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Graphical abstract 

 

Abstract 
 

Annually, the global economy suffers significant financial losses due to 

decreased productivity of work, accidents, and crashes in traffic resulting from 

microsleep. To reduce the adverse impacts of microsleep, it is necessary to have 

a discreet, dependable, and socially acceptable method of detecting 

microsleep episodes consistently throughout the day, every single day. 

Regrettably, the current solutions fail to match these specified criteria. 

Moreover, by utilizing sophisticated features and employing machine learning 

techniques, it is possible to process electroencephalogram (EEG) information in 

a highly efficient manner, enabling the rapid and successful detection of 

microsleep. The selection of an optimum channel and the use of a competent 

classification algorithm are crucial for effective microsleep detection. One 

unique channel selecting strategy has been introduced in the current study to 

evaluate the classifying accuracy of microsleep detection based on EEG. This 

strategy is based on correlation coefficients and utilizes the K-Nearest Neighbor 

(KNN) method. Furthermore, the Fast Fourier Transform (FFT) was employed for 

extracting the feature, so validating the endurance of the proposed technique. 

In order to enhance the speed of the microsleep detecting system, the study 

was performed using 3 distinct time windows: 0.5s, 0.75s, and 1s. The study 

revealed that the suggested approach achieved a classification accuracy of 

98.28% within a time window of 0.5 seconds to detect microsleep using EEG 

signal. The exceptional effectiveness of the given system can be efficiently 

utilized in detecting microsleep using EEG signal. 

 

Keywords: Microsleep detection, electroencephalogram signal, channel 

selection, correlation coefficient, k-nearest neighbor 
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 Abstrak 
 

Setiap tahun, ekonomi global mengalami kerugian kewangan yang ketara 

disebabkan oleh penurunan produktiviti kerja, kemalangan di tempat kerja dan 

kemalangan trafik akibat terlelap seketika ketika memandu atau dipanggil 

microsleep. Jadi, untuk mengurangkan kejadian microsleep ini, adalah perlu 

untuk mempunyai kaedah yang berkesan, boleh dipercayai dan diterima oleh 

masyarakat untuk mengesan kehadiran microsleep terutamanya semasa 

memandu ke tempat kerja atau pulang dari tempat kerja. Malangnya, teknik 

penyelesaian semasa masih gagal untuk mengelak microsleep daripada 

berlaku. Oleh kerana microsleep berkaitan dengan isyarat yang dihasilkan oleh 

otak manusia, penggunaan teknik electroencephalogram (EEG) untuk 

merekodkan isyarat yang dihasilkan oleh otak manusia semasa memandu dan 

menganalisa isyarat tersebut secara pembelajaran algorithma komputer atau 

pembelajaran mesin, adalah teknik yang pantas dan efektif di dalam 

pengesanan microsleep. Ciri-ciri isyarat unik dari analisa yang dijalankan 

kepada isyarat otak yang direkodkan oleh EEG dan pembelajaran mesin 

digunakan di dalam pengelasan isyarat tersebut oleh kaedah K-Nearest 

Neighbor (kNN) untuk mengenalpasti ciri-cirit isyarat yang berkaitan dengan 

microsleep. Disamping itu, teknik Fast Fourier Transform (FFT) digunakan untuk 

memastikan ciri-ciri isyarat yang tepat dihantar kepada kNN untuk pengelasan 

isyarat yang berkaitan dengan microsleep. Untuk meningkatkan kelajuan 

sistem pengesanan microsleep, kajian menggunakan tempoh masa tetingkap 

yang berbeza iaitu 0.5 saat, 0.75 saat dan 1 saat telah dijalankan kepada ciri-

ciri isyarat yang dianalisa. Kajian ini mendapati bahawa teknik yang telah 

digunakan mencapai ketepatan klasifikasi atau pengelasan isyarat berkaitan 

microsleep sebanyak 98.28% untuk masa tetingkap 0.5 saat. Keberkesanan 

sistem yang digunakan adalah amat baik dan cekap dalam mengesan 

kehadiran microsleep semasa memandu. 

 

Kata kunci: Pengesanan microsleep, isyarat electroencephalogram (EEG), ciri-

ciri isayarat, pengelasan isayarat, k-nearest neighbor, masa tetingkap 
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1.0 INTRODUCTION 
 

 Microsleep arises from a variety of circumstances, 

including insufficient sleep and medical conditions such 

as narcolepsy and sleep apnea. However, it most 

generally occurs when a person experience sleep 

deprivation or engages in monotonous activity is 

depicted in Figure 1. Microsleep is a significant concern 

when individuals engage in activities such as driving, 

functioning large-scale machines, and additional 

safety-critical tasks that can involve repetitive and dull 

motions. The NSC (National Safety Council) states that 

a driver's consciousness, swiftness of response, 

hazardous awareness, and capacity to sustain 

concentration are compromised when they 

experience periods of microsleep. Over 100,000 

incidents of car wrecks involving a drowsy driver have 

been reported by the police annually, resulting in 1,550 

deaths and around 71,000 injuries [1].  

