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Graphical abstract Abstract

Due to ifs various benefits, including changeable geometry, lower
production costs, faster manufacturing cycles, and enhanced
competitiveness, 3D printing technology has advanced rapidly in recent
years. The Fused Deposition Modeling (FDM) fechnique is one that is
frequently utilized in 3D printing technology. This is because compared to
other techniques, this one is the most adaptable, affordable, and easy to
apply. However, FDM components have poor dimensional and geometric
accuracy, bonds between layers have low strength, and FDM accuracy is
greatly affected by various process parameters that are often difficult to
optimize. The primary process parameters are discussed in this paper,
along with the factors that affect them and how they affect the features
of goods made using FDM printing. Therefore, it will show the opfimization
of all process parameters and methods to all printing characteristics,
namely manufacturing time, available in the current FDM study include
dimensional accuracy, surface roughness, energy consumption, and
mechanical strength. This review also presented some conclusions that
answer this field's challenges and future research directions.

Keywords: 3D printing, FDM, Optimization, Process parameters, Printing
characteristics, Method
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1.0 INTRODUCTION production cycles, and enhanced competitiveness,

Recent years have seen a rapid advancement in 3D
The method of layer-by-layer combining materials to printing technology. Binder jetting, inkjet printing,
create three-dimensional things is known as additive stereolithography (SLA), selective sintering printing
manufacturing (AM) [1]. Additive manufacturing (SLS), fused deposition modeling (FDM), and
(AM), sometimes referred to as 3D printing, has the extrusion-based printing are some of the 3D printing
power to transform industry through technology [2]. techniques [3]. A frequently employed methodology
In 1986, Hull used 3D printing for the first time [3]. Due in 3D printing technology is the Stratasys-patented
to its various benefits, such as configurable Fused Deposition Modelling (FDM) process [1]. FDM
geometries, reduced production costs, faster can make complex components from various
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materials and difficult parts in a faster production
cycle time [4]. In addition, it is also the easiest and
cheapest technique to use and the most flexible than
others [5]. Many researchers have researched
parameter optimization engaged in developing 3D
printing products. Standard parameters include fill
properties, table temperature, nozzle temperature,
print speed, and thin material thickness per layer [5].
The bed temperature, nozzle temperature, print
speed, layer-by-layer material thickness, and filament
characteristics are examples of standard parameters
[6]. Another optimization problem is, as in research
developed by Sood [7], Thus, there is a connection
between the mechanical qudlities of tensile strength,
Ts (MPaq), flexural strength, Fs (MPa), and impact
strength, Is (MPa). Using the FDM technique, models
are made by adjusting the air gap parameters, raster
width, raster angle, orientation angle, and layer
thickness [8]. Similar characteristics have also been
utiized to evaluate the impact on the radial
compression load, shrinkage percentage of the
support thickness and breadth employing Response
Surface Methodology (RSM) to measure stent flexibility,
factors of the process, such as layer thickness, printing
speed, and material composition were also used [?].
Studies that employ metal injection molded copper
(MIM) as a raw material for 3D printing based on
extrusion. Additionally, the relationship between green
density and surface roughness and the parameters of
the 3D printing process—namely, extrusion multiplier,
temperature, layer thickness, and nozzle speed—has
been explored. When the layer thickness was reduced
from 0.25 to 0.05 mm and the nozzle speed was
lowered from 100 mm/s to 20 mm/s, the green solids
rose. In a similar vein, increasing the extrusion multiplier
raises the surface roughness up to a specific degree
[10].

