∆𝑇 (
𝜕𝑤

𝜕𝑥
) +

                     𝑓2(𝑥) 𝜌𝐴𝑒𝑞
𝜕2𝑤

𝜕𝑡2
= 0                                         (21) 

 where,    

 

𝐸𝐼𝑒𝑞 = 𝑏 ∫ 𝐸(𝑧, 𝑡)𝑧2
ℎ
2

−ℎ
2

𝑑𝑧 = 𝑏 ∫ [(𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+

1

2
)

𝑘
+

ℎ
2

−ℎ
2

                 𝐸𝑚] 𝑧2𝑑𝑧 = 𝐸𝑐𝐼𝛾                                            (22) 

𝐸𝐴𝑒𝑞 = 𝑏 ∫ 𝐸(𝑧, 𝑡)
ℎ
2

−ℎ
2

𝑑𝑧 = 𝑏 ∫ [(𝐸𝑐 − 𝐸𝑚) (
𝑧

ℎ
+

1

2
)

𝑘
+

ℎ
2

−ℎ
2

                    𝐸𝑚] 𝑑𝑧 = 𝐸𝑐𝐴𝛼1                                           (23) 

𝜌𝐴𝑒𝑞 = 𝑏 ∫ 𝜌(𝑧, 𝑡)
ℎ
2

−ℎ
2

𝑑𝑧 = 𝑏 ∫ [(𝜌𝑐 − 𝜌𝑚) (
𝑧

ℎ
+

1

2
)

𝑘
+

ℎ
2

−ℎ
2

                       𝜌𝑚] 𝑑𝑧 = 𝜌𝑐𝐴𝛼                                            (24) 

 

Equation (4) is substituted into Equation (21), resulting 

in the following equation: 

[𝐸𝐼𝑒𝑞 +
𝐸𝑐𝐴𝛼1

2(1+𝜈)
𝑙𝑚

2 +
1

3

𝐸𝑐𝐴𝛼1

(1+𝜈)
𝑙𝑠

2] 𝑒
𝛽

𝐿
𝑥 ((

𝛽

𝐿
)

2 𝜕2𝑤

𝜕𝑥2 + 2
𝛽

𝐿

𝜕3𝑤

𝜕𝑥3 +

𝜕4𝑤

𝜕𝑥4
) + (𝑒

𝛽

𝐿
𝑥 . 𝜌𝑐𝐴𝛼)

𝜕2𝑤

𝜕𝑡2
+ (𝐸𝑐𝛼𝑐𝐴𝛾2∆𝑇. 𝑒

𝛽

𝐿
𝑥)

𝜕2𝑤

𝜕𝑥2
+

            (2
𝛽

𝐿
𝑒2

𝛽

𝐿
𝑥 . 𝐸𝑐𝛼𝑐𝐴𝛾2∆𝑇)

𝜕𝑤

𝜕𝑥
= 0                                (25) 

 

If 𝑙𝑠 = 0, then the MCST dynamic equation for the 

thermally loaded FG microbeam is as follows: 

 

[𝐸𝐶𝐼𝛾 +
𝐸𝐶𝐴𝛼1𝑙2

2(1+𝑣)
] . 𝑒

𝛽

𝐿
𝑥 [(

𝛽

𝐿
)

2
(

𝜕2𝑤

𝜕𝑥2
) + 2 (

𝛽

𝐿
) (

𝜕3𝑤

𝜕𝑥3
) + (

𝜕4𝑤

𝜕𝑥4
)] +

[𝑒2𝛽
𝐿

𝑥. 𝛼𝐶𝐴𝛾2∆𝑇] (
𝜕2𝑤

𝜕𝑥2
) + [2 (

𝛽

𝐿
) 𝑒2𝛽

𝐿
𝑥. 𝛼𝐶𝐴𝛾2∆𝑇] (

𝜕𝑤

𝜕𝑥
) +

        [𝑒
𝛽

𝐿
𝑥. 𝜌𝐶𝐴𝛼] (

𝜕2𝑤

𝜕𝑡2
) = 0                                              (26) 

 

When 𝑙𝑠 = 0 and 𝛽 = 0, the thermal vibration equation 

of the MCST FG microbeam is obtained, similar to the 

equation presented in Ref. [27]. 