According to the same report, driving for more than 

20 hours without sufficient sleep would be comparable 

to operating a vehicle with a 0.08% blood-alcohol 

accumulation, that is legally permissible in the United 

States. The occurrence of microsleeps leading to 

fatalities has resulted in cascading consequences in 

previous instances, resulting in over 200 deaths and 

more than 400 injuries in a single catastrophe [2]. Such 

occurrences serve as a reminder of the significance of 

implementing modern technologies that could prevent 

them. 

 

Figure 1 Causes, risks, and consequences associated with 

microsleep [3] 
 

 

Multiple physiological signals, including 

electroencephalogram (EEG), electrocardiogram 

(ECG), electrooculogram (EOG), and 



167                                Md Mahmudul Hasan et al. / Jurnal Teknologi (Sciences & Engineering) 86:6 (2024) 165–177 

 

 

photoplethysmogram, have been explored for the 

purpose of assessing microsleep, drowsiness, and 

fatigue. Nevertheless, EEG has emerged as the 

predominant and reliable indicator for measuring 

microsleep, drowsiness, and fatigue [4 – 7]. EEG is a 

noninvasive method that can be easily obtained with a 

small number of electrodes. The changes in spectral 

behavior of the EEG signal clearly indicate the impact 

of sleepiness [8]. Microsleep detection can involve the 

use of sensors technology based on computer vision, 

measuring head motility, observing facial expressions, 

or monitoring the duration of eye blinks. Utilizing 

biological indicators such as EEG, EMG, ECG, EOG, etc. 

for exploitation poses challenges, despite their 

capacity to accurately represent human states [8]. 

After obtaining these signals, they are subjected to 

quantitative machine learning and deep learning 

techniques for classification purposes. These classifying 

techniques must possess a high level of precision, as any 

mistake on their part could result in disastrous 

consequences. Examining brain signals is crucial as they 

serve as indicators of neuronal activity throughout a 

microsleep phase [10]. Microsleep is characterized by a 

distinct reduction in the aggregate frequency of signals 

generated by the EEG [11]. 

In order to analyze the EEG signal, distinct features 

can be obtained in the domains of time, frequency, 

and nonlinearity. Time-domain feature encompass 

statistical metrics such as mean, standard deviation, 

root mean square, skewness, and kurtosis, as well as 

Hjorth parameters including activities, mobilities, and 

complexities [12], frequency-domain feature including 

power spectrum analysis, median frequency, and 

wavelet transform. The often-employed nonlinear 

features are entropies, the largest Lyapunov exponent, 

and the Hurst exponent [13]. Spectral power 

fluctuations in EEG frequency bands are frequently 

used in literature to assess the transition of psychological 

states from wakefulness to sleepy [14 - 15]. Nevertheless, 

there are conflicting perspectives regarding the 

alterations in spectral patterns across various brain 

regions caused by conventional methods used for 

identifying drowsiness [8]. It is essential to annotate EEG 

microsleeps in order to assess them accurately. Failing 

to do so can lead to misleading findings. The process of 

manually scanning and interpreting by extensively 

skilled professionals is both time-consuming and costly 

[16]. At the present time, subjective assessments such as 

the Karolinska Sleepiness Scale (KSS) and the 

Psychomotor Vigilance Task (PVT), which rely on 

participants' subjective experiences, are predominantly 

employed to evaluate microsleep occurrences, stages 

of fatigue, and levels of drowsiness [17 – 19]. The 

applicability of these methods for quantifying 

microsleep episodes in EEG is modest. However, right 

now, these techniques have primarily been employed 

to measure the duration of microsleeps. Although multi-

channel EEG recordings offer an in-depth assessment of 

EEG activities, particular channels may contain noises 

and redundant data. Consequently, it is necessary to 

choose an appropriate method for selecting channels 

in order to minimize the reckoning burden. Due to these 

challenges, robust microsleep detection has emerged 

as an essential component in the present day. 

The main points that this article brings forth are:  

   
1. This study chose three distinct time intervals (0.5, 

0.75 and 1s) to avoid computational complexities for 

identifying microsleep. 

2. This study investigated the technique of 

channel selection in order to decrease computational 

expenses.  

3. This study was conducted an analysis and 

provided a report on the most optimal parameter 

values that result in the highest performance of the 

microsleep detection model.  

  
1.1 Understanding Microsleep 

 
This section contains a concise summary of the 

foundational knowledge regarding the incidence and 

detection process of microsleep, as well as an 

explanation of the challenges associated with 

developing an optimal solution for detecting 

microsleep that is widely accepted in society. 