The opftimization criteria for the multipurpose
opfimization problem aimed at refining FDM
procedures are shape correctness and printing time in
terms of overall dimensional inaccuracy. Taking the
dimensional deviation info account, the final criterion
is developed of the created part from the
predetermined nominal due to the displacement error
of the 3D printer on the X, Y, and Z axes. The filler rafio
(%), layer thickness (mm), and deposition angle (=C)
are the independent process parameters. This
parameter is crucial for the successful operation of
FDM because The mechanical qudalities of the part
being manufactured are impacted by its
arrangement. Also, note that FDM parts' mechanical
characteristics are structure-dependent. The nozzle's
direction, which maintains the melted filament against
the X or Y axis, is determined by the deposition angle.
For every additional material addition, There is a
correlation between layer height and layer thickness.
The thickness and height of the layer largely dictate
how long the 3D printing process takes; the lower the
layer, the longer the printing time [8]. Currently,
parameter optimization of multi-material 3D printing
processes using mulfiple extruders is challenging for
FDM methods. Choosing the right multi-material nozzle

technology is sfil a difficult task. A detailed
understanding of the confrol parameters, software
capabilities, and electronic components of a 3D
printer is necessary to manufacture a viable multi-
material product. Various research methods are used
to support the creafion of good research
academically. Statistical methods and optimization
methods are used to acquire knowledge and ifs
development and discoveries that can be tested for
correctness. The primary process parameters are
discussed in this paper, along with the factors that
affect them and how they affect the features of
goods made using FDM printing. Therefore, it will show
the optimization of all process parameters and
methods to all printing characteristics, namely
manufacturing time, The highest level of surface
roughness, dimensional accuracy, energy
consumption, and mechanical strength  yet
discovered in FDM research. The results of this study will
present conclusions that answer the challenges and
the next direction of research that should be carried
out in this field.

This article includes a review of single and mulfi-
objective FDM optimization research published over
the last twenty years, from 2003 to 2023. Various
research articles use different keywords in ftifles,
abstracts, and keyword sections from various
searchable scientific  databases and relevant
published essays (journal and conference papers)
selected from four major science publishers such as
Taylor & Francis, Springer Link, Science Direct, and
Inder Science indexed by Scopus. Obtained about
120 articles and reduced to 67 research articles finally
selected for this survey. A summary of various
optimization techniques applied in a published
research article on FDM process parameter
optimization will be given here.

2.0 FUSED DEPOSITION MODELING (FDM)

Fused deposition modeling (FDM) is a method of
extruding liquid thermoplastic materials to create
components layer by layer. One kind of additive
manufacturing called FDM is thought to be the most
widely utilized method. This is because it is much
simpler and more cost-effective than other processes
and can use many different raw materials [11]. FDM is
a 3D printing technique that can produce better
output response results in terms of mechanical
attributes, surface roughness, dimensional accuracy,
and microstructure features [12]. With reference to
Figure 1, which illustrates the main components of an
FDM printer, the process will be described here. The x,
y, and z directions of FDM machines can be moved
using the build platform (green arrow), the extrusion
head (purple arrow), or a combination of the two. For
instance, whereas build platform movement
completes the Z direction, extrusion head movement
completes the X and Y directions [13].

Although the main topics of the study have been
thoroughly analyzed, there are some limitations that
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need to be noted. Adequate comparative studies on
the cost aspects of various optimization methods
used in FDM are not available. As a result, this study
does not contain any conclusions regarding which
optimization method is the most cost-efficient. The
authors did not include cost analysis as part of the
evaluation, and only concentrated on other aspects
that were studied to achieve good print quality, such
as mechanical performance, roughness level,
dimensional accuracy, printing time, or energy
efficiency.
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Extrusion head ’
movement :

Extrusion head

Filament spool
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z
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Figure 1 Main components of FDM machine [13]
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2.1 Process Parameters

Process parameters in the FDM process affect the
production efficiency and part characterization and
can be changed to modify the properties of
components that are made. Air gap, building
orientation, extrusion temperature, filler density, filler
pattern, layer thickness, shell number, print speed,
raster orientation, raster width, and heat treatment
temperature are the most often employed process
parameters in study. The main process parameters
are described below [14].
1. Air gap (AG): In the deposited layer, the space
between two neighboring rasters. The overlap of
two neighboring layers is referred to as a
negative air gap. The air gap level most often
used in various studies ranges from 0 to 0.02 mm.
2. Build orientatfion (BO): A method called wake
orientafion can be used to align the inside of a
building platform with regard to the X, Y, and Z
axes. Wake orientