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Graphical abstract 
 

 

Abstract 
 

Multivariate synthetic control chart enables monitoring of multiple 

process variable simultaneously and hence, negate the inflation of false 

alarm rates as can be seen in an individual statistical chart. A robust 

version of the synthetic chart is necessary to mitigate the issue faces by 

the traditional multivariate synthetic chart, which is unable to produce 

reliable parameter estimates when Phase I data are contaminated. 

Therefore, this study proposed three new robust multivariate synthetic 

control charts (CMRCD, CWS and CWP) which were constructed via minimum 

regularized covariance determinant (MRCD) and winsorized modified 

one-step M-estimator (WMOM) for efficient process monitoring. The 

effectiveness of the proposed robust charts was evaluated in terms of 

false alarm rates by comparing their in-control performances to the 

traditional multivariate synthetic chart, Cmean, which is based on the 

sample mean. Via extensive simulation studies, the findings indicate that 

the proposed robust control charts outperform the traditional chart 

regardless of the dimensions or the level of contaminations in the dataset. 

The real data study further validates that the CMRCD, CWS and CWP perform 

better than the Cmean. Specifically, the three robust control charts show 

significant observations, illustrating better capability in monitoring river 

water quality when compared to the Cmean, i.e., the traditional 

multivariate synthetic chart.  

 

Keywords: Control Chart, False Alarm Rate, Multivariate Synthetic Control 

Chart, Robust Estimators, Statistical Process Control 

 

Abstrak 
 

Carta kawalan sintetik multivariat membolehkan pemantauan terhadap 

pemboleh ubah proses berganda secara serentak dan justeru 

menafikan kenaikan kadar penggera palsu seperti yang boleh dilihat 

dalam carta statistik individu. Versi teguh untuk carta sintetik adalah perlu 

untuk mengendalikan masalah yang dihadapi oleh carta multivariat 

tradisional, yang mana tidak mampu menghasilkan anggaran 

parameter yang boleh dipercayai apabila data Fasa 1 tercemar. Oleh 

yang demikian, kajian ini mencadangkan tiga carta kawalan sintetik 

multivariate baharu (CMRCD, CWS and CWP) yang dibina menerusi penentu 

kovarian teratur minimum (MRCD) dan penganggar M-satu langkah 

terubah suai terwinsor (WMOM) untuk pemantaun process yang cekap. 

Keberkesanan carta teguh yang dicadangkan dinilai dari segi kadar 

penggera palsu dengan membandingkan prestasi dalam kawalan carta 

ini dengan carta sintetik multivariat tradisional, Cmean, yang berasaskan 

kepada min sampel. Menerusi kajian simulasi yang meluas, dapatan 
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1.0 INTRODUCTION 
 

To ensure quality of an output, statistical process 

control (SPC) which comprises real time process 

monitoring tools that utilize statistical techniques can 

be applied to monitor and perform necessary control 

on a process quality characteristic. With the 

complexity of the processes nowadays, more than 

one quality characteristics are usually monitored to 

predict the quality of the outputs. Thus, a multivariate 

control chat is in need. Utilizing individual control 

charts for monitoring several related quality 

characteristics separately can easily inflate the overall 

false alarm rate in the process [1, 2]. This is mainly due 

to the interaction between the process quality 

characteristics that may be overlooked when they are 

monitored separately [3, 4].  

A simple multivariate control chart, Hotelling’s T2 

control chart (henceforth denoted by T2 chart) is 

effective for a large shift detection that may be 

caused by a small number of outliers [5]. However, T2 

chart is insensitive to moderate and small shifts in the 

process [6, 7]. According to Hawkins and Zamba 

(2003), if small shifts are failed to be detected in a 

process, a company will incur a larger total cost than 

a quick detection of large shifts in the long run [8]. To 

overcome the T2 chart’s limitation, Ghute and Shirke 

(2008) introduced a multivariate synthetic control 

chart that integrates the T2 chart with a conforming 

run length chart (CRL) [9]. This new chart improves the 

detection across a wider range of shifts [10]. However, 

like the T2 chart, this improved multivariate chart still 

relies on the normality assumption whereby the 

persistent use of the chart will lead to false signals in 

non-normally distributed data. To tackle this issue, 

Khoo et al. (2009) proposed a heuristic approach via 

weighted variance (WV) method [11]. However, this 

approach only works for skewed distributions since the 

WV method decomposes a skewed process 

distribution into two symmetrical distributions. As such, 

the issue of non-normality such as inflated false alarm 

rates remain in the case of a symmetrical distribution 

with heavy tails.  