 

1.1.1  Microsleep Incidence 

 

Microsleep refers to a brief period of sleep or dizziness 

that can range from a fraction of a second to 15 

seconds. Throughout a microsleep, the individual who is 

undergoing it is unable to respond to any random 

sensory stimuli. Individuals who encounter such 

incidents may inadvertently fall asleep. It manifests as 

abrupt transitions between waking and sleep phases, 

and is marked by sagging eyelids, wagging of the 

head, and sluggish, sporadic eyelid closures. 

Microsleep is a phrase used in Electroencephalography 

to describe a change in the frequency of EEG waves 

[3]. Specifically, it refers to the replacement of the 8-13 

Hz alpha wave background pattern with 4-7 Hz theta 

wave oscillations is illustrated in Figure 2. 

 

 

 

Figure 2 Changeover from alpha to theta wave regime 

 

 

The Orexin structure functions as a complex 

interconnected system responsible for maintaining 

wakefulness that spans the entire neurological system, 

as depicted in Figure 3. It enhances the function of 

neurons in the middle cerebral cortex, cerebrum, and 
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visual cortex. The neuronal activity that occurs in the 

brain is expressed by waves in the brain, specifically the 

fast Beta (β) and Alpha (α) bands that occur when the 

brain is awake and conscious, and the slow Theta (θ) 

bands that occur when the brain involuntarily 

experiences sleepiness. In addition, research 

conducted on animals [20] has demonstrated that 

orexin neurons are responsible for the regulation of size 

of the pupil, eyelids positioning, and perhaps 

convergence and proper eye posture through the 

function of motoneurons of various muscle fibers. As a 

consequence of this, the awake state is further 

demonstrated by the activity and movements 

contained within the eyes. Furthermore, multiple 

investigations [21] have demonstrated that, it is through 

the stimulation of the autonomic nervous system (ANS) 

through links to the ventrolateral medulla (VLM) and 

spinal cord that orexin is able to modulate alertness in 

the ANS. This stimulation ultimately leads to the 

suppression of sleep. The alterations in commiserative 

activity are subsequently manifested by modifications 

in face musculature and perspiration secretory organ 

function. 

Figure 3 Neuronal mechanism of consciousness [22] 

 

 

1.1.2 Detection of Microsleep 

 

Microsleeps refers to a brief period of unconsciousness 

and plays a crucial role in switching from being awake 

to falling asleep. The duration of a microsleep 

occurrence can range from a few seconds to 30 

seconds, and individuals are capable of awakening 

following such an episode. Microsleep is evident by 

both behavioral indicators, such as eyes which 

gradually drift, prolonged eye-lid closures, and head 

shrugs [23], as well as electrical changes in EEG, 

characterized by a transition from fast α and β bands to 

slower θ manners [24]. These symptoms are associated 

with the suppression of the Orexin function. Microsleep 

poses a significant risk for tasks that demand continuous 

vigilance, as individuals experiencing microsleep 

episodes are typically oblivious to them and maintain a 

false perception of wakefulness throughout [25]. This is 

a common occurrence among individuals with 

Excessive Daytime Sleepiness (EDS). 

Traditionally, the requirement of integrating many 

sensors on the head of the user in order to record 

various biomarkers for precisely detecting microsleep 

poses difficulties in developing a device that can be 

worn and is accepted in society [22]. To address this 

problem, the study employed 8-channel EEG 

equipment, which is frequently used by researchers. The 

comprehensive specification of this device is 

elaborated upon in the Data Acquisition section. 

 
1.2 Related Works 

   

A variety of strategies have been utilized in the 

mechanism of channels selection, such as the wrapper 

methodology, filtering method, hybrid strategy, 

embedding method, and human-based strategy [26]. 

Furthermore, methods for selecting channels can be 

categorized into filter and wrapper methods. Generally, 

filter techniques rely on particular requirements such as 

the fisher criteria or mutual information [27]. Wrapper 

methods are frequently used to select channels when 

combined with a specific classifier, such as a decision 

tree and evolutionary algorithm [28]. A new method 

was established for selecting EEG channels called 

Granger causality (GC), where all the GC 

computations are performed in the time domain [29]. A 

method for selecting EEG channels using the 

bispectrum technique proposed in [30]. Nevertheless, 

the impact of the various ranges of frequencies of the 

filter on the calculation of the bispectrum is overlooked. 

