
13LINEAR MATRIX INEQUALITIES IN ROBUST UNIFIED SMOOTH SLIDING MODE

Jurnal Teknologi, 48(D) Jun 2008: 13–28
© Universiti Teknologi Malaysia

LINEAR MATRIX INEQUALITIES IN ROBUST UNIFIED
SMOOTH SLIDING MODE CONTROLLER DESIGN

SEE SIEW MIN1 & JOHARI HALIM SHAH OSMAN2

Abstract. A wide range of problems encountered in system control theory can be reduced to
a few standard convex or quasiconvex optimisation problems involving linear matrix inequalities
(LMI). With recent developed of interior point methods, the optimisation problems can be solved
numerically very efficiently. One of the applications of the LMI may be seen in solving the sliding
mode control problems. The sliding mode control system is capable of total invariance to the
matched uncertainties while remain in the sliding mode. But the system may still face the undesirable
distractions cause by the mismatched uncertainties, and chattering problem. In this paper, the
sliding surface is designed with integration of an optimal guaranteed cost H infinity criterion to
attenuate the mismatched disturbances. The guaranteed cost surface is derived from a convex
optimisation procedure formulated as an LMI problem. A unified smooth control law is applied to
solve the chattering problem. The results showed that the controller may improve the performance
with total chattering elimination and mismatched disturbances rejection.

Keywords: Linear matrix inequalities (LMI), sliding mode control, mismatched uncertainties,
chattering free, optimal guaranteed cost H infinity criterion

Abstrak. Sebahagian besar masalah yang dihadapi dalam teori kawalan sistem boleh
dikurangkan kepada beberapa masalah pengoptimuman cembung atau kuasi-cembung piawai
yang melibatkan ketaksamaan matriks lelurus (LMI). Dengan perkembangan terbaru tentang cara
titik dalaman, masalah pengoptimuman tersebut dapat diselesaikan secara efisien dengan kaedah
berangka. Satu daripada aplikasi LMI boleh dilihat dalam penyelesaian masalah kawalan ragam
gelincir. Sistem kawalan ragam gelincir berkemampuan supaya tidak terpengaruh secara keseluruhan
oleh ketidakpastian padanan apabila berada dalam ragam gelincir. Akan tetapi, sistem masih
menghadapi gangguan yang tidak diingini apabila diusik oleh ketidakpastian tidak terpadan, serta
masalah gelugutan. Dalam kertas kerja ini, permukaan gelincir direka bentuk dengan integrasi
suatu kriteria H infiniti terjamin kos optimum untuk mengurangkan gangguan tidak terpadan.
Permukaan kos terjamin tersebut diterbitkan daripada prosedur pengoptimuman cembung yang
diformulasikan sebagai masalah LMI. Satu kawalan licin seragam diaplikasikan untuk menyelesaikan
masalah gelugutan. Keputusan menunjukkan bahawa pengawal tersebut dapat memperbaiki prestasi
dari segi penyingkiran gelugutan secara keseluruhan dan penyisihan gangguan tidak terpadan.

Kata kunci: Ketaksamaan matriks lelurus (LMI), kawalan ragam gelincir, gangguan tidak terpadan,
bebas gelugutan, kriteria H infiniti terjamin kos optimum
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1.0 INTRODUCTION

It is well known that sliding mode control is capable of rendering uncertain systems
to be in total invariance to the matched uncertainties while remains in the sliding
mode. However, the system may still face the undesirable distractions caused by the
chattering problem due to the discontinuous fast switching action of the control
input across the switching surface, and the controller may fail if the system suffers
from mismatched uncertainties. Various strategies have been proposed by numerous
researchers to solve the mismatched problem [1-7]. In [7], Takahashi and Peres
proposed an H∞-norm guaranteed cost design for sliding surfaces in variable structure
controllers which is suitable for approximate rejection of mismatched uncertainties.
A convex optimisation approach via linear matrix inequalities (LMI) is employed in
the surface design. However, the study does not solve the chattering problem. Thus
in this paper, a sliding mode controller with a unified smooth control (US-SMC) is
proposed based on the idea of two-phase slinding mode controller by Wang and
Lee [8] and Zhang and Panda [9] together with the LMI approach to completely
eliminate the chattering problem as well as robust to mismatched uncertainties.