For the 2D FG beam double-clamped and 

clamped-simply supported at both ends, the 

boundary condition equation is written as: 

 

• Clamped-Clamped (C-C) 

        
𝑤(0, 𝑡) =

𝜕𝑤(0,𝑡)

𝜕𝑥
= 0,             𝑎𝑡   𝑥 = 0

𝑤(𝐿, 𝑡) =
𝜕𝑤(𝐿,𝑡)

𝜕𝑥
= 0,              at   𝑥 = 𝐿

}                (27-a) 

 

• Clamped- Simply (C-S) 

 

       
𝑤(0, 𝑡) =

𝜕𝑤(0,𝑡)

𝜕𝑥
= 0,               𝑎𝑡   𝑥 = 0

𝑤(𝐿, 𝑡) =
𝜕2𝑤(𝐿,𝑡)

𝜕𝑥2 = 0,              at   𝑥 = 𝐿
}               (27-b) 

 

Dimensionless quantities are introduced as follows: 

𝜉 =
𝑥

𝐿
;    𝜂 =

𝑤

𝐿
;     𝜏 = 𝑡. √𝐿4 ∙  

𝜌𝑐 𝐴

𝐸𝑐 𝐼
 ;  𝑁𝑇

~ =
 𝐸𝑐 𝛼𝑐𝐴∆𝑇𝐿2

𝐸𝑐𝐼
        (28) 

 

A dimensionless equation of motion can be derived 

by substituting equation (28) into equation (25) 

 

[𝛾 +
6𝛼1

(1 + 𝜈)ℎ2 𝑙𝑚
2 +

4𝛼1

(1 + 𝜈)ℎ2 𝑙𝑠
2] 𝑒𝛽𝜉 (𝛽2

𝜕2𝜂

𝜕𝜉2 + 2𝛽
𝜕3𝜂

𝜕𝜉3

+
𝜕4𝜂

𝜕𝜉4
) + (𝛾2𝑁𝑇

~. 𝑒2𝛽𝜉)
𝜕2𝜂

𝜕𝜉2

+ (2𝛽𝑁𝑇
~𝛾2. 𝑒2𝛽𝜉)

𝜕𝜂

𝜕𝜉
 

                             +(𝛼. 𝑒𝛽𝜉)
𝜕2𝜂

𝜕𝜏2
= 0                               (29) 

 

Substituting equation (28) into equations (27), the 

dimensionless form of a clamped-clamped (CC) and 

clamped-simply (CS) boundary  conditions can be 

expressed as: 

      𝜂(0, 𝜏) = 𝜂(1, 𝜏) = 0,      
𝜕𝜂(0,𝜏)

𝜕𝜉
=

𝜕𝜂(1,𝜏)

𝜕𝜉
= 0          (30-a) 

and,     

     𝜂(0, 𝜏) = 𝜂(1, 𝜏) = 0,     
𝜕𝜂(0,𝜏)

𝜕𝜉
=

𝜕2𝜂(1,𝜏)

𝜕𝜉2 = 0          (30-b) 

 

2.3 Solution Method 
 

For discretizing the dynamic motion of a microbeam, 

the extended Galerkin is employed. The Galerkin 

technique involves selecting suitable weighting 

functions, represented as η, that fulfill the prescribed 

essential boundary conditions. These weighting 

functions are carefully chosen to ensure an accurate 

approximation of the transverse normalized 

displacement, denoted as 𝜂, using a series 

representation [35]: 

 

                    𝜂(𝜉, 𝑇) = ∑ 𝜑𝑟(𝜉)𝑞𝑟(𝑇)𝑛
𝑟=1                           (31) 

 

where 𝜑𝑟(𝜉) and 𝑞𝑟(𝑇) represents the shape function 

and generalized coordinates, respectively.  