Another method was investigated by Liu et al., in [31], 

that utilizes Fisher's criterion to automatically choose the 

most suitable subject-specific distribution of channels. In 

essence, current methods for channel selection are 

either inefficient or shortage a neurophysiological 

foundation. 
Pham et al., [32] developed WAKE, a hardware 

apparatus worn behind the ears that can effectively 

distinguish genuine EEG signal from other types (EMG, 

EOG, EDA) and achieve precise classification with high 

accuracy. Along with that, the combination of features 

has been employed to identify fatigue based on EEG 

activity, changes in pupil size, and movements of the 

eye and eyelid [33]. Reservoir computing, employing 

echo state systems, has also been employed to attain 

outstanding results [34]. Kweon et al., [35] proposed an 

alternative methodology utilizing DSN, U-Net, and tSNE 

to address the issue of data imbalance. Jabbar et al., 

[36] aimed to develop CNN models with reduced 

computational complexity suitable for deployment on 

resource-constrained embedded devices, such as 

smartphones and automobile dashboards. A mobile 

application capable of accurately detecting 

microsleep using standard techniques has also been 

introduced [37]. Furthermore, there have been 

applications of combined Haar cascade and CNNs 

techniques in image processing [38]. Malafeev et al., 

[39] achieved high accuracy in distinguishing 

microsleep episodes from alertness by utilizing EEG and 

EOG data. They employed a CNN-LSTM model that was 
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trained on data obtained from seventy-six individuals. 

EEG-based interfaces between brains and computers 

have also been utilized in conjunction with humanoids 

and robots for diverse objectives [11]. 

Conversely, the effectiveness of multiple linear and 

nonlinear single classification models, such as Decision 

Tree (DT), Support Vector Machine (SVM), Neural 

Network, Hidden Markov Model (HMM), and Fisher 

Discriminant Analysis, has been evaluated in predicting 

driver weariness using EEG signals [40]. Tuncer et al., [41] 

employed a generic KNN classifier to categorize the 

retrieved characteristics based on EEG readings 

gathered while the person was awake and sleepy. 

Although, channel selection using KNN classification is a 

relatively recent notion in the identification of 

microsleep in humans using EEG signal.     
  
 

2.0 METHODOLOGY 
 

This study utilized its own dataset, which was collected 

by considering a variety of ages and genders to 

enhance the reliability and validity of the results we 

obtained. The specifics of data collection processes, 

device specifications, and experimental protocols are 

addressed in sections 2.1, 2.2, and 2.3. 
 

2.1 Participants and Experimental Protocol 

 

A total of ten individuals, including undergraduate 

students, postgraduate students, and faculty members, 

ranging in age from 22 to 55 years old, and without any 

previous medical conditions, were selected to 

participate in the EEG signal collection sessions. The 

individuals who participated were selected exclusively 

from the Pekan Campus of Universiti Malaysia Pahang 

Al-Sultan Abdullah. They were instructed to abstain from 

consuming any form of medication or substances, such 

as alcohol or coffee, both prior to and during the period 

of experimentation. The participants lack any medical 

history of psychiatric, neurological, or physical ailments 

and possess either normal or correct visions. Prior to 

enrolling in the trial, the subjects were given informed 

permission. The research investigation received ethical 

approval from the IIUM Research Ethics Committee 

(IREC 2023-239). The experiment took place in the 

Applied Electronics and Computer Engineering 

Laboratory and Signal Processing Laboratory at the 

Faculty of Electrical and Electronics Engineering 

Technology, Universiti Malaysia Pahang Al-Sultan 

Abdullah. These labs provided a disturbance-free 

environment for the individuals who participate in the 

experiment and maintain concentration during the 

sessions. The experimental conditions were carefully 

controlled to maintain a tranquil setting devoid of any 

auditory disturbances, while also maintaining a 

comfortable ambient temperature, in order to promote 

relaxation among the participants. The participant was 

instructed to adopt a comfortable posture and remain 

still, refraining from any physical movement or eye 

blinking so order to minimize the occurrence of noise or 

undesired signals during the experiment [42]. 

 
2.2 Data Acquisition 

 

The EEG data was acquired by using an eight-channel 

wearable EEG headset equipment called the Unicorn 

Hybrid Black, shown in Figure 4. Several researchers 

have previously utilized this equipment in their research 

projects [43 – 44]. The device undergoes sampling at a 

resolution of 24 bits and a rate of 250 Hz per channel. 

The data has been assessed and obtained through the 

licensed Unicorn Suite software, specifically version 

1.18.0.2085. Figure 5 is a representation of the user 

interface that is included in the Unicorn Suite program. 

 

 
Figure 4 Eight-channels wearable EEG headset Unicorn Hybrid 

Black device 
 

 

A personal computer was connected to the Unicorn 

Hybrid Black device through the use of the Bluetooth 

interface that had been integrated inside the device. 

Eight channeled EEG signals were captured at the 

following electrode positions: Fz, C3, Cz, C4, Pz, PO7, OZ, 

and PO8. These positions correspond to the channels 

CH1, CH2, CH3, CH4, CH5, CH6, CH7, and CH8. Figure 6 

presents a visual representation of the channel 

placements. An individual experiences instances of 

microsleep, which have been recorded and illustrated 

in Figure 7. 