A wide range of problems encountered in system control theory can be reduced
to a few standard convex or quasiconvex optimisation problems involving linear
matrix inequalities (LMI). One of the applications of the LMI may be seen in solving
the sliding mode control problems. A strict LMI has the form

( )
1

0
f

o i i
i

F F Fχ χ
=

∆ + >∑  (1)

where χ ∈ ℜ ,f  ,T n n
i iF F ×= ∈ ℜ = …0, , .i f  The LMI is equivalent to a set of

f polynomial inequalities in χ, the leading principal minors of F(χ) must be
positive [10].

The LMI (1) is a convex constrain on χ, which the set ( ){ }χ χ > 0F  is convex,
so that any robust control problem with constraints of this type and a convex
performance objective can be reduced to a convex programming problem. The
convex programming problems are particularly attractive since their optimal solutions
are global and efficient algorithms such as interior-point algorithms exists for finding
optimal solutions [11].

Multiple LMIs ( ) ( ) ( ) ( )χ χ> >…1 0, , 0fF F  can be expressed as single LMI as
follows [12]:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10, , 0, , 0f fF F diag F Fχ χ χ χ   > = > >   … … (2)

Nonlinear (convex) inequalities are converted to LMI form using Schur
complements [10]. The LMI
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χ χ
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(3)

where ( ) ( ) ( ) ( )χ χ χ χ= =, ,T TQ Q R R and ( )χS  depend affinely on χ, is

equivalent to

( ) ( ) ( ) ( ) ( )10, 0TR Q S R Sχ χ χ χ χ−> − > (4)

2.0 SLIDING MODE CONTROLLER DESIGN AND MISMATCHED
UNCERTAINTIES PROBLEM

Consider the following system with uncertain parameters:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),o A o B o Et A t g t B t E t= + ∆ + + + ∆ + + ∆�x x x u d (5)

where, ( )∈ℜ ;ntx  ( )∈ℜ ;mtu  ( )∈ℜ ;ltd  ×∈ ℜ ;n n
oA  ×∈ ℜ ;n m

oB  ×∈ ℜ ;n l
oE

+ℜ × ℜ → ℜ: .n ng  , ,A B E∆ ∆ ∆  are the uncertainties associated with each matrix,
which assumed to belong to a polytopic uncertainty domain ℘, a set which is the
convex hull of finitely many points called polytope [13] defined as follows:

( )( ) ( )( ) ( )
1

1

, , , , , , ,

1, 0, 1, ,

v

A B E A B E i Ai Bi Ei
i

v

i i
i

i v

α α α

α α

=

=


∆ ∆ ∆ ∆ ∆ ∆ = ∆ ∆ ∆

℘∆ 
 = ≥ ∀ =

∑

∑ …

(6)

where ( ), ,Ai Bi Ei∆ ∆ ∆  are the polytope vertices with α= …1, , , ii v are the weights
going from zero to one and v is the number of vertices.

The sliding surface is chosen to be a linear subspace determined by the intersection
of switching surfaces Si [14], given by

( ){ }: 1, 2, ,n T
i i iS c i nψ∈ ℜ = = = …x x x 0 (7)

( ){ }
1

:
n

n
i

i

C S
=

∈ ℜ = = =∩S x x x 0ψψψψ (8)

Assumed that the matrix ≠ 0,oCB  resulting in the equivalent control ( )equ x  as
the solution to the sliding surface (8) with ( ) =� 0,xψψψψ  as below:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }1 ,eq o o A B o ECB C A g t u t E t−= − + ∆ + + ∆ + + ∆u x x t x d (9)
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Suppose that all parameter uncertainties, disturbances and nonlinearities are in
the range space of matrix Bo, that is,

( ) ( ) ( ) ( ) ( ) ( )( ),o A B o ER B R R R E R R g t⊃ ∆ + ∆ + + ∆ + x (10)

Then, the resulting reduced order sliding motion reduced to

( ) ( )( ) ( )1
o o ot I B CB C A t−= −�x x (11)

Hence, for a simple system, the following equivalent control can be used.

( ) ( ) ( )1
eq o oCB CA t−= −u x x (12)

The above sliding motion does not depend on the exogenous signal. The relation
(10) yields the famous matching condition which leads to the powerful invariance
property of matching uncertainties in sliding mode control. However, it would be
easier to investigate the invariance property of sliding modes in system (5) by
considering its behaviour in the space of new variables in regular form, after
performing of canonical transformation.