The mode shape 𝝋𝒓(𝒙) standards and the frequency 

equation of C-C are  [42]:  

 

𝝋𝒓(𝒙) = 𝑐𝑜𝑠ℎ(𝑏𝑛 𝑥) − 𝑐𝑜𝑠(𝑏𝑛 𝑥) −

                   (
𝑐𝑜𝑠ℎ ( 𝑏𝑛𝐿)−𝑐𝑜𝑠(𝑏𝑛𝐿)

𝑠𝑖𝑛ℎ (𝑏𝑛𝐿)−𝑠𝑖𝑛(𝑏𝑛𝐿)
) (𝑠𝑖𝑛ℎ 𝑏𝑛 𝑥 − 𝑠𝑖𝑛 𝑏𝑛 𝑥)        (32) 

𝑐𝑜𝑠 𝑏𝑛 𝐿 𝑐𝑜𝑠ℎ 𝑏𝑛 𝐿 = 1 ;  

𝑤ℎ𝑒𝑟𝑒  

𝑏1 = 4.730, 𝑏2 = 7.853, 𝑏3 = 10.996, 𝑏4 = 14.137             (33) 

and for C-S boundary conditions are given as follows 

[42]: 

𝝋𝒓(𝒙) = 𝑐𝑜𝑠ℎ(𝑏𝑛 𝑥) − 𝑐𝑜𝑠(𝑏𝑛 𝑥) −

                  (
𝑐𝑜𝑠ℎ ( 𝑏𝑛𝐿)−𝑐𝑜𝑠(𝑏𝑛𝐿)

𝑠𝑖𝑛ℎ (𝑏𝑛𝐿)−𝑠𝑖𝑛(𝑏𝑛𝐿)
) (𝑠𝑖𝑛ℎ 𝑏𝑛 𝑥 − 𝑠𝑖𝑛 𝑏𝑛 𝑥)         (34) 

tan 𝑏𝑛𝐿 − tanh 𝑏𝑛𝐿 = 0; 

𝑤ℎ𝑒𝑟𝑒 𝑏1 =3.926, 𝑏2 =7.068, 𝑏3 =10.210, 𝑏4 =13.351    (35) 

By substituting equations mode shape (32) into 

equation (31), multiplying these equations by the 

residual function 𝜑𝑠(𝜉), and integrating the resulting 
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equations from ξ=0 to ξ=1, the system equation is 

obtained as follows [33] 

          [𝑀]{𝑞̈𝑟} + [𝐾]{𝑞𝑟} = 0,     𝑞𝑟 = (𝑞𝑟)𝑇                     (36) 

 

The microbeam stiffness [K] and mass [M] matrices 

equation are as follows [33]:         

       [𝑀] = 𝛼 ∫ 𝑒𝛽𝜉1

0
𝜑𝑟𝜑𝑠𝑑𝜉                                         (37-a) 

[𝐾] = 𝐴𝛽2 ∫ 𝑒𝛽𝜉1

0
𝜑𝑟

′′𝜑𝑠𝑑𝜉 + 2𝐴𝛽 ∫ 𝑒𝛽𝜉1

0
𝜑𝑟

′′′𝜑𝑠𝑑𝜉 +

𝐴 ∫ 𝑒𝛽𝜉1

0
𝜑𝑟

𝐼𝑉𝜑𝑠𝑑𝜉 +

   𝛾2𝑁𝑇
~ ∫ 𝑒2𝛽𝜉1

0
𝜑𝑟

′′𝜑𝑠𝑑𝜉2𝛽𝛾2𝑁𝑇
~ ∫ 𝑒2𝛽𝜉1

0
𝜑𝑟

′𝜑𝑠𝑑𝜉        (37-b) 

 

𝑖𝑛 𝑤ℎ𝑖𝑐ℎ; 𝐴 = 𝛾 +
6𝛼1

(1 + 𝜈)ℎ2 𝑙𝑚
2 +

4𝛼1

(1 + 𝜈)ℎ2 𝑙𝑠
2 

 

It is possible to minimize the 2nd order differential 

equation (37) to a first-degree differential equation as 

follows [33]: 

            𝐷𝑍̇(𝑇) + 𝐵𝑍(𝑇) = 0                                          (38) 

 

where, 𝐷 = [
𝑀 0
0 0

], 𝐵 = [
−𝑀 0

0 𝐾
], 𝑍(𝑇) = [

𝑞(𝑇)
𝑞̇(𝑇)

]       (39) 

 

Given 𝑍(𝑇) = 𝑄𝑒𝑖𝜔𝑇, the eigenvalue problem is as 

follows: 

              𝑌𝑄 − 𝑖𝜔𝐽 = 0                                                    (40) 

where J represents the identity matrix, and 𝑌 = −𝐷−1𝐵. 

Furthermore, ω denotes the natural frequency of 2-D 

FG microbeams. 

