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 Abstract. Manufacturing process planning (MPP) is concerned with decisions regarding 
selection of  an optimal configuration for processing parts. For multiparts reconfigurable 
manufacturing lines, such decisions are strongly influenced by the types of  processes available, 
the relationships for sequencing the processes and the order of  processing parts. Decisions may 
conflict, hence the decision making tasks must be carried out in a concurrent manner. This paper 
outlines an optimization solution technique for the MPP problem in reconfigurable manufacturing 
systems (RMSs). MPP is modelled in an optimization perspective and the solution methodology is 
provided through a metaheuristic technique known as simulated annealing. Analytical functions 
for modelling MPP are based on knowledge of  processes available to the manufacturing system 
as well as processing constraints. Application of  this approach is illustrated through a multistage 
parallel-serial reconfigurable manufacturing line. The results show that significant improvements 
to the solution of  this type of  problem can be gained through the use of  simulated annealing. 
Moreover, the metaheuristic technique is able to identify an optimal manufacturing process plan 
for a given production scenario. 

Keywords: Metaheuristics, simulated annealing, manufacturing process planning, reconfigurable 
manufacturing systems, production scenarios

 Abstrak. Proses perancangan pembuatan adalah berkaitan dengan keputusan berdasarkan 
pemilihan tatarajah yang optimum daripada modul proses untuk pemprosesan bahagian kerja. 
Untuk pembentukan semula barisan pembuatan bagi pelbagai bahagian kerja, keputusannya 
dipengaruhi jenis proses yang sedia ada, hubungkait jujukan pemprosesan dan juga aturan 
pemprosesan bahagian kerja tersebut. Keputusan proses perancangan pembuatan mungkin 
bercanggah, oleh itu tugasan membuat keputusan perlu mengambil kira cara setemu. Kertas 
kerja ini membentangkan teknik optima untuk masalah berkaitan proses perancangan pembuatan 
dalam rangka kerja pembuatan pembentukan semula. Proses MPP  dimodelkan sebagai masalah 
pengoptimuman dan keadah penyelesaian yang diperolehi daripada teknik metahuristik dikenali 
sebagai simulasi penyepuhlindapan. Fungsi analisis bagi memodel proses perancangan pembuatan 
adalah berdasarkan pengetahuan mengenai proses dan sistem pembuatan serta kekangan proses. 
Applikasi bagi pendekatan ini ditunjukkan melalui barisan pembuatan pembentukan semula 
berbilang tahap siri selari. Keputusan menunjukkan penambahbaik yang signifikasi diperolehi 
dalam penyelesaian untuk masalah jenis ini dengan menggunakan simulasi penyepuhlindapan. 
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Tambahan pula, teknik metaheuristik berkebolehan untuk mengenal pasti kaedah proses 
pembuatan yang optima berdasarkan senario pengeluaran yang diberi.

Kata kunci: Metaheuristik, simulasi penyepuhlindapan, proses perancangan pembuatan, sistem 
pembuatan pembentukan semula, senario pembuatan 

1.0 INTRODUCTION 

Manufacturing process planning (MPP) is a manufacturing function concerned 
with identifying the technological manufacturing capabilities for transforming raw 
materials into products. With rapid developments in process system technologies, 
a number of  production systems is implementing heterogeneous collections of  
manufacturing modules. Specifying the manufacturing capabilities of  such systems 
requires best selection and sequencing techniques that aim to select, based on some 
criteria, optimal manufacturing processing plans needed to accomplish a specified 
manufacturing mission. 

In reconfigurable manufacturing, MPP is required for identifying basic 
courses of  actions that form guidelines for manufacturing activities [1]. Since 
reconfigurable manufacturing is usually carried out in a multiresource environment, 
the task of  selecting and sequencing processes is complex since “local” changes 
in the manufacturing system may affect performance in other dimensions of  the 
system, thereby degrading overall manufacturing performance [2]. Therefore, a 
manufacturing planning function that aims at global optimization is required in 
order to minimize the probability of  implementing a suboptimal manufacturing 
process plan. 