By assumption, Bo has full rank m, so that there exists an orthogonal matrix of
elementary row operations n nT ×∈ ℜ  such that

2 2

0 0T
o B

B
TT TB T

B
   − = ∆ =   ∆   

I (13)

where 2
m mB ×∈ ℜ , 2 0B ≠ . Defined a transformed state variable, T=x x , the

system (5) and switching function (8) becomes

( ) ( ) ( ) ( )T T
o A o B o ET A T Tg T T B T E= + ∆ = + + ∆ + + ∆�x x x u d (14)

( ) 0TCT= =x xψψψψ (15)

Consider some relaxations in matching condition (10), such that only

( ) ( )( ) ( ),B oR R g t R B∆ + ⊂x (16)

but ( ) ( ) ( ) ( )A o E oR R E R R B∆ + + ∆ ⊄ (17)

Then the equation of ideal sliding motion becomes [15] :

( ) ( ){ } ( )1
11 11 12 12 2 1 1 11 1A A EA A C C E

−= + ∆ − + ∆ + + ∆�x x d (18)

 1
2 12 1C C
−= −x x (19)
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with
11 12 11 12

21 22 21 22
; ;

A AT T
o A

A A

A A
TA T T T

A A

   ∆ ∆
= ∆ =   

∆ ∆      

( ) ( )
( )

1 1 2 1 1

2 22 1 2

,
; ; ;

,

T T
ET

o E
T T E

g T T E
Tg T TE T

Eg T T

     ∆ = = ∆ =     ∆       

x x
x

x x
(20)

1 2 2; 0TCT C C C = ≠ 

It is clearly seen that the sliding motion equations (18-19) are not free from the
effects of disturbance factors. Thus, combine system of control have to be implemented
to compensate the effect of the mismatched elements.

3.0 LMI SOLUTION TO SWITCHING SURFACE DESIGN

A controlled output vector ( ) pt ∈ ℜz  is defined, to introduce the H∞ guaranteed

cost design, in which

( ) ( )t L t=z x (21)

and ( ) ( ) ( )z s H s d s= (22)

H(s) is defined as the closed-loop transfer function from d to z for the system in
sliding motion, in which valid for t > 0, as the reaching time is defined as τ = 0. z(s)
and d(s) are the Laplace transforms of z(t) and d(t), respectively.

An H∞ optimal guaranteed cost surface, Sop is derived so that the closed-loop
transfer function H(s) has minimal H∞ norm for the worst case uncertainty matrices

, :A E∆ ∆

{ }: | n
op opC = ∈ ℜS x 0 x (23)

( )
,

arg min max
A E

op
C

C H s ∞∆ ∆
= (24)

Due to the present lack of better synthesis methods which exactly solve the problem
defined above, the resulting surfaces will actually be suboptimal. The available
methods constrain to the solutions to be found inside the class of quadratically
stabilising controllers [5], where

{ }: |n
qop qopC∈ ℜ =S x x 0 (25)

( )
,

arg min max
q A E

qop
C C

C H s ∞∈ ∆ ∆
= (26)
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Cq is the set of quadratically stabilising sliding controllers. The solution will leads
to an upper bound for the hypothetical optimal controller cost. If 0A E∆ = ∆ = , the
optimisation problem becomes the exact H∞ optimal control [5].

The matrix L in (21) is assumed to be constrain to

2 2 0
T

L L > (27)

which is relevant for the H∞ guaranteed cost optimisation problem. Assumption (27)
must be taken in order to make the H∞ a non-singular problem. Hence, from equations
(18) and (21) yield,

i i( ) i1 21 1A A K E= − +�x x d (28a)

( )1 2 1L L K= −z x (28b)

in which, i1 11 11AA A= + ∆ , i 2 12 12AA A= + ∆ , i 1 1EE E= + ∆ , and 
1

2 1.K C C
−=

From assumption (6), matrices i1A , i 2A , and iE  also belong to polytope-type set
with known vertices. This set is defined as

i
i i i( )( ) i i i( )1 2 1 2

1

1

, , , , ,

1, 0, 1, ,

v

i i ii
i

v

i i
i

A A E A A E

i v

α α

α α

=

=

 
= 

 ℘ ∆  
 = ≥ ∀ =  

∑

∑ …
(29)

The vertices of polytope i℘ correspond to the vertices of ℘, defined in (6),
transformed through the mapping T, with the same weighting αi [6].

The design of a robust sliding mode control is possible if there exists a ( )m n mC × −∈ ℜ
which guarantees robust stability of (28) and there exists a control law K which
makes the sliding function asymptotically stable for a specified sliding surface [16].