Using robust statistics instead of the sample mean 

proves to be a superior choice for monitoring changes 

in non-normal data via the application of control 

charts [12]. In one of the studies by Abdul-Rahman et 

al. (2021), an application of robust estimators, 

specifically modified one-step M-estimators (MOM) 

and winsorized modified one-step M-estimator 

(WMOM) in the univariate synthetic control chart 

leads to an enhanced robustness of the chart in the 

context of heavy-tailed distributions upon small 

process shifts [13]. Therefore, the robustness of the 

multivariate synthetic control chart can certainly be 

expected to be improved by the application of robust 

estimators in reducing the impact of the outliers which 

are the main cause of non-normality.  

In this paper, three new robust control charts were 

constructed via minimum regularized covariance 

determinant (MRCD) and WMOM estimators [14, 15]. 

Their in-control robustness to the normality assumption 

was evaluated using the false alarm rate. Their in-

control performances were also compared with 

traditional multivariate synthetic control chart which is 

based on the sample mean. In the following section, 

explanations for the chosen location estimators as well 

as procedures involved in constructing the proposed 

robust multivariate synthetic charts are given. 

 

 

2.0 METHODOLOGY 
 

2.1 Descriptions of Robust Estimators 

 

Two robust location measures namely, the MRCD and 

WMOM, were applied in the construction of the 

proposed robust multivariate synthetic control charts. 

Meanwhile, the sample mean was employed for 

comparison purposes. 

 

• MRCD: The MRCD is a location measure that has 

been extended from the generalized minimum 

covariance determinant (MCD) to a high 

dimension by Boudt et al. (2020) [14]. Notably, the 

MCD poses the highest possible breakdown point 

value, i.e., 0.5 [16, 17]. In MRCD, the scatter matrix 

is formed as a convex blend of a target matrix and 

the sample covariance of the subsets. This 

estimator is dimension independent, (i.e., able to 

produce an accurate estimate even when the 

dimensions exceed the sample size, n) while still 

menunjukkan bahawa carta kawalan teguh yang dicadangkan 

mengatasi prestasi carta tradisional tanpa mengira dimensi atau tahap 

pencemaran di dalam set data. Kajian data sebenar seterusnya 

mengesahkan bahawa CMRCD, CWS and CWP berprestasi lebih baik 

daripada Cmean. Secara khususnya, tiga carta kawalan teguh ini 

mempamerkan pemerhatian yang bererti, menggambarkan 

keupayaan yang lebih baik dalam memantau kualiti air sungai apabila 

dibandingkan dengan Cmean, iaitu carta sintetik multivariat tradisional. 

 

Kata kunci: Carta Kawalan; Kadar Penggera Palsu; Carta Kawalan 

Sintetik Multivariat; Penganggar teguh; Kawalan Proses Statistik 
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maintaining the robustness of the MCD estimator 

[14]. Studies by Bulut (2020) and Schreurs et al. 

(2021) affirm the MRCD's effectiveness in outlier 

detection, even for high-dimensional data, 

highlighting its value for methodological 

improvement [18, 19]. The MRCD formula is shown 

below: 

 

Σ̂𝑀𝑅𝐶𝐷 =
𝑎𝑟𝑔𝑚𝑖𝑛

𝐻𝜖ℋ
(𝑑𝑒𝑡(Σ̂𝑟𝑒𝑔

𝐻 )) 

 
• WMOM: The WMOM as introduced by Haddad et 

al. (2013), extends the capabilities of its 

predecessor, MOM, to effectively mitigate the 

effect of outliers [15]. Similar to the MOM, the 

WMOM has 50% breakdown point due to the use 

of the sample median in trimming the outliers, but 

rather than discarding the outliers, it replaces the 

supposedly trimmed observations with the highest 

and lowest values from the remaining data. The 

WMOM formula is shown below: 

 

𝜃𝑗 =
∑ 𝑋𝑖(𝑗)

𝑛𝑗

𝑖

𝑛𝑗
 

Where:  

Xi(j)= the ith observations in sample j (following the 

substitution of trimmed values), 

nj = number of observations for sample j. 