 

 
Figure 5 User interface of Unicorn Suite software while 

recording participants’ data 
 



170                                Md Mahmudul Hasan et al. / Jurnal Teknologi (Sciences & Engineering) 86:6 (2024) 165–177 

 

 

All of this work was carried out using a laptop that was 

equipped with a central processing unit (CPU) of 

Intel(R) Core(TM) i3-6006U, 12 gigabytes of random 

access memory (RAM), and the Windows 10 operating 

system. 

Figure 6 Location of the eight electrodes Unicorn Hybrid 

Black (marked in green): Fz, C3, Cz, C4, Pz, PO7, OZ, and 

PO8, according to the international 10–20 system 

 

 

2.3 Data Preparation 

 

This experiment was carried out for a total of around 

four hours with ten participants (twenty to twenty-five 

minutes for each), and the participants were asked to 

enter the KSS (Karolinska Sleepiness Scale) number that 

corresponds to the microsleep condition and the level 

of somnolence that they experienced. The validation 

set is comprised of only two classes, which are denoted 

by the numbers 0 (Wakefulness) and 1 (Microsleep). This 

is because the primary objective of this experiment is to 

identify EEG measurements that correlate to 

microsleeps. In accordance with this, this study is 

required to categorize them as either wakefulness or 

microsleep. The KSS value of '0' relates to a value that is 

less than 7, while the KSS value of '1' refers to a value 

that is more than or equal to 7. Because each 

participant is accountable for meticulously entering 

their value into the KSS scale, investigators are unable 

to make certain that all of the participants will have 

entered the appropriate KSS value. One subject can 

submit a KSS number that is greater than or equal to 

seven for a specific level of sleepiness, while another 

subject can enter a KSS value that is less than six for the 

same level of sleepiness. 

 

Figure 7 Microsleep occurrences captured during data 

recording 

 

 

In order to catch the beginning of the sleep cycle 

during the data preprocessing time, the study captured 

the frequency change from 8-13 Hz (alpha band) to 4-

7 Hz (theta band). This change reflects the beginning of 

the sleep cycle. This study conducts experiments with 

shift part as microsleeps in order to identify the change 

in the EEG signals that take place throughout this 

transition (from alpha to theta). This is because 

microsleep is characterized by frequency range that 

falls between 4 and 7 Hz. 

 

 

 

Figure 8 Comprehensive framework of the present 

investigation 

 

 

Moreover, Figure 8 illustrates the complete 

sequence of steps that comprise this study. This work 

aspires toward improving the accuracy of the 

classification of binary-class EEG data that includes 

microsleep and wake conditions. In order to reduce the 

operational spending, three separate time frames have 

been chosen. This investigation has employed three 

distinct time frame intervals, namely 0.5 seconds, 0.75 

seconds, and 1 second. To determine the minimum 

duration depicted in Figure 9. The study utilized a novel 

channel selection technique called correlation 

coefficient analysis. Once the most meaningful channel 

has been chosen, extraction of features process should 

be applied to the EEG data. The current study has 

retrieved the feature using Fast Fourier Transform (FFT). 

With the intention to mitigate the issue of overfitting, this 

work has implemented a five-fold cross-validation 

strategy. In the first iteration, the datasets have been 

divided into two parts: 20% of the feature vectors are 

used for testing, while the remaining 80% are used for 

training. In a similar manner, an additional 80% of the 

feature vectors are utilized for the training, while the 

remaining 20% have been assigned to the test in the 

upcoming iteration. This process is iterated until the test 

encompasses all functionalities. The K-Nearest Neighbor 

(KNN) classification model has been employed to 

categorize the extracted features. The training model 

has been affirmed through rigorous testing sessions, 

while several metrics have been employed to assess its 

success. Afterwards, a range of measures was used to 

assess the effectiveness of the classification model. 
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2.4 Correlation Coefficient 

 

The detection of brain activations related to tasks is best 

accomplished using correlation-based methods [45]. 

The intention of this step is to reduce the number of EEG 

channels by excluding the channels which have 

minimal correlation with each other during trial. It is 

assumed that the channels related to microsleep 

conditions carry distinct information which remains the 

same in all trials. When comparing various channels, it is 

possible that other channels may have minimal similar 

features. The correlation coefficient is employed to 

ascertain similarity, relying on this premise. Hence, our 

whole focus lies in the resemblance between any two 

channels, disregarding their directional impact. Prior to 

anything else, normalization needs to be 

accomplished. The EEG signal obtained from different 

individuals exhibit temporal variations in their 

amplitudes. Normalization is an effective strategy for 

minimizing this unpredictability. For the purpose of 

normalizing the mean of all the data to zero and the 

standard deviation (STD) to one, the Z-score 

normalization is that which is utilized [28]. The Z-score has 

been determined by taking Equation (1) into 

consideration. 