3.0 RESULTS AND DISCUSSIONS 
 

The BDFG-microbeam used in this work comprises 

Silicon Nitride Si3N4 (ceramics) and Stainless Steel 

SUS304 (metal) materials, where 𝑘 = 0, and  𝑘 = ∞, 

respectively. The geometric dimensions used in the 

numerical results are as follows: the beam width (𝑏 = 

2ℎ), the beam thickness ℎ = 5𝑙, and the beam length 𝐿 

= 20ℎ. The couple stress length parameter is (𝑙 =
17.6μm)[25]. Poisson’s ratio is a constant value of 𝑣 = 

0.24. 

Galerkin’s findings presented in this paper are 

validated by comparing them with the results of a Ref. 

[43] for an axial functionally graded (FG) microbeam 

under double-clamped (C-C) and clamped-simply 

supported (C-SS) composed of ceramic and metal 

with material properties as follows: 𝐸 = 210 GPa, 𝜌 =
7800 kg\𝑚3 for metal (SUS304), and 𝐸 = 390 GPa, 𝜌 =
3960 kg\𝑚3 for ceramic (Al2O3), by using MCST, as 

shown in Tables 2, 3. With an increase in the value of 

the material gradient index 𝑘, a decrease in the 

values of the non-dimensional natural frequencies 

was observed. The values of the fundamental 

frequencies in C-C case were higher than the C-SS 

condition, and this is due to the higher stiffness in the 

C-C. Additionally, a very close convergence was 

found between the results obtained.

 

Table 2 Comparison of the dimensionless natural frequency for C-C FG-microbeams 

 

F
re

q
u

en
cy

  
N

O
. 

𝐋 𝐡⁄ = 𝟐𝟎,  𝛃 = 𝟎, and  𝒍/𝒉 = 𝟎 

𝒌 = 𝟎 𝒌 = 𝟎. 𝟐 𝒌 = 𝟏 𝒌 = 𝟏𝟎 

Present ref. [43] Present ref. [43] Present ref. [43] Present ref. [43] 

𝝎𝟏 22.3733 22.3744 19.7545 19.7122 16.1034 15.8612 12.9342 12.8698 

𝝎𝟐 61.6728 61.6847 54.4539 54.3455 44.3896 43.7292 35.6537 35.4811 

𝝎𝟑 120.9034 120.9534 106.7515 106.5638 87.0213 85.7485 69.8955 69.5725 

𝝎𝟒 199.8594 200.0034 176.4657 176.2120 143.8507 141.7957 115.5408 115.0417 

Table 3 Present results comparison for (C-S) FG microbeams dimensionless frequency 

   

F
re

q
u

en
cy

 
 N

O
. 

𝐋 𝐡⁄ = 𝟐𝟎,  𝛃 = 𝟎, and  𝒍/𝒉 = 𝟎 

𝒌 = 𝟎 𝒌 = 𝟎. 𝟐 𝒌 = 𝟏 𝒌 = 𝟏𝟎 

Present ref. [43] Present ref. [43] Present ref. [43] Present ref. [43] 

𝝎𝟏 15.4182 15.4189 13.6135 13.5884 11.0974 10.9534 8.9134 8.8751 

𝝎𝟐 49.9649 49.9738 44.1164 44.0317 35.9627 35.4482 28.8852 28.7506 

𝝎𝟑 104.2477 104.2887 92.0454 91.8850 75.0332 73.9537 60.2666 59.9922 

𝝎𝟒 178.2697 178.3930 157.4031 157.1750 128.3113 126.4905 103.0595 102.6157 
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3.1 Influence of Gradient Index (𝒌) 

 

This subsection illustrates the impact of the power-law 

exponent and axial index on the natural frequencies 

of supported bidirectional functionally graded 

microbeams (BFGM), both with and without thermal 

effects. Figure 2 illustrates the variation in the 

fundamental frequency based on the classical theory 

(CT), (MCST), and (RSGET) for supported beams with 

varying thickness gradient indices. The results 

predicted by the classical theory can be derived from 

RSGET by setting 𝑙𝑚 = 0 and 𝑙𝑠 = 0, while MCST results 

can be obtained by setting 𝑙𝑠 = 0. The material-scale 

parameter of RSGET in this calculation is assumed to 

be 𝑙𝑠 = 0.3 𝑙𝑚. 