 

It is noted that: 

 

𝑋𝑖(𝑗) = {

𝑋(𝑖1+1)𝑗 , 𝑖𝑓 (𝑋𝑖𝑗 − �̂�𝑗) < −2.24 (𝑀𝐴𝐷𝑛𝑗)

  𝑋(𝑖)𝑗 , 𝑖𝑓 − 2.24 (𝑀𝐴𝐷𝑛𝑗) ≤ (𝑋𝑖𝑗 − �̂�𝑗) ≤ 2.24 (𝑀𝐴𝐷𝑛𝑗)

 𝑋(𝑛𝑗−𝑖2)𝑗 , 𝑖𝑓 (𝑋𝑖𝑗 − �̂�𝑗) > 2.24 (𝑀𝐴𝐷𝑛𝑗)

 

 

Where: 

𝑖1 = number of observations 𝑋𝑖𝑗 such that (𝑋𝑖𝑗 –�̂�𝑗) 

< -2.24(𝑀𝐴𝐷𝑛𝑗)             

𝑖2 = number of observations 𝑋𝑖𝑗 such that (𝑋𝑖𝑗 –�̂�𝑗) 

> 2.24(𝑀𝐴𝐷𝑛𝑗) 

 

Where: 

    𝑀𝐴𝐷𝑛 = 𝑏 𝑚𝑒𝑑𝑖|𝑥𝑖 − 𝑚𝑒𝑑𝑗𝑥𝑗|   

 

Typically, b is set at 1.4826 to maintain the 

estimator’s consistency under normality 

• Mean: The sample mean provides the most precise 

estimation with the smallest standard error in 

normal distribution scenarios. However, it has a 

breakdown point of 0 which makes the 

computation easily affected by outliers. Sample 

mean formula is shown below: 

 

�̅� =
Σ𝑖

𝑛𝑋𝑖

𝑛
 

 

Two robust location estimation techniques, the 

MRCD and WMOM, play a key role in estimating the 

location vector within the framework of the 

multivariate synthetic control charting when the 

process mean is unknown. The MRCD generates its 

own covariance matrices. Meanwhile, in this study, 

the WMOM was paired with: 

(i) the product of the percentage bend correlation 

(𝜌𝑝) and the highly robust scale estimator Qn; and  

(ii) the product of Spearman's rho (𝜌𝑠) and Qn.  

Combining these two location measures with their 

corresponding covariance matrix estimation methods 

leads to three newly proposed robust multivariate 

synthetic control charts. These robust charts and their 

corresponding estimators are presented in Table 1. 

 
Table 1 The proposed robust control charts with their 

corresponding estimators 

 
Location  

Vector 

Covariance 

Matrix 

Chart’s  

Notation 

MRCD 

(�̅�𝑴𝑹𝑪𝑫) 

MRCD 

(𝑆𝑀𝑅𝐶𝐷) 
𝐶𝑀𝑅𝐶𝐷 

WMOM 

(�̅�𝑾) 

Percentage Bend 

Correlation x Qn 

(𝜌𝑝 x Qn) 
𝐶𝑊𝑃 

Spearman rho x 

Qn 

(𝜌𝑠 x Qn) 

𝐶𝑊𝑆 

 

 

2.2 Procedures in the Study 

 

The construction of the multivariate synthetic control 

charts involves two phases namely, Phase I and Phase 

II. In Phase I, process parameters were estimated using 

historical data and subsequently, they were used to 

construct control limits for Phase II process monitoring. 