 

𝑍𝑥𝑦  =  𝑆𝑥𝑦 − 𝑚𝑒𝑎𝑛𝑥 (1) 

 

Where 𝑆xy represents the 𝑦th sample value of the 𝑦th 

channel, meanx defines mean value of the 𝑦th channel, 

and 𝜎𝑥 indicates STD of the 𝑦th channel. Furthermore, the 

correlation coefficients are quantified. Pearson's 

correlation analysis is utilized in our approach 

throughout the process. Pearson's correlation 

coefficient is a statistical measure that quantifies the 

degree of linear association between any number of 

random variables [46]. The equation (2) provides an 

acronym for Pearson’s correlation coefficient.  

 

𝜑(𝐴, 𝐵) =
1

𝑁𝑡𝑟𝑖𝑎𝑙 − 1
∑ (

𝑋𝑖 −  A̅

𝜎𝐵

) (
𝑋𝑖 − B̅

𝜎𝐵

)

𝑁𝑡𝑟𝑖𝑎𝑙

𝑖=1

 
(2) 

Where, A and B be two variables that are observable, 

𝑁trial represents the observations number, while Ā and 
B̅ indicate the respective mean of two variables. The 𝜎𝐴 

and 𝜎B are the symbols that represent the STD of two 

variables. Within the context of our situation, the value 

of (A, B) range from 0 to 1, indicating a connection that 

is of low to high strength. Measurement of the 

correlation coefficients are carried out among every 

pair of EEG channel. During each trial, a correlation 

measurement is conducted, resulting in the formation 

of a correlation matrix R of dimensions N × N. The mean 

value for each row can be derived from this matrix. The 

row i with the greatest mean correlation can be 

determined. This analysis indicates a strong correlation 

between channel-i and other channels, emphasizing 

that channel-i holds considerable importance. By 

applying this criterion, this study categorized 𝑁selected 

channels into a unified channels class that exhibit a high 

degree of correlation. After conducting 𝑁trial trials, a 

total of 𝑁trial × 𝑁selected channel channels were recorded. The 

𝑁selected channel channels are chosen based on their highest 

frequency of appearance, considering that most 

channels are repeated. Consequently, the data 

dimensionality decreased from 𝑁trial × 𝑁channel × 𝑁sample to 

𝑁trial × 𝑁selected channel × 𝑁sample. It will make the process of 

feature extraction more efficient while also reducing 

the amount of time it takes. The following is an 

expression of the flowchart of the algorithm that has 

been proposed, is illustrated in Figure 10. 

 

Figure 9 Time-varying depiction of participants' normal and microsleep data 
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Figure 10 Flowchart of the suggested method for selecting the 

channel 

 

 

2.5 Fast Fourier Transform (FFT) 

 

For the present study, the feature has been extracted in 

terms of Fast Fourier Transform (FFT). Applications of the 

FFT can be found in a variety of domains, including 

digital signal processing, the resolution of partial 

differential equations, and the development of 

algorithms to multiply integers in huge numbers. The FFT 

is a technique that computes discrete Fourier transforms 

(DFT) in a quick and effective manner. Because the 

Fourier transform is employed for demonstrating the 

domain of frequencies because numerous signals in a 

transmission system are continuous in the time domains 

[47]. Figure 11 shows the variation of time and 

frequency domain signals. 
 

 

Figure 11 EEG time and frequency domain signals 

FFT is a highly efficient technique for handling and 

evaluating data, such as EEG signals, that are in the 

shape of a sine wave. Previous research has 

demonstrated its effectiveness in real-time applications 

due to its greater performance compared to other 

approaches. Nevertheless, it is not appropriate for 

analyzing brief EEG signal. The FFT is mathematically 

expressed in Equation (3).  

 

𝑆(𝑓) = ∫ 𝑠(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡 (3) 

 

The complex changes that are carried out by DFT can 

be simplified with the help of FFT. To provide a point of 

comparison, the complexity of the transformation is N2 

when utilizing DFT. Moreover, by utilizing the FFT 

approach and achieving shorter transformation times, 

the level of complexities of the process of 

transformations are significantly reduced to (N) log (N). 

 

2.6 K - Nearest Neighbor (KNN) 

 

The K-Nearest Neighbor (KNN) algorithm is a 

classification approach that assigns objects to classes 

on the basis of the training data that is nearest to the 

item in question. KNN demonstrates superior 

performance in classification problems by adjusting the 

positions of nearest neighbors considering sampling 

data [48]. The information is then supplied with a 

measurement of interspace to be integrated into a 

mathematical computation. Euclidean distance is 

employed for the computation in this categorization. 

The training that has the smallest interspace are referred 

to as neighbors and subsequently arranged in order 

from the nearest distance to the longest distance. Each 

neighbor is distinct from one another or similar 

individuals. The object being classed corresponds to the 

same neighbors with the highest number amongst k 

neighbors [49]. When attempting to determine the 

neighbor, it employs distance metrics such as the 

Euclidean distance, as specified in Equation (4).  