As depicted in the Figure 2, the dimensionless first 

frequency predicted by RSGET and MCST consistently 

surpasses that obtained from the classical model. This 

observation also explains the size-dependent 

behavior.  Furthermore, it is evident that the frequency 

of vibration decreases as the gradient exponent (k) 

increases. This decrease can be attributed to a 

reduction in microbeam stiffness as the beam's 

gradient index increases. 

Also, Table 4 and 5 presents the dimensionless 

natural frequencies using various gradient indexes (k) 

for (RSGET) and (MCST), considering double-clamped 

(CC) and clamped-simply (CS) end conditions. 

The data in this table highlights how the 

dimensionless frequency is influenced by the property 

gradient index (k). The findings suggest that the power 

index (k) has a contrasting effect on the natural 

frequencies: an increase in the gradient index leads 

to a decrease in frequencies, and vice versa. This 

frequency decrease can be attributed to the 

changing proportion of ceramic material relative to 

metal material within the beam as the gradient index 

rises. Because metal possesses a lower modulus of 

elasticity compared to ceramics, the beam's flexibility 

increases, resulting in reduced stiffness and 

subsequently lower natural frequencies. 
 

 

Figure 2 Comparison of  1𝑠𝑡 order frequency of 2D-FG-microbeam with different theories 

 

 

Table 4 First four dimensionless natural frequency with CC of different gradient index for L h⁄ = 20,  β = 0.5, 𝑙𝑚 = 17.6 𝜇𝑚, and 𝑙𝑠 =

0.3 𝑙𝑚 

Freq. 
No. 

Thermal 
Load Factor 

MCST RSGET 

𝒌 

0 1 3 5 0 1 3 5 

𝛚𝟏 

𝑵𝑻 = 𝟎 

24.0640 14.6372 12.4886 11.8718 24.5992 14.9626 12.7639 12.1330 

𝛚𝟐 66.8654 40.6714 34.7013 32.9875 67.7557 41.2129 35.1567 33.4190 

𝛚𝟑 131.5267 80.0022 68.2587 64.8877 132.7844 80.7672 68.8985 65.4930 

𝛚𝟒 217.7587 132.4535 113.0107 107.4295 219.4654 133.4916 113.8751 108.2465 

𝛚𝟏 

𝑵𝑻 = 𝟐 

23.3965 14.0287 11.9009 11.2875 23.9309 14.3536 12.1755 11.5480 

𝛚𝟐 65.9700 39.8587 33.9175 32.2088 66.8667 40.4061 34.3785 32.6458 

𝛚𝟑 130.5512 79.1182 67.4068 64.0415 131.8151 79.8889 68.0519 64.6521 

𝛚𝟒 216.7370 131.5283 112.1194 106.5443 218.4499 132.5721 112.9890 107.3665 
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Table 5 First four dimensionless natural frequency with CS of different gradient index for L h⁄ = 20,  β = 0.5, 𝑙𝑚 = 17.6 𝜇𝑚, and 𝑙𝑠 =

0.3 𝑙𝑚 

Freq. 
No. 

Thermal 

Load Factor 

MCST RSGET 

𝒌 

0 1 3 5 0 1 3 5 

𝛚𝟏 

 

𝑵𝑻 = 𝟎 

16.3260 9.9304 8.4727 8.0543 16.5863 10.0887 8.6015 8.1754 

𝛚𝟐 53.9970 32.8441 28.0229 26.6390 55.1218 33.5283 28.5858 27.1695 

𝛚𝟑 113.2726 68.8990 58.7853 55.8821 115.5771 70.3007 59.9375 56.9678 

𝛚𝟒 194.1263 118.0789 100.7461 95.7706 198.0103 120.4414 102.6868 97.5991 

𝛚𝟏 

 

𝑵𝑻 = 𝟐 

15.3226 9.0061 7.5760 7.1613 15.5616 9.1447 7.6848 7.2622 

𝛚𝟐 52.9222 31.8670 27.0802 25.7021 54.0608 32.5639 27.6546 26.2440 

𝛚𝟑 112.1660 67.8956 57.8182 54.9215 114.4886 69.3138 58.9856 56.0221 

𝛚𝟒 193.0018 117.0604 99.7648 94.7960 196.9056 119.4408 101.7220 96.6408 
 

 

Figure 3 illustrates the variation in the fundamental 

frequency based on (CT), (MCST), and (RSGET) for 

supported beams with varying thickness gradient 

indices. The results predicted by the classical theory 

can be derived from RSGET by setting 𝑙𝑚 = 0 and 𝑙𝑠 =
0, while MCST results can be obtained by setting 𝑙𝑠 =
0. The material-scale parameter of RSGET in this 

calculation is assumed to be 𝑙𝑠 = 0.3 𝑙𝑚. 