Process monitoring in Phase II entails continuous 

monitoring of prospective samples. Due to challenges 

in collecting multivariate data in rational subgroups, 

individual observations were used in Phase II for 

process monitoring and hence, in evaluating the 

newly proposed robust control charts.  

The structure of the traditional multivariate 

synthetic control chart combines salient features from 

the T2 and CRL charts. Notably, the estimation of 

optimal parameters, CL (for T2 chart) and L (for CRL 

chart), were determined in Phase I. Both CL and L are 

the control limits of the respective charts whereby their 

optimal values were generated based on the user-

specified false alarm rate and a shift expected to 

occur in the process.  

In this study, the robustification process started by 

substituting classical location and covariance matrix 

with their robust counterparts in the T2 chart. The T2 

statistic is defined as below [20]:  

 

𝑇2 = (𝑋𝑖 − 𝜇)𝑇𝛴−1(𝑋𝑖 − 𝜇) 

 

where i = 1,…,n, with ith ordered observations, µ is the 

mean and 𝛴−1
 is inversed matrix of pooled variance-

covariance matrix with p-dimension. In this study, for 

each robust multivariate synthetic control chart, the 

term μ and 𝛴−1
 were estimated using robust 

estimators and the corresponding robust covariance 

matrix as displayed in Table 1. 
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Figure 1 Flowchart to derive optimal parameters for robust 

control charts 

 

 

The construction of the robust control charts starts 

with the determination of optimal parameters (i.e., CL 

and L) following the process presented in Figure 1. 

Table 2 lists the optimal values of the CL and L derived 

in the study via the R statistical software. Similarly, the 

iterations involve in Phase I and Phase II procedures as 

depicted in Figure 2 were generated using the R 

software.  

 
Table 2 The proposed control charts with their corresponding 

estimators 

 

  
𝑪𝒎𝒆𝒂𝒏 𝑪𝑴𝑹𝑪𝑫 𝑪𝑾𝑺 𝑪𝑾𝑷 

p n CL  L  CL  L  CL  L  CL  L  

2 

10 5.31 2 27.24 5 6.01 2 7.22 4 

25 4.13 2 7.21 3 4.63 3 4.61 3 

50 4.17 4 6.08 4 3.90 3 3.99 3 

100 3.80 3 4.75 3 3.94 3 4.00 3 

200 3.80 2 5.10 5 3.75 2 3.87 3 

500 3.99 4 4.79 6 4.07 4 4.13 4 

10 

50 21.09 4 39.68 3 18.96 2 19.73 3 

100 16.81 3 23.09 3 16.39 3 16.82 3 

200 15.27 3 17.99 2 15.07 2 15.54 3 

500 13.83 2 15.50 2 13.84 2 13.98 2 

15 

100 24.52 2 37.17 2 24.36 2 24.51 2 

200 22.27 2 27.32 2 21.69 2 22.01 2 

500 20.52 2 22.67 2 20.28 2 20.58 2 

 

 

 

 
Note: m = number of iterations in Phase I, k = number of Iteration in 

Phase II, OOC = out of control sample 

 

Figure 2 Flowchart of Phase I & Phase II procedures 

 

 

2.3 Variables Manipulated 

 

Four variables were manipulated to establish different 

scenarios that include dimensions, i.e., the number of 

quality characteristics (p), the number of sample size 

(n), the proportion of contamination (ε) and the mean 

shifts (𝛿1). Table 3 presented the variable manipulation 

setting for each of the variables. 

 
Table 3 The variables manipulation in the study 

 
Quality 

Characteristics 

(p) 

Sample 

Size 

(n) 

Proportion of 

Contamination 

(ε) 

Mean 

Shifts 

(𝜹1) 

 

2 

10, 25, 

50, 100, 

200, 500 

10%, 20% 

0.25, 

1.25, 

2, 5 

10 50, 100, 

200, 500 10%, 20% 

0.25, 

1.25, 

2, 5 

15 100, 200, 

500 10%, 20% 

0.25, 

1.25, 

2, 5 

 

 

As the aim of this study is to compare the in-control 

performances between the newly proposed robust 

charts and the traditional multivariate synthetic chart, 

the pairing of p and n is restricted to values that satisfy 

n > 5p. This is to ensure that the estimation of the 

covariance matrix can be executed for all charts 

under investigation. Thus, avoiding the singularity issue.  
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3.0 RESULTS AND DISCUSSION 
 

To assess the robustness of the proposed multivariate 

synthetic control charts under an in-control condition, 

Bradley’s stringent criterion of robustness was applied 

where a chart is deemed robust if it can maintain the 

false alarm rate (FAR) within this range of interval:  

0.9𝛼 ≤ �̂� ≤ 1.1𝛼  where 𝛼  is the user-specified FAR. In 

this study, α is set at 0.05 and thus, a chart is 

considered robust if it can yield a value of FAR within 

this interval: [0.045, 0.055]. 

 

3.1 Simulation Study Analysis 
 

The simulation results shows that the three newly 

proposed robust multivariate synthetic control charts, 

i.e., CMRCD, CWS and CWP, perform better than the 

traditional chart, Cmean, across the majority of the 

simulation’s scenario. In the bivariate case, i.e., when 

p = 2, the proposed robust control charts overtake the 

traditional control chart’s performance when the 

mean shift, 𝛿1, is large. The difference of the FAR values 

for the Cmean when compared to the Bradley’s 

stringent criterion is getting larger when the value of 𝛿1 

increases. This is observed for all n. Meanwhile, the 

CMRCD, CWS and CWP yield the FAR values close to 

Bradley’s stringent criteria. Comparing the three newly 

proposed robust control charts, the CMRCD is the best in 

controlling the FAR. Unlike other charts observed in the 

study, the CMRCD does not deviate much from the 

Bradley’s stringent robust criteria when the value of 𝛿1 

increases. This is true for all n, especially when ε = 10%, 

as shown in Figures 3 – 4 (focusing on the graphs for p 

= 2).  

 
 

Figure 3 FAR when contamination rate at 10% 

 

 
 

Figure 4 FAR when contamination rate at 20% 

 

 

At the same level of contamination, i.e., ε = 10%, 

when p increases, the CMRCD continues to outperform 

the Cmean, as illustrated in Figure 3 (focusing on the 

graph for p =10). It is evident that the FAR values for 

the CMRCD have a smaller gap to the Bradley’s stringent 

robust criteria when compared to the rest of the 

charts. However, the CMRCD does not perform as 

expected when the proportion of the contamination, 

ε, is getting larger as shown in Figure 4, for p =10. Under 

this scenario, the Cmean is yielding the FAR values 

closest to the robust interval. 

For p =15 and ε = 10%, the CMRCD and Cmean perform 

comparably. Yet, upon dire contamination (ε = 20%), 

the FAR differences between the robust chart and the 

traditional chart are quite significant whereby the 

CMRCD yields the FAR value that slightly deviate from 

the Bradley’s stringent robust criteria. 

 

3.2 Real Data Application 

 

In this study, the proposed robust control charts were 

also applied on water quality data retrieved from 

http://smg.asma.com.my:98/. The system focuses on 

monitoring the river water quality at Kampung Medan, 

Selangor. Five water quality characteristics were 

identified which include chemical oxygen demand 

(COD), ammoniacal nitrogen (NH3N), potential of 

Hydrogen (pH), dissolve oxygen (DO) and total 

suspended solids (TSS). In general, water quality can 

be categorized into five levels which are Class I to 

Class IV. The river water quality is considered polluted 

when a measurement falls in Class II to Class IV 

whereas higher classes imply severe pollution 

scenarios. In our case, the water quality at Kampung 

Medan is at Class III for most of the measurements 

recorded. In applying the proposed control chart to 

the data, measurements that had been categorized 

as Class IV and Class V will be considered as out-of-

control. A good chart would be able to flag the Class 

IV and Class V measurements as out-of-control 

observations while the Class III measurements are 

considered as in-control observations which represent 

the common river water quality in Kampung Medan.  