Definition 1: [17]
Let the constant γ > 0 be given. The system (28) is said to be stabilisable with disturbance
attenuation γ if there exists a state feedback matrix K such that the following conditions
are satisfied.

(i) The matrix i i( )1 2A A K−  is a stable matrix.
(ii) ( )H s γ∞ <  (from Small Gain Theorem).

The proof of Definition 1 can be found in [17].
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Definition 2: [7]
The uncertain system defined in (28) with the pair i1 1,L A  observable is said to be
quadratically stabilisable with disturbance attenuation γ  if there exists ( ) ( )n m n mP − × −∈ ℜ ,

0TP P= >  and m n mK × −∈ℜ  such that

i i( ) i i( ) ii ( ) ( )2
1 2 1 2 1 2 1 2 0,

T TT
A A K P P A A K P EE P L L K L L Kγ −− + − + + − − < (30)

i i i( ) i1 2, ,A A E ∈℘

Define the set

i i( ){ }1 2|q qK K K A A K is quadratically stable∆ ∈ − (31)

An uncertain linear system is said to be robustly stabilisable if 0qK ≠ . The set Kq is
composed by all matrices K which stabilise each pair of i i i( ) i1 2, ,A A E ∈℘ [18].

The optimal H∞ norm guaranteed cost, γqop, is defined as, and can be found from

( ){ }inf ,qop qH s K Kγ γ γ∞= < ∈ (32)

The technique of finding ∞
)(sH involves a search over γ > 0. The famous

bounded real lemma provides this characterisation [19]. The optimal guaranteed
cost control problem in Definition 2 can be solved with linear matrix inequality
(LMI) approach.

The inequality developed in (30) is equivalent to

i i( ) i i( ) i i ( ) ( )2
1 2 1 2 1 2 1 2 0

T TT
i i i i i iA A K P P A A K P E E P L L K L L Kγ −− + − + + − − <

(33)

for each vertex 1, ,i v= … of set i i i i( )1 2
1

, , .
v

i i ii
i

A A Eα
=

℘ = ∑
The inequality (33) is not linear and is not jointly convex in (P, K, γ). However,

with the bijective transformation

1 1, andY P Z KP− −∆ ∆ − (34)

equation (33) becomes

i( ) i( ) i i

( ) ( )

1 1 1 1 1 1
1 12 2

2 1 1
1 21 2 1

T T
i i i ii i

T

A A ZY Y Y A A ZY Y E E Y

L L ZY L L ZYγ

− − − − − −

− − −

+ + + +

+ − − <
(35)
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Multiplied (35) on the left and right by Y, gives:

i( ) i( ) i i

( ) ( )
i i i i( ) i i

( )( )

1 1
1 12 2

2 1 1
1 2 1 2

1 2 1 2

2
1 1 1 2

0,

0

T T
i i i ii i

T

T T TT
i i i i i i

T TT

Y A A ZY A A ZY Y E E

Y L L ZY L L ZY Y

Y A Z A A Y A Z E E

Y L Z L L Y L Z

γ

γ

− −

− − −

−

+ + + +

+ + + <

− + + + −

− + + >

(36)

Refer to the Schur complements in (3) and (4), with

i i i i( ) i ( )1 2 1 2 1 2
0

; ; ,
0

T T T T TT T
i i i i iQ Y A Z A A Y A Z S E Y L Z L R

δ
  = − + + + = + =      

I
I

and define

2 ,δ γ∆ (37)

the inequality in (33) can be written in LMI form as

( )

i i i i( ) ( )
i

( )

1 2 1 2 1 2

2

, , 0 0

0

T T T TT T
i i i i i

T
ii

i

A Y Z A A Y A Y E Y L Z L

Z Y E I

L Y L Z I

δ

δ

 − + + + + 
 

Λ = > 
 + 
  

(38)

Associated to each LMI in (38), there is a set of solution Vi, defined as

( )
( )

, ,
, 1, ,

| , 0 ; 0; , , 0

m n m n n

i
i

Z Y
V i v

Y I Z Y

δ
ε ε δ δ

× − × ∈ ℜ × ℜ × ℜ ∆ ∀ = ≥ > ∈ ℜ > Λ >  
… (39)

The parameter ε above is a small positive number, and has been introduced to

make Vi a closed set, in which a search algorithm is guaranteed to converge [20].