Reconfigurable manufacturing systems (RMSs) have been developed to address 
the problems and challenges in dynamic manufacturing environments [3]. In such 
environments, there is no room for incompetence in MPP since changes to production 
requirements are random and companies are in turn expected to respond timely to 
changes. Moreover, scheduling flexibility is an important component for improving 
operating efficiencies. Consequently, process planning has a strong relation with 
route flexibility, since alternative routes may have to be used depending on the 
part flow intensities [4]. For RMSs that tailor changes in production requirements, 
intermingling a new product with current ones has an impact on the part loading 
rate among the available feasible route profiles. This consideration means that 
MPP function takes a new role that includes: optimal process selection, optimal 
process sequencing and optimal part loading in a manufacturing system with many 
possible combinations of  processes and many possible permutations of  sequences. 
Therefore, an effective MPP function for RMSs must be established if  the RMS is 
to live up to its expectation. 

Simultaneous consideration of  the multi-dimensional issues discussed above 
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implies that the MPP problem in an RMS is essentially an optimization problem. 
In this paper, the optimization solution framework is provided through the use of  
a metaheuristic technique known as simulated annealing (SA). The remainder of  
the paper is organized as follows: in Section 2, a brief  review of  work related to 
SA is presented, in Section 3, the proposed optimization approach is outlined, in 
Section 4, applications of  SA technique are described, the results and discussions 
are presented in Section 5 and finally, conclusions are given in Section 6. 

2.0 LITERATURE REVIEW

Simulated annealing (SA) is a metaheuristic approach for solving optimization 
problems. The algorithm design technique for simulated annealing is based on 
heuristics. A heuristic is a robust technique for the design of  randomized algorithms 
for optimization problems [5]. SA is analogous to physical annealing, which is a 
heat treatment process, but incorporates the concepts of  statistical mechanics to 
describe the energy of  the material as it is annealed. The physical annealing process 
finds low energy states of  a solid material by melting the substance initially and 
then lowering the temperature slowly, spending a long time at temperatures close to 
freezing point. In the SA analogy, the different states of  the substance correspond to 
the different feasible solutions of  the optimization problem, and the energy of  the 
system corresponds to the function to be minimized. 

The SA algorithm has found numerous applications in optimization problems. 
In 1953, Metropolis proposed a Monte Carlo model for simulating the transition 
of  a solid from a given state to a thermal equilibrium state for a fixed value of  
temperature [6]. Although the metropolis proposal marks the novel beginnings of  
the SA technique, the success of  SA algorithm in optimizing functions of  many 
variables was first reported by Kirkpatrick et al. [7]. This capability of  the Metropolis 
algorithm to solve optimization problems was echoed by many researchers and later 
become a popular method for implementing the SA algorithm. 

Although SA was invented a long time ago, it has emerged as a fundamental 
non-deterministic strategy for solving optimization problems that include: travel 
salesmen problems (TSPs); quadratic assignment problems (QAPs); scheduling 
problems of  a wide variety and manufacturing process planning (MPP) problems at 
different scales. 

In general, MPP tasks fall into two categories differentiated by task specifications: 
(i) process design and (ii) operation design. Operation design focuses more on the 
microscopic scale of  MPP, i.e. decision making activities that detail the operations, 
operation sequencing and operating parameters required to produce a part as 
specified by an engineering drawing. On the other hand, process design focuses more 
on the macroscopic scale of  MPP, i.e. decision making activities that determine the 
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overall processing routings for producing parts. This work focuses on applications 
of  the simulated annealing technique to macroscopic MPP problems in RMSs. 

In reviewing literature on applications of  the SA technique, it is apparent that 
the most documented weakness of  the SA algorithm is its slow speed in generating 
a solution [8]. This emanates from the sequential way in which the solution is 
deployed by the algorithm. The SA technique imitates the physical annealing process 
employed in the cooling of  metals. The logic in applying the SA analogy lies in that 
if  the energy function of  a physical system is replaced by an objective function or 
cost function, J, that is dependent on a vector of  design variables, then the slow 
progression towards an ordered ground state is representative of  a progression to 
a global optimum. To achieve this, a control parameter, analogous to temperature 
in the physical annealing process, and a constant, analogous to the Boltzmann 
constant, must be specified for the optimization problem. 