Out of 428 data collected, 300 of them were used 

in Phase I for the location vectors and covariance 

matrix estimation. The remaining 128 data were used 

in Phase II for monitoring the river quality.  

Tables 4a to 4d present the confusion matrix for the 

Cmean, Cmrcd, Cwp and Cws under real data study. The 

header row represents the true river water quality in 

Kampung Medan in which Class IV represents an out-

of-control situation and Class III represents an in-

controls water state. The header column represents 

the results flagged by the multivariate synthetic 

control charts in this study.  

The green-colored cells represent the number of 

observations that are match with the real data. Those 

out-of-control cases in the real data are flagged as an 

out-of-control situation by the control charts and 

likewise, for the in-control cases. Meanwhile, the 

orange-colored cells show a false flagged by the 

control charts.  

As presented in Tables 4a to 4d, the proposed 

robust multivariate synthetic control charts, i.e., Cmrcd, 

Cwp and Cws, can identify all 107 Class III’s river water 

quality as in-control, while Cmean is only able to identify 
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99 of them. On the other hand, for the Class IV’s river 

water quality, the three proposed robust control 

charts were only able to identify 17 out of 21 cases, as 

opposed to 19 by Cmean. For a more extensive 

assessment, we summarize the performance of the 

charts based on specificity and predictive values as 

depicted in Table 5. 

 
Table 4a Confusion matrix of the Cmean on real data 

application 
   

Real Data    
Out of 

Control 

(Class IV) 

In Control 

(Class III) 

 

Cmean 

Trigger 

Out of 

Control 

19 8 PPV 

=70

% 

In Control 2 99 NPV 

= 

98% 

  Sensitivity = 

90% 

Specificity = 

93% 

 

 

Table 4b Confusion matrix of the Cmrcd on real data 

application 
   

Real Data    
Out of 

Control 

(Class IV) 

In Control 

(Class III) 

 

Cmrcd 

Trigger 

Out of 

Control 

17 0 PPV 

=100

% 

In Control 4 107 NPV 

= 

96% 

  Sensitivity = 

81% 

Specificity = 

100% 

 

 

Table 4c Confusion matrix of the Cwp on real data application 
   

Real Data    
Out of 

Control 

(Class IV) 

In Control 

(Class III) 

 

Cwp 

Trigger 

Out of 

Control 

17 0 PPV 

=100

% 

In Control 4 107 NPV 

= 

96% 

  Sensitivity = 

81% 

Specificity = 

100% 

 

 

Table 4d Confusion matrix of the Cws on real data application 
   

Real Data    
Out of 

Control 

(Class IV) 

In Control 

(Class III) 

 

Cws 

Trigger 

Out of 

Control 

17 0 PPV 

=100

% 

In Control 4 107 NPV 

= 

96% 

  Sensitivity = 

81% 

Specificity = 

100% 

 

Note: 

Sensitivity = The ability of detect out-of-control water quality 

scenarios 

PPV = The detection rate of true out-of-control water quality 

scenarios 

Specificity = The ability of detect in-control water quality scenarios 

NPV = The detection rate of true in-control water quality scenarios 

In this study, it is anticipated that the proposed control 

chart can effectively identify an out-of-control 

scenario which is the measurements of water quality 

in Class IV. Thus, this is considered as a positive flag 

when the control chart shows the ability to flag the 

out-of-control scenarios. Meanwhile, the ability to flag 

the in-control scenarios is considered as a negative 

flag. The positive and negative flagging are targeted 

to assess the performance of the charts; whether they 

can fittingly detect the river water quality.  

In terms of the sensitivity and positive predictive 

value (PPV), the Cmean illustrates that it has a high 

sensitivity value (90%), which is the ability to identify the 

out-of-control cases. The percentage is higher than 

demonstrated by the three robust control charts. The 

sensitivity values of the Cmrcd, Cwp and Cws, are slightly 

lower (81%). However, the PPV of the robust control 

charts is higher, which is 100%, when compared to the 

Cmean, which is only at 70%. In terms of the specificity 

and negative predictive value (NPV), the Cmrcd, Cwp 

and Cws have a balance performance, that is, the 

specificity and NPV are at 100% and 96%, respectively. 