Each vertex of the uncertainty polytope i i i i( )1 2
1

, ,
v

i i ii
i

A A Eα
=

℘ = ∑  is verified by the

set Vi mentioned accordingly. The simultaneous satisfaction of the inequality for all
vertices, i.e. the intersection of such vertices yields the overall solution for the uncertain
system control problem.
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1

v

i
i

V V
=

∆∩ (40)

Theorem 1[7]: : : : : The set V is convex.
Proof: Proofs of the theorem can be found in [7] and Lemma 6.1 of [18].

Theorem 2 [7]: V ≠ ∅  if and only if the uncertain system in (28) and is
quadratically stabilisable with disturbance attenuation γ in which
the stabilizing gain to assure such attenuation is given by

1K ZY −∆ − .

Proof: The proof of Theorem 2 is quite straight forward from Definition 2, bijective
transformation of (33) and Theorem 1, since V yields the solution for ( ), , 0Z Y δΛ > .
When ( ), ,Z Y δ  varies in V then all stabilising state feedback gains are generated
from 1K ZY −= − . If such a matrix does not exist, it is clear that V = ∅ .

Remark 1 [7]: It should be noted that the constraints ( ), , 0i Z Y δΛ >  are defined
only for the uncertainty polytope vertices. However, any triple ( ), ,Z Y δ  satisfying
such constraints also satisfied any constraint ( ), , 0Z Y δΛ > , defined with the

uncertain parameter vertices i i i( )1 2, ,i i iA A E  replaced by any parameters i i i( )1 2, ,A A E
chosen inside the convex polytope. This occurs due to the fact that matrices iΛ  are
affine in these uncertain parameters. The consequences of the validity of the constraints
inside the whole polytope are that both the quadratic stability and the disturbance
attenuation derived in Theorem 2 are also valid in the whole polytope.

From equations (39) and (40), the optimal H∞ norm guaranteed cost problem in
(32) is equivalent to

( ){ }inf | , ,qop Z Y Vδ δ δ= ∈ (41)

The problem can be solved using LMI Control Toolbox in Matlab® [21]. The
objective function, δ is linear to ( ), , 0Z Y δΛ > , and therefore also convex. As a by-
product of the optimisation on δ , the set ( ), ,Z Y δ  is also sub-optimal, as

( ), ,qop qop qopZ Y Vδ ∈ (42)

The controller matrix is given by

1
qop qop qop qK Z Y K−= − ∈ (43)

The corresponding sliding mode function matrix is obtain, after canonical
transformation of (18 and 19), is therefore equal to
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2 2qop qopC C K C T =   (44)

There is some freedom in the final choice of matrix Cqop. Matrix 2C  can be of any
values, for instance, provided it remains non-singular. However, the simplest method
of determining Cqop from Kqop is that employed by Utkin and Young [22]; namely,
letting 2

m mC ×= ∈ ℜI . The approach has the merit of minimising the amount of
calculation in proceeding from Kqop from Cqop and hence reduces the possibility of
numerical errors [15].

4.0 SLIDING MODE CONTROLLER WITH A UNIFIED SMOOTH
CONTROL (US-SMC) CONTROLLER DESIGN

In this section, the proposed US-SMC controller which is void of chattering
phenomenon in the control input is presented. The structure of controller is based
on the idea of the two-phase sliding mode controller by Wang and Lee [8] and
Zhang and Panda [9]. The US-SMC controller is proposed as:

( ) ( ) ( )1
s o o s inSMeqt t CB CA C Vκ κ= + = − + =u u x xψψψψ (45)

with reachability condition 0qop o sC B κ 2= <�ψψ ψ , where s 0κ >  as 0qop oC B < . It
can be seen from equation (45) that the US-SMC does not contain any switching
(including saturation) component, therefore the control input signal is expected to
be completely free from chattering phenomenon.

Theorem 3::::: The system in (5) with ( ) ( ) seqt t κ= +u u ψψψψ  is quadratically stable, if
and only if there exists n nP ×∈ ℜ , 0TP P= > , such that 0T

eq eqA P PA+ <  with

( )( ){ }1
qopeq o qop o o s o qopA I B C B A B Cκ−= − + (46)

Proof:

( ) ( )

( ) ( )( ){ } ( ) ( )1

seq

qopo qop o o s o qop eq

t t

t I B C B A B C t A t

κ

κ−

= +

= − + =�

u u

x x x

ψψψψ

(47)

Let the Lyapunov function candidate for the system is chosen as

( ) ( ) ( )T
qV t t P t= x x (48)

where x(t) represent the solution of the system and P > 0 is the solution of the matrix
Lyapunov equation ATP + PA = −Q, for a given positive definite symmetric matrix
Q > 0. Differentiating Vq(t) with respect of time,