As depicted in the Figure 3, the dimensionless first 

frequency predicted by RSGET and MCST consistently 

surpasses that obtained from the classical model. This 

observation also explains the size-dependent 

behavior.  Furthermore, it is evident that the frequency 

of vibration decreases as the gradient exponent (k) 

increases. This decrease can be attributed to a 

reduction in microbeam stiffness as the beam's 

gradient index increases.  

The influence of the composition index (k) on the non-

dimensional natural frequencies is presented in Tables 

6, 7 and Figures 4 and 5 for C-C and C-S, respectively, 

with different size scale theories with three axial 

gradient parameters (β = 0.5, 1, 1.5). The findings 

indicate that as β increases, the dimensionless 

frequency decreases.  

Furthermore, the results reveal an inverse 

correlation between the gradient composition index 

(k) and the dimensionless frequency. 

Additionally, the outcomes obtained from the 

Reformulated Strain Gradient Elasticity (RSGE) theory 

exhibit higher values compared to those from the 

Modified Couple Stress (MCS) theory. This difference 

can be attributed to the higher stiffness predicted by 

the RSGE theory, resulting in higher frequencies.    

 

 
Figure (3): Comparison of  1𝑠𝑡 order frequency of 2D-FG-microbeam with different theories 

 

Table 6 First order frequency with CC of different gradient index for BDFG microbeams with L h⁄ = 20,  𝑁𝑇
~ = 2  and  𝑙𝑠 = 0.3𝑙𝑚 ,  

𝑙𝑚 ℎ⁄ = 0.2 

𝜷 

MCST RSGET 

𝒌 

0 0.5 1 3 0 0.5 1 3 

0 23.9336 16.4487 14.4043 12.2381 24.0547 16.5343 14.4788 12.2994 

0.5 23.8087 16.3221 14.2782 12.1134 23.9309 16.4087 14.3536 12.1755 

1 23.6664 16.1594 14.1113 11.9433 23.7904 16.2476 14.1883 12.0069 
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Table 7 First order frequency with CS of different gradient index for BDFG microbeams with L h⁄ = 20,  𝑁𝑇
~ = 2  and  𝑙𝑠 = 0.3𝑙𝑚 ,  

𝑙𝑚 ℎ⁄ = 0.2 

𝜷 

MCST RSGET 

𝒌 

0 0.5 1 3 0 0.5 1 3 

0 16.1454 11.0076 9.6062 8.1231 16.2306 11.0683 9.6592 8.1669 

0.5 15.2267 10.2810 8.9335 7.5090 15.3111 10.3417 8.9868 7.5533 

1 14.0217 9.2676 7.9733 6.6060 14.1072 9.3305 8.0290 6.6532 

 

  

 

Figure (4): 1𝑠𝑡 order frequency variation of C-C with various value β based on (a) MCST and (b) RSGET 

 

 

        

 

 

 

Figure (5): Variation of  1𝑠𝑡 order frequency of C-S with various value β based on (c) MCST and (d) RSGET 

 

 
3.2 Influence of Temperature Raise ∆𝐓 

 

Tables 8 and 9 present a visual representation of how 

temperature increase (∆T) affects the dimensionless 

frequencies of the functionally graded (FG) 

microbeam for both end conditions using here. These 

tables take into account both the (RSGET) and the 

(MCST). Utilizing the parameters L h⁄ = 20,   𝑘 = 1,  β =
0.5 and 𝑙𝑚 = 17.6 𝜇𝑚  , the calculations reveal that 

both the Modified Couple Stress Theory (MCST) and 

the reformulated strain gradient theory (RSGET) exhibit 

a reduction in dimensionless natural frequencies as 

the temperature rises. 