Conversely, the Cmean has specificity and NPV of 93% 

and 98%, respectively.  This shows that the Cmrcd, Cwp 

and Cws are able to predict the Class III river water 

quality fittingly.  
 

Table 5 Sensitivity, specificity, and predictive values for real 

data applications 

 

Control Charts Sensitivity PPV Specificity NPV 

Cmean 90% 70% 93% 98% 

Cmrcd 81% 100% 100% 96% 

Cwp 81% 100% 100% 96% 

Cws 81% 100% 100% 96% 

 

 

4.0 CONCLUSION 
 

In the simulation study, it can be observed that the in-

control performances of the robust multivariate 

synthetic control charts namely, Cmrcd, Cwp and Cws, 

surpass the traditional multivariate synthetic chart, i.e., 

Cmean. The assessment based on the false alarm rate 

(FAR) was conducted via extensive simulation studies 

by manipulating variables such dimensions, sample 

size, contamination level and shift size. In particular, 

the robust Cmrcd chart exhibits the most stable in-

control performance, when compared to the others 

control chart in this study. Regarding the real data 

application, the three newly proposed robust control 

charts demonstrate equal capability in detecting 

both out-of-control and on-control river water quality. 

Thus, validating the strengths of the performance of 

the proposed robust charts as demonstrated in the 

simulation studies.  In future, it is recommended to 

further investigate the out-of-control performance of 

the three proposed robust multivariate synthetic 

charts by extending the scenarios to cover high-

dimensional data. 



7                                             Ong Gie Xao et al. / Jurnal Teknologi (Sciences & Engineering) 87:1 (2025) 1–7 

 

 

Acknowledgement 
 

This research was supported by Ministry of Higher 

Education (MoHE) of Malaysia through Fundamental 

Research Grant Scheme 

(FRGS/1/2019/STG06/UUM/01/1) 

 

 

Conflicts of Interest 
 

The author(s) declare(s) that there is no conflict of 

interest regarding the publication of this paper. 

 

 

References 
 
[1] Eppe, G., & De-Pauw, E. 2009. Advances in Quality Control 

for Dioxins Monitoring and Evaluation of Measurement 

Uncertainty from Quality Control Data. Journal of 

Chromatography B: Analytical Technologies in the 

Biomedical and Life Sciences. 877(23): 2380–2387. 

Doi: https://doi.org/10.1016/j.jchromb.2009.05.009. 

[2] Kharbach, M., Cherrah, Y., Vander Heyden, Y., & 

Bouklouze, A. 2017. Multivariate Statistical Process Control 

in Product Quality Review Assessment – A Case Study. 

Annales Pharmaceutiques Françaises. 75(6): 446–454. 

Doi: https://doi.org/10.1016/j.pharma.2017.07.003. 

[3] Chen, Y., & Durango-Cohen, P. L. 2015. Development and 

Field Application of a Multivariate Statistical Process 

Control Framework for Health-monitoring of Transportation 

Infrastructure. Transportation Research Part B: 

Methodological. 81(1):7 8–102. 

Doi: https://doi.org/10.1016/j.trb.2015.08.012. 

[4] Stoumbos, Z. G., & Sullivan, J. H. 2002. Robustness to Non-

Normality of the Multivariate EWMA Control Chart. Journal 

of Quality Technology. 34(3): 260–276. 

Doi: https://doi.org/10.1080/00224065.2002.11980157. 

[5] Haddad, F. 2021. Modified Hotelling T2 Control Charts Using 

Modified Mahalanobis Distance. International Journal of 

Electrical and Computer Engineering. 11(1): 284–292. 

Doi: http://doi.org/10.11591/ijece.v11i1.pp284-292. 

[6] Aparisi, F., & Haro, C. L. 2003. A Comparison of T2 Control 

Charts with Variable Sampling Schemes as Opposed to 

MEWMA Chart. International Journal of Production 

Research. 41(10): 2169–2182.  

Doi: https://doi.org/10.1080/0020754031000138655. 