In light of  the analogy described above, the temperature must be reduced very 
gradually and slowly for simulated annealing to produce an optimal solution. Hence 
the slow speed of  the SA technique. Over the years, a number of  improvements 
targeting the convergence rate have been made to the original SA algorithm. For 
example, Connolly suggested an improved annealing schedule, otherwise known 
as a cooling scheme, based on a sequential search rather than a random search 
[9]. Connolly observed that the sequential search was more effective than the 
random search. Of  interest to this research work are the suggested variants of  the 
SA algorithm such as the fast simulated annealing technique [10]. Fast simulated 
annealing uses local search and occasional long jumps coupled with a special cooling 
schedule. Such variations have also been reported to improve the implementation 
of  the SA algorithm. 

In seeking solutions to manufacturing problems, most work in the public literature 
focus on obtaining feasible, near optimal or optimal solutions [11]. However, 
the complexity in dynamic operations requires implementation of  globally 
optimal solutions. In the literature, discussions of  global optimization solutions in 
manufacturing have been proposed through applications of  metaheuristics [11]. 
Such applications have found potential in manufacturing process planning problems. 
An example of  applications of  metaheuristics to process planning was discussed by 
Ma et al. [12] who implemented a SA algorithm to search for an optimal solution 
to the process planning problem of  prismatic components in a job shop machining 
environment. Another example is in the work of  Zhang et al. [13] who implemented 
a genetic algorithm (GA) to find an optimal solution to the process planning task 
of  prismatic components. Conclusions from these works confirm that metaheuristic 
techniques based on SA and GA algorithms are able to find a near optimal solution 
in reasonable time and have the capability to escape from entrapment in local 
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optima. As such, metaheuristic algorithms have the potential to find globally optimal 
solutions for macroscopic MPP problems in RMSs. 

The advantages of  using such metaheuristic approaches lie in that unlike the 
random search or gradient descent methods, carefully designed heuristics that support 
the SA algorithm play an important role in arriving at a near optimal solution in 
reasonable time and in escaping from entrapment in local optima. Consequently, a 
heuristic-supported-implementation of  the SA algorithm provides better alternatives 
for the solution of  optimization problems. The proposed metaheuristic approach is 
described in the following section.   

3.0  OPTIMIZATION APPROACH

The proposed optimization approach advocates development of  an optimization 
system. An optimization system is essentially a decision system that provides a 
steady state operating solution in a multi-dimensional decision variable space. The 
general form of  a steady state model can be written in terms of  a non-linear matrix 
equation shown in Equation (1).         

      U* = F(U)	 (1)

where U is an r-dimensional input vector, U* is an n-dimensional output vector 
and F is an n-dimensional nonlinear matrix function describing the non-linear 
relationships between U and U*. The desired performance criteria are optimized 
subject to system constraints. In general, the complexity of  the optimization task 
increases with increase in non-linearity, increase in system dimensions and multiplicity 
of  local optima. Due to non-robustness of  conventional techniques, an alternative 
approach is to use non-conventional techniques, for example metaheuristics, that 
are usually non-math-knowledge oriented. The proposed optimization approach is 
shown schematically in Figure 1.

In Figure 1, an optimization algorithm generates a control profile u(t) and 
receives the response, û(t),from the manufacturing process planning domain model. 
Depending on the cost function, J, the optimization algorithm eventually finds an 
optimal control profile U*. The optimization approach depicted in Figure 1 implies 
that an optimization model and an optimization algorithm exchange information 
concerning the problem at hand in order to solve the problem. Knowledge of  
processes available to the manufacturing system and the processing constraints are 
encoded in the optimization model. Thus, the framework of  approach provides the 
fundamental services of  the problem domain captured in an optimization model 
and a solution procedure, provided by the algorithm. Guidelines for the decision 
making process are then provided through an appropriate process planning 
evaluation model. 
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Appropriate
optimization technique  

Manufacturing process
planning domain

model
 

Objective J
function

                
U *  Optimal

decision
values 
 

Control values, u (t) û (t)  Estimate output   

Input, U  

Yes  

      No 

Yes  

No 

Yes  

No 

 