Additionally, Figures 6 and 7 illustrate the impact of 

changing temperatures on the system frequency of 

the functionally graded (FG) microbeam for (C-C) 

and (C-S) end conditions, respectively. These figures 

showcase how the system frequency changes at 

different values of the modified stress length scale 

(𝒍𝒎 𝒉⁄ ) and strain length scale (𝒍𝒔 𝒉⁄ ). The outcomes of 

the analysis point towards a trend where elevating the 

length scale ratio parameters leads to higher 

dimensionless natural frequencies.  
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Table 8 First four dimensionless natural frequencies with CC of thermal temperature raise for MCST and RSGET of microbeams 

  
F

re
q

u
en

cy
 

N
O

. 
MCST RSGET 

∆𝑇 

-80 0 40 80 -80 0 40 80 

𝝎𝟏 15.6558 14.6372 14.0972 13.5334 15.9836 14.9626 14.4221 13.8583 

𝝎𝟐 42.0760 40.6714 39.9491 39.2124 42.6082 41.2129 40.4958 39.7648 

𝝎𝟑 81.5509 80.0022 79.2161 78.4219 82.3062 80.7672 79.9862 79.1973 

𝝎𝟒 134.0838 132.4535 131.6306 130.8025 135.1123 133.4916 132.6737 131.8507 
 

 

 

Table 9 First four dimensionless natural frequencies with CS of thermal temperature raise for MCST and RSGET of microbeams  
 

F
re

q
u

en
cy

 

N
O
. 

MCST RSGET 

∆𝑇 

-80 0 40 80 -80 0 40 80 

𝝎𝟏 11.3719 9.9304 9.1131 8.2050 11.5593 10.0887 9.2540 8.3255 

𝝎𝟐 34.5125 32.8441 31.9762 31.0836 35.1777 33.5283 32.6716 31.7914 

𝝎𝟑 70.6486 68.8990 68.0070 67.1029 72.0230 70.3007 69.4233 68.5344 

𝝎𝟒 119.8696 118.0789 117.1731 116.2601 122.2014 120.4414 119.5515 118.6549 

 

 

  
 

 

Figure 6 Thermal load effect on 1𝑠𝑡  order frequency of C-C with various value of 𝑙𝑚 and 𝑙𝑠 based on (a) MCST and (b) RSGET 

 

 

 

 

 

Figure 7 First frequency variation of C-S with various value of 𝑙𝑚 and 𝑙𝑠 based on (c) MCST and(d) RSGET 
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4.0 CONCLUSION 

 
The vibrational behavior of a two-dimensional 

functionally graded (2D-FG) microbeam model was 

analyzed using the reformulated strain gradient 

elasticity (RSGE) approach, considering thermal 

effects. The governing differential equations were 

derived using the Hamiltonian principle and solved 

using Galerkin's method (GM) with double-clamped 

and clamped-simply boundary conditions. The paper 

focused on investigating the influence of various 

parameters, including the material gradient index (k), 

axial gradient index (β), temperature rise (ΔT), and the 

length scales of couple and strain stress 𝑙𝑚 𝑎𝑛𝑑 𝑙𝑠, on 

vibration frequency. The main conclusions of this 

study:1- Temperature significantly influences the 

vibrational behavior of 2D-FG microbeams; higher 

temperatures result in a reduction of the dimensionless 

natural frequency, 2- The non-dimensional 

frequencies calculated using the RSGE theory are 

consistently higher than those obtained from the MCS 

theory. This disparity can be attributed to the 

incorporation of two length scales, 𝑙𝑚 𝑎𝑛𝑑 𝑙𝑠, in the 

RSGE theory. 3- The natural non-dimensional 

frequency rises with increasing values of the modified 

couple (𝑙𝑚) and strain (𝑙𝑠) length scale parameters. 

Conversely, the frequency decreases with higher 

values of the axial gradient (β) and material gradation 

index (k).4- Results obtained under clamped-clamped 

(c-c) boundary conditions yield larger frequencies 

compared to those under clamped-simple (c-s) 

boundary conditions. Additionally, the variations 

became more pronounced as the beam thickness 

increased, owing to changes in stiffness based on 

boundary conditions. 5- The current study's findings 

align well with previous research, and the tabulated 

results can serve as a reference for future researchers 

to validate their findings. 
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