The variable D (a, b) represents the distance between 

facilities a and b, where ak - bk denotes the two 

coordinates a and b of variable k (k = 1,3,5,… n). So as 

to prevent misinterpretation, it is necessary for the value 

of k to be an odd number, but the number of training 

data should be even. This value is essential for 

facilitating the attainment of categorization outcomes 

based on the number of nearest neighbors. Since a 

class has the highest number of neighbors, the test data 

will be assigned the result of that class [50]. 

 

2.7 Performance Evaluation 

 

The following metrics are used for evaluating the 

classification outcomes and the performance of the 

classifier: classification accuracy (CA), sensitivity, 

𝐷(𝑎, 𝑏) = ∑ √(𝑎𝑘 −  𝑏𝑘)2

𝑁

𝑘=1

 
(4) 
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specificity, precision, recall, F1 score, MCC, and AUC, 

which are expressed in the following Equations (5-11):  

 

𝐶𝐴 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
✕100%

 (5) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 (6) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

 (7) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

 (8) 

 

The precision refers to the classifier's capacity to 

accurately identify positive samples as positive and 

negative samples as negative within the entire dataset. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

 
(9) 

 

The recall value is a measure that shows the proportion 

of positive samples that are correctly identified. 

 

𝐹1 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

 
(10) 

 

The F1 score can be described as the weighted 

average of precision and recall, with the best values at 

1 and the worst values at 0. 

The Matthews correlation coefficient (MCC) is a 

statistic that can be utilized in machine learning to 

assess the accuracy of binary classifications [51]. The 

MCC represents the correlation coefficient, which 

ranges from -1 to +1. 

𝑀𝐶𝐶

=
𝑇𝑃 ✕ 𝑇𝑁 − 𝐹𝑃 ✕ 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)

 

(11) 

 

 

Where TP, TN, FP, and FN depict the semantics of true 

positive, true negative, false positive, and false 

negative, respectively. 

 

 

3.0 RESULT AND DISCUSSION 
 

3.1 Performances in Distinct Time Windows 

 

In the beginning, the study evaluated the classification 

model’s performances by analyzing the trials of all 

subjects together. To evaluate their performance, we 

utilized three distinct time periods (0.5s, 0.75s, and 1s) for 

the selection process. In section 6.2, the outcome of the 

channel selection procedure is explained. Figure 12 

demonstrates that the three time periods attained 

accuracy rates of 98.28%, 98.13%, and 98.00% 

respectively. For the purpose of optimizing the 

classification accuracy and minimizing the duration of 

each trial, this investigation has selected a time window 

of 0.5 seconds. This smaller time window makes the 

framework speedier by lowering the sample numbers in 

every trial. Therefore, the remaining analysis of this 

current investigation has been constrained to a time 

frame of 0.5 seconds. 

 

Figure 12 Classification accuracy in three different time 

windows 

 

 

The collective trials of all subjects were utilized to 

assess the performances of the classifier. This research 

employed two distinct states, namely normal and 

microsleep. During the labelling process, the states of 

normal and microsleep have been represented by the 

numbers 1 and 2, respectively. The classifier's 

effectiveness has been evaluated employing the k-fold 

cross-validation strategy. The value of k in the k-fold 

cross-validation procedure has been predetermined as 

5 for the present study. The confusion matrix of the KNN 

classification model is displayed in Figure 13, which 

provides an illustration of the misclassification details. 

 

 
Figure 13 Confusion matrix of KNN classifier 

 

 



174                                Md Mahmudul Hasan et al. / Jurnal Teknologi (Sciences & Engineering) 86:6 (2024) 165–177 

 

 

Alongside determining the degree of accuracy that the 

classifier possessed in terms of classification, this study 

also investigated its efficacy by employing a variety of 

effectiveness metrics. This study utilizes many 

performance assessment metrics, such as sensitivity, 

specificity, precision, F1-score, MCC, kappa, and AUC. 

Figure 14 depicts the performances metrics of the KNN 

classification model, which are measured using several 

evaluations of performance indications. The sensitivity, 

specificity, precision, F1-score, MCC, and Cohen's 

Kappa have values of 0.9994, 0.9995, 0.9995, 0.9995, 

0.999, and 0.999 correspondingly. Schematic 

representation of the receiver operating characteristic 

(ROC) of the KNN classification model is depicted in 

Figure 15. The reason behind the improved accuracy of 

a classifier can be deduced by analyzing the true 

positive rate against false positive rate curve for each 

class on the ROC curve. 

 

 

 

Figure 14 Performance of the KNN classifier with different 

metrics 
 

 

Figure 15 Receiver operating curve (ROC) of KNN classifier 
 

 

3.2 Channel Selecting Algorithm Performances 

 

This experiment utilized a total of 8 EEG electrodes to 

produce the EEG datasets. Electrode selection is crucial 

for minimizing the computational load, as not all 

electrodes transmit the needed information. The 

electrodes are organized based on their significance. 