[7] Champ, C. W., & Aparisi, F. 2008. Double Sampling 

Hotelling’s T2 Charts. Quality and Reliability Engineering 

International. 24(2): 153–166. 

Doi: https://doi.org/10.1002/qre.872. 

[8] Hawkins, D. M., & Zamba, K. D. 2003. On Small Shifts in 

Quality Control. Quality Engineering. 16(1):143–149.  

Doi: https://doi.org/10.1081/QEN-120020780. 

[9] Ghute, V. B., & Shirke, D. T. 2008. A Multivariate Synthetic 

Control Chart for Monitoring Process Mean Vector. 

Communications in Statistics—Theory and Methods. 37(13): 

2136–2148.  

Doi: https://doi.org/10.1080/03610920701824265. 

[10] Ghute, V. B., & Shirke, D. T. 2008b. A Multivariate Synthetic 

Control Chart for Process Dispersion. Quality Technology & 

Quantitative Management. 5(3): 271–288,  

Doi:10.1080/16843703.2008.11673401. 

[11] Khoo, M. B. C., Atta, A. M. A., & Wu, Z. 2009. A Multivariate 

Synthetic Control Chart for Monitoring the Process Mean 

Vector of Skewed Populations Using Weighted Standard 

Deviations. Communications in Statistics—Simulation and 

Computation. 38(7): 1493–1518.  

DOI: https://doi.org/10.1080/03610910903019905. 

[12] Rocke, D.M. (1989). Robust Control Charts. Technometrics. 

31(2): 173–184.  

Doi: https://doi.org/10.2307/1268815. 

[13] Abdul-Rahman, A., Syed-Yahaya, S. S., & Atta, A. M. A. 

2021. Robust Synthetic Control Charting. International 

Journal of Technology. 12(2): 349–359.  

Doi: https://doi.org/10.14716/ijtech.v12i2.4216. 

[14] Boudt, K., Rousseeuw, P., Vanduffel, S., & Verdonck, T. 2020. 

The Minimum Regularized Covariance Determinant 

Estimator. Statistics and Computing. 30: 113–128.  

Doi: https://doi.org/10.1007/s11222-019-09869-x. 

[15] Haddad, F. S., Syed-Yahaya, S. S., & Alfaro, J. L. 2013. 

Alternative Hotelling’s T2 Charts using Winsorized Modified 

One-Step M-estimator. Quality and Reliability Engineering 

International. 29: 583–593.  

DOI: https://doi.org/10.1002/qre.1407. 

[16] Croux, C., Haesbroeck, G. 1999. Influence Function and 

Efficiency of the Minimum Covariance Determinant Scatter 

Matrix Estimator. Journal of Multivariate Analysis. 71(2): 161–

190.   

DOI: https://doi.org/10.1006/jmva.1999.1839. 

[17] Rousseeuw, P. J., & Driessen, K. V. 1999. A Fast Algorithm for 

the Minimum Covariance Determinant Estimator. 

Technometrics. 41(3): 212–223.  

Doi: https://doi.org/10.1080/00401706.1999.10485670. 

[18] Bulut, H. 2020. Mahalanobis Distance Based on Minimum 

Regularized Covariance Determinant Estimators for High 

Dimensional Data. Communication in Statistics- Theory and 

Methods. 49(283): 1–11. 

Doi: https://doi.org/10.1080/03610926.2020.1719420. 

[19] Schreurs, J., Vranckx, I., Hubert, M., Suykens, J. A. K., & 

Rousseeuw, P. J. 2021. Outlier Detection in Non-elliptical 

Data by Kernel MRCD. Statistics and Computing. 31: 66. 

https://doi.org/10.1007/s11222-021-10041-7. 

Doi: http://dx.doi.org/10.11113/jt.v79.9987. 

[20] Chang, S. C. & Bai, D. S. 2004. A Multivariate T2 Control 

Chart for Skewed Populations using Weighted Standard 

Deviations. Qual. Reliab. Engng. Int. 20: 31–46 

Doi: https://doi.org/10.1002/qre.541. 

 

http://dx.doi.org/10.11113/jt.v79.9987