Generate a random but valid  
manufacturing process plan  

Compute cost function (E1 ) for current plan  

Print final plan 

Change current plan   

Compute cost function (E2)  
for  new plan 

1. Accept change 
2. Replace current plan 

with new plan  

Temp  < Final temp  

E1>=E2  

Random <= 
exp(E1-E2)/temp 

END 

Figure 1  Optimization approach to manufacturing process planning in reconfigurable 
manufacturing systems 

3.1 Process Planning Evaluation Model

The process planning evaluation model is defined by an objective function. The 
objective function for the MPP problem is shown in Equation (2). The evaluation 
criterion is based on minimizing the total processing costs for multiple parts flowing 
in the system.

 Min F(y) = total processing costs = ∑ ∑ ∑ [(vi, j *FTOC)]                (2)

where, v  = 1/psi,j and:
         psi,j = part similarity coefficient 
 FTOC	 =  total processing cost function obtained by adding the cost  

components represented in Equations (3) to (9)  
             nf  = is the number of  part families
           pfn     = is the number of  parts in the nth part family
             K  = the processing types required for producing a part

The part similarity coefficient, psi,j, is a measure of  similarity between any two (2) 
parts of  manufacture, i and j, in the production scenario. The parameter, vi j, represents 

	nf			pfn			K

	n=1		k=1	i=1
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the change-over costs associated with processing consecutive parts depending on 
the part load scheduling scheme in the reconfigurable manufacturing system, i.e. 
it represents the changeover cost from part i to part j. The total processing cost 
function used in this work is developed based on the suggestions of  Zhang and Nee 
[11]. The modified cost items are defined in Equations (3) to (14). The cost array 
associated with a proses module used is given by Equation (3):

 K
	 PMC	[	]	=	∑	PMCI 

i
 (3)

 i = 1

where, PMC[ ] is the processing module usage cost array, K is the total number 
of  processing types required to complete the processing of  part i, PMCI is the  
processing module cost index for using PMi. The cost array associated with a process 
change, PCC[ ], is given by Equation (4):

     K-1
 PCC = PCCI	*	∑	Ω (PM

i+1
	–	PM

i
) (4)

 i = 1

where PCCI is the process change cost index and PMi is the processing module i. In  
Equation (4),

Ω	(PM
i+1

	–	PM
i
)	= {	

1   if   PM
i+1   

≠   PM
i
  

          
                                                         0   if   PM

i+1    
=   PM

i
 
 

(5)

The cost array associated with a set-up change, SCC[ ], is given by Equation (6):

    K-1
 SCC = SCCI	*	∑	[(1	–	Ω (PM

i+1
	–	PM

i
))	* Ω (TAD	

i+1
	–	TAD

i
)] (6)

 i = 1

where, SCCI is the set-up change cost index and TAD represents the required PM 
key characteristic in processing consecutive parts. In Equation (6),  

 
 Ω	(TAD

i+1
	–	TAD

i
)	= {  

pms
i,j
   if   TAD

i+1   
≠   TAD

i

	 											

																																																					

0   if   TAD
i+1    

=   TAD
i
  
         (7)

where, pmsi,j is the processing module chain similarity coefficient. Also, TADi+1=TADi 
if  the required process modules are in the same stage, otherwise a factor of  pmsi,j has 
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to be used, as defined in Equation (7). The cost array associated with reconfiguration, 
RC[ ], is given by Equation (8):
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where RCI is the reconfiguration cost index and XS defines a reconfiguration  
scenario and represents the required key part features for the manufacture of  
consecutive different part types. In Equation (8),

 Ω	(XS
i+1

	–	XS
i
)	= {	

ps
i,j
   if   XS

i+1   
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i
  

          
                                                        0   if   XS
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i (9)

where, psi,j is the part similarity coefficient between parts i and j. 

The cost array associated with use of  tools, TC[ ], is given by Equation (10):
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where TCI is the tool cost index for using tool i and Ti is the processing time 
required for part i. Ti is defined in Equation (11) as follows: 
 
 
 Ti = 





Ti if  part i visits the standby process module
 0 if  part i does not visit the standby process module (11)

The cost array associated with tool change, TCC [ ], is given by Equation (12):
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where, TCCI is the tool change cost index. In Equation (12);
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Also, this expression in Equation (12) applies only if  processing is done by the multi-
purpose processing modules. The materials handling cost array is given by Equation 
(14):
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where HCI is the materials handling cost index and d is the distance between 
processing modules i and j in the manufacturing grid. The total processing cost 
function, FTOC, is the sum of  the cost items represented in Equations (3) to (9). 

3.2 Optimization Technique

In the proposed approach, the optimization solution technique was provided by a 
variant of  the SA algorithm. The SA algorithm was used to search for an optimal 
manufacturing process planning profile. The variant implements an advanced local 
search technique supported by application specific heuristics. The SA solution 
methodology implements a randomization concept at every critical decision point 
in the search process. A fast cooling schedule that aims to balance diversification 
and intensification in the search process was used. Such a schedule is characterized 
by cooling and reheating, which provides occasional jumps in the search space and 
thus ensuring an oscillatory balance between diversification and intensification in 
the search strategy. The generic framework of  the SA strategy is heuristic in nature 
and it simulates the annealing process of  metal by probabilistically finding the 
minimum value of  a state-dependent objective function. The flowchart for the SA 
technique is shown in Figure 2. 

Appropriate
optimization technique  

Manufacturing process
planning domain

model
 

Objective J
function

                
U *  Optimal

decision
values 
 

Control values, u (t) û (t)  Estimate output   

Input, U  

Yes  

      No 

Yes  

No 

Yes  

No 

 

Generate a random but valid  
manufacturing process plan  

Compute cost function (E1 ) for current plan  

Print final plan 

Change current plan   

Compute cost function (E2)  
for  new plan 

1. Accept change 
2. Replace current plan 

with new plan  

Temp  < Final temp  

E1>=E2  

Random <= 
exp(E1-E2)/temp 

END 

Figure 2    Flow chart for the implemented simulated annealing algorithm
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In implementing the SA algorithm, decisions have to be made about the generic 
parameters and problem specific parameters. An application of  the variant of  the 
SA technique is described in the following section. 

4.0 APPLICATION OF SIMULATED ANNEALING 

4.1	 Reconfigurable	Manufacturing	System	Model

In order to test the performance of  the SA technique, a reconfigurable manufacturing 
system testbed was configured from manufacturing modules of  a conventional 
modular production system. The advantage of  using such manufacturing modules 
lies in that the modular stations can be moved or removed and be configured into 
any desired system for experimental purposes. Implementing various configurations 
in the testbed was facilitated by modular transporter links and the provision for 
combining the dedicated manufacturing modules with multipurpose conventional 
machining centers that provide support to the main production line. A schematic 
representation of  the reconfigurable manufacturing system testbed is shown in 
Figure 3.

 
1_1

1_2 2_4

2_7 2_8

2_6 VS 3_3 3_42_5

2_1 2_2 2_3 3_2
4_1

4_2

OutputIntput

3_1

Figure 3   Reconfigurable manufacturing system testbed for this study

Raw materials enter the system through an input stage and exit the system through 
an output stage. The system is composed of  sixteen (16) processing modules that are 
arranged in four (4) processing stages. In Figure 3, the first digit represents the stage 
at which the processing module is located while the second digit uniquely identifies 
a specific processing module in a particular stage. The system consists of  a mixture 
of  fourteen (14) dedicated processing modules and two (2) multi-purpose processing 
machines. 
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The principal modules in the main production line consist of: processing machine 
primitives (PMPs), modular tooling and jigs (MTJs), modular actuator elements 
(MAEs) and configurable control systems (CCSs) in contrast to conventional machines 
[14]. These types of  manufacturing modules facilitates easy reconfiguration of  the 
manufacturing system in response to changing production needs. The multipurpose 
machines, 2_7 and 2_8, are general purpose machining centers that serve as 
productive reserve capacity in support of  the main production line [15]. The flexible 
transporter links also facilitate reconfigurable flow of  parts/products in the system. 

4.2 Parameters Used in the Implimented Simulated Annealing 
Technique 

The objective function used in the SA algorithm was defined in Equation (2). All 
cost items in Equations (3) to (14) were used in the algorithm. The parameters 
chosen are depicted in the user interface window shown in Figure 4. 

 
1_1

1_2 2_4

2_7 2_8

2_6 VS 3_3 3_42_5

2_1 2_2 2_3 3_2
4_1

4_2

OutputIntput

3_1

Figure 4 Screenshot showing the parameters used in running the simulated 
annealing algorithm
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A fixed number of  rejected changes under each temperature was chosen as the 
stopping criterion [11]. The SA algorithm was coded in C/C++ and was run on a 
Pentium 4, 2.0 GHz PC with 512 MB.

5.0 RESULTS AND DISCUSSION

The capability of  the SA algorithm to generate optimal manufacturing process 
plans for the described case study was carried out under the following settings: 
all processing modules types were assumed to be available and there were no 
breakdowns. In order to validate the performance of  the SA algorithm, attempts 
were made to solve the MPP problem using a software known as GA Optimization 
for Excel (GAOE) version 1.2. Table 1 summarizes the comparison of  the GAOE 
results with those of  the SA technique.

Table 1 Comparison of  software results with those obtained from the simulated 
annealing run for small-sized problems

Pi

Cost	function	values, J Execution	times,	t

GAOE SA ΔJ ΔJ% GAOE SA Δt Δt%

1 51 45 6 11.76 10 8 2 20.00

2 107 92 15 14.02 14 10 4 28.57

3 212 184 28 13.21 17 12 5 29.41

4 267 234 33 12.36 20 14 6 30.00

5 313 275 38 12.14 24 16 8 33.33

In Table 1, it is evident that the quality of  the solutions obtained from the SA 
technique is better than those obtained from the GAOE software. The quality is 
significantly higher as the size of  the problem increases, i.e. as the number of  parts 
in the production scenario, Pi, increases. The same trend is true for the computer 
execution times. For processing one part, the SA technique improved the quality of  
the solution by 11.76%. The percentage improvement in terms of  the execution 
time was 20%. Table 1 indicates that for large scale problems, i.e. number of  parts 
greater than five (5), it is better to use the SA technique due to (i) the limitations in 
encoding more than five (5) parts when using the GAOE software and (ii) improved 
quality of  the solutions obtained through using the SA technique. Therefore, for the 
case of  twenty (20) parts flowing in the manufacturing system, only the SA technique 
was used to determine an appropriate manufacturing process plan.  The simulation 
performance curve for the SA algorithm in search for an optimal manufacturing 
process plan for twenty (20) parts is shown in Figure 5. 
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Figure 5    Mean optimization performance curve for the simulated annealing 
algorithm

Figure 5 shows the convergence characteristics of  the optimization process, which 
is a plot of  the total processing costs against the number of  iterations. The optimum 
cost was found at 7308 and the solution time was twenty-seven (27) minutes. The 
solution time of  twenty-seven (27) minutes may be considered more efficient in 
comparison to an attempt to generate such an optimal solution manually. Moreover, 
the application is for non-real time and as an aid to decision making. In this regard, 
a solution time of  twenty-seven (27) minutes may be considered adequate for 
generating an optimal manufacturing process plan for non-real time applications. 

In most runs carried out during the simulation experiments, the final solution 
was achieved at just before the specified final temperature was reached. This 
suggests that the algorithmic stopping criterion for the SA was sufficient. One of  the 
recommended manufacturing process plans is shown in Table 2. In Table 2, Pi is the 
part identification number, PL is the order of  part processing while the optimum 
processing route profile shows the selected process modules and their sequences as 
recommended by the SA technique. 

Table 2 also shows the respective number of  changes for each part processing 
together with the percentage of  the available processing modules seized in the 
processing of  each part (refer column f of  Table 2). The total number of  changes 
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in the manufacturing process plan shown in Table 2 is 361, while the average 
percentage of  processing modules seized during the manufacturing process is 
44.5%. The optimum processing route profiles also indicate that there is provision 
for repeat processing, i.e. same process module reselected for the same part, and 
there is minimal use of  the productive reserve capacity as evident in column e. Such 
a comprehensive processing evaluation avails information that allows manufacturing 
engineers to make more informed decisions regarding the best manufacturing 
process plans to implement.