23LINEAR MATRIX INEQUALITIES IN ROBUST UNIFIED SMOOTH SLIDING MODE

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T TT
q eq eqV t t P t t P t t A P PA t t Q t = + = + = − 
� � �x x x x x x x x

(49)

From the Rayleigh principle,

( ) ( ) ( ) ( ) 2
min

T t Q t Q tλ≤x x x (50)

gives ( ) ( ) ( ) ( ) ( ) 2
min 0T

qV t t Q t Q tλ= − ≤ <� x x x (51)

since ( ) ( ) 2
min 0Q x tλ > , with 0T

eq eqQ A P PA= − − > .
Theorem 3 explains that a system with the controller ( ) ( ) seqt t κ= +u u ψψψψ  is

guaranteed to be quadratically stable if the condition stated is fulfilled.

5.0 SIMULATIONS AND RESULTS

The designed robust sliding mode controller will be applied on the Rotary Inverted
Pendulum (RIP) model as shown in Figure 1. With the reference coordinates of the
system as shown, the mathematical model of the RIP model can be obtained as
equation (52). It can be seen that the system equation contains uncertainties,
nonlinearities and mismatched disturbances.

( )
( )

( )
( )

( )
( ) ( )

( )

2 2

2 2

0 0 1 0

0 0 0 1

25.4059 cos sin 12.75736
0 0

1 0.37565 cos 1 0.37565 cos

sin 4.54873 cos24.11471
0 0

1 0.37565 cos 1 0.37565 cos

n a aREF

p p ff pp

pp p aa

p p ffp

pp p

E

E

θ θ θ
θ θ θθ

θθ θ θθ
θθ θθ

θθ θ

 
 

  − 
   − −   =   − −
   
      

− −  

�

�
���
���

( )
( )

( )( )
( )

( )
( )

( )

2 22

22

0 0
0 0 0

23.592641.05354 sin 1
1 0.37565 cos1 0.37565 cos 0

08.41213 cos0.37565 cos sin

1 0.37565 cos1 0.37565 cos

p

ffp

p inpp

p ffp p

pp

E
V

E

θ
θ θθ

θθ θ
θθ

 
 
  + 
 
  

   
   
    
    
    + +− −   
    − −   
   −−     

� ζ








(52)
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To solve the gain matrix of the sliding mode controller proposed, a MATLAB®

program file is developed to calculate the quadratic H∞ guaranteed cost gain matrix,
solved by the LMI solver of the MATLAB® LMI Control Toolbox. The H∞ gain is
then be utilised to obtain the sliding mode gain matrix. The final results obtained
are as below:

19.4003 10qopγ −= × (53)

 [ ]0.2207 5.7878 0.3952 1.1114qopC = (54)

The actual output of the optimisation procedure is the above Cqop matrix times
103. Since the sliding surface is the null space of Cqop, it does not vary under such
scaling [7]. The sub-optimal quadratically stabilising sliding controller set, Cqop
obtained will be utilised in the SIMULINK® simulations.

The aREFθ  used to test the performance is a step input which reaches 90°, five
seconds after the simulation starts. The sliding structure constant sκ  is set to 200.
Matched and mismatched uncertainties are used in simulations to test the performance
of the controller, with Eff equals to 0.85, 0.9, and 0.95, and the external uncertainty

Figure 1 Reference coordinates of the RIP model
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( )0.05 sin 100 tζ π= (55)

The simulation results in Figures 2(a) and 2(b) show that the US-SMC renders the
system response invariant to matched uncertainty and also capable of controlling
the system inherent with mismatched uncertainty, while maintaining the system
stability, giving good tracking performance and reaching the sliding surface within
the specific period (Figure 2(c)). The simulation result (Figure 2(d)) also shows that
the chattering problem is completely eliminated with the used of the proposed
US-SMC.
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6.0 CONCLUSION

In this paper, a unified smooth sliding mode controller named US-SMC has been
developed in which the sliding surface is designed with the integration of an optimal
guaranteed cost H∞ criterion to attenuate the mismatched disturbances and at the
same time providing a chattering free control input signal. The LMI technique has
been utilised in solving the derived guaranteed cost surface from a convex optimisation
procedure. Thus, as proven mathematically and through the computer simulations
that the proposed US-SMC is robust with respect to system with matched and
mismatched uncertainties, nonlinearities and disturbances, and at the same time
eliminating the chattering control input signal prevalent in most other sliding mode
control techniques.
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