Therefore, the Oz electrode provides the most 

substantial information compared to the others. Upon 

prioritizing the electrodes, this study computed the 

accuracy of the KNN algorithm. Table 1 presents the 

categorization accuracy obtained using different 

arrangements of electrodes. The Oz electrode, chosen 

based on the correlation coefficient, has obtained an 

accuracy rate of 95.37%. The attained precision utilizing 

a solitary electrode is quite promising. 

 
Table 1 Accuracy in classifying the selected electrode 

 

Selected 

electrodes 

number 

Name of electrodes 
Accuracy 

(%) 

1 OZ 95.37 

2 OZ, PO8 96.15 

3 OZ, PO8, PO7 98.22 

4 OZ, PO8, PO7, Pz 98.22 

5 OZ, PO8, PO7, Pz, C3 98.25 

6 OZ, PO8, PO7, Pz, C3, Cz 98.28 

7 OZ, PO8, PO7, Pz, C3, Cz, 

C4 

98.27 

8 OZ, PO8, PO7, Pz, C3, Cz, 

C4, Fz 

98.28 

 

 

However, the objective of this research was to 

provide a structure to identify microsleep by utilizing 

EEG readings. While EEG signals can be reliably utilized 

for detecting microsleep, this approach has several 

limitations, such as increased processing expense and 

the potential for classifiers to overfit. To overcome these 

challenges and obtain high classification accuracy, a 

combination of the channel selecting procedure, 

feature extracting techniques, and classification model 

should be utilized optimally. In addition, reducing the 

duration of each trial would enhance the system's 

speed. Hence, this study presents a new technique for 

EEG channel selection to detect microsleep. The K-

nearest neighbors (KNN) classifier, when applied to the 

dataset, yielded a classification accuracy of 98.2%. This 

high accuracy was achieved using only three 

specifically chosen channels within a time window of 

0.5 seconds. The three prominent channels were 

selected based on their correlation coefficient. To the 

best of the authors' knowledge, this may be the first 

research investigation which presents correlation 

coefficient as selection of channels technique for 
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microsleep identification based on EEG signal with the 

greatest accuracy in a compact time frame. The 

strategy that has been designed has the capacity to 

provide a novel method for monitoring an individual's 

microsleep or wake state using an EEG signal. 

The following are the technical benefits of the 

current investigation: 

1) The proposed system attained the utmost accuracy, 

specifically 98.28%, within a time window of 0.5 seconds. 

The system's speed is enhanced by decreasing the 

number of samples in each trial within this limited time 

frame. 

2) The KNN method can be effectively utilized to identify 

microsleep using EEG data, because of its effectiveness 

and resilience. 

3) Nevertheless, in terms of speed during testing, this 

method demonstrated comparable performance to 

other classification algorithms. The test duration is not 

only short, but it is also independent of the training 

sample. In addition, the solution given here is also 

helpful for portable devices. 

4) The suggested channel selecting approach identifies 

mostly associated channel through correlation analysis. 

The suggested channel selecting procedure has 

demonstrated exceptional accuracy using only 3 

electrodes, which can significantly enhance the 

efficacy of the microsleep detection technique utilizing 

EEG. 

While the suggested method has the potential to 

effectively detect microsleep, it also has certain 

limitations. Regrettably, the study's usefulness is 

impeded by the restricted number of subjects and 

dataset size. Further inquiries should be undertaken to 

ascertain the efficacy of the proposed technique on a 

substantial sample size. Although the EEG exhibits very 

susceptible characteristics to artifacts, no artifact 

reduction technique was implemented in this study. 

Consequently, the presence of noisy EEG signals may 

lead to a reduction in accuracy. Various methods for 

removing artifacts can be used to address this problem, 

which requires further investigation. This study will assess 

the effectiveness of the method by considering multiple 

bands of frequencies and selections of time frame 

automatically. These factors have the capabilities to 

substantially reduce the computational complexities of 

the suggested approach. This study will further 

investigate this multi-parameter optimization difficulty in 

our future study. 

 

 

4.0 CONCLUSION 
 

The correlation coefficient method, combined with FFT 

feature extraction and KNN classification, shows 

promise in enhancing microsleep detection accuracy 

using EEG signals. Through a trial separation of time 

intervals (0.5s, 0.75s, and 1s), this technique achieved 

remarkable accuracy of 98.28% using just three 

electrodes within a 0.5-second window. This suggests 

that the proposed approach is effective in evaluating 

wakefulness and detecting microsleep episodes 

efficiently. By leveraging physiological measurements 

like EEG, this methodology offers a reliable and 

computationally efficient means of assessing alertness 

levels in various contexts, from driving safety to 

workplace productivity monitoring. 
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