Table 2    Manufacturing process plan selected by the simulated annealing algorithm 

Pi Optimum	processing	route	profile PL

Processing evaluation

a b c d e f
1 1_2  2_6  2_5  2_2  2_5  2_2  3_3  4_2    2 7 7 0 1 0 50%

2 1_2  2_6  2_5  2_4  2_4  2_5  2_1  3_3  4_2    9 7 8 0 1 0 44%

3 1_1  2_5  2_5  2_3  2_2  2_3  3_3   4_2    6 6 7 0 2 0 38%

4 1_2  2_5  2_13  3_3  4_2    7 5 4 2 3 1 31%

5 1_2  2_5  2_5  2_2  2_4   2_13  2_4  3_2  3_3  4_1  4_2    12 10 11 2 3 1 56%

6 1_2  2_5  2_13  2_6  2_4  3_3  4_2    13 7 6 2 3 1 44%

7 1_1  2_5  2_1  2_2  2_3  2_3  3_2  3_3  4_1  4_2    16 9 10 0 2 0 56%

8 1_2  2_5  2_5  2_2  2_5  2_4  3_3  3_4  4_1  4_2    20 9 10 0 2 0 50%

9 1_2  2_5  2_5  2_5  2_2  2_4  3_3  4_2    1 6 8 0 3 0 38%

10 1_2  2_5  2_5  2_3  2_2  2_3  3_3  4_2    3 7 8 0 2 0 38%

11 1_2  2_5  2_6  2_6  3_2  3_3   4_1  4_2    19 7 8 0 2 0 44%

12 1_2  2_6  2_6  2_2  3_3  4_2    4 5 6 0 2 0 31%

13 1_2  2_5  3_3  3_4  4_1  4_2    8 6 6 0 1 0 38%

14 1_2  2_6  2_5  2_5  2_5  2_4  3_3  4_2    18 6 8 0 3 0 38%

15 1_2  2_5  2_5  2_6  2_2  2_4  3_3  4_2    5 7 8 0 2 0 44%

16 1_2  2_6  2_5  2_4  2_4  2_5  2_3  2_2   2_5  3_3  4_1  4_2    10 11 12 0 2 0 56%

17 1_2  2_6  2_6  2_6  2_4  2_13  3_3  4_2    17 6 8 0 3 0 38%

18 1_2  2_5  2_1  2_4  2_4  3_3 4_1  4_2    15 7 8 0 2 0 44%

19 1_2  2_5  2_6  2_2  3_2  3_3  3_4  4_1  4_2    14 9 9 0 1 0 56%

20 1_2  2_6  2_1  2_2  2_5  2_5  2_4  2_4  2_5   3_3  4_2    11 9 11 0 3 0 56%

Total changes=361 146 163 6 43 3 Ave. 44.5

Key	to	Table 2

a−number of  process module changes; b−number of  setup changes; c−number of  tool changes; 
d−number of  reconfiguration changes; e−number of  Productive Reserve Capacity used; f−percentage 
of  available process module seized
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6.0 CONCLUSION

This study has revealed the capability of  the SA algorithm to handle manufacturing 
process planning optimization in multistage multiparts reconfigurable manufacturing 
lines. The results show that the SA algorithm is able to recommend an optimal 
manufacturing process plan for a given production scenario. The SA technique 
also showed significant improvements in obtaining solutions in comparison to a 
software approach. Moreover, the SA technique has the advantage of  handling 
large problems and thus overcoming the limitations of  using software. For non-
real time applications similar to the decision support system discussed in this work, 
the performance of  the SA algorithm can be considered sufficient. In addition, 
the SA algorithm is simple, easy to implement and a near-optimal solution can 
be obtained due to its capability to escape from local optima. The capability of  
the SA algorithm to recommend feasible manufacturing process plans for multiple 
part types with reconfigurable flow indicates that this approach has potential in 
reconfigurable manufacturing system applications.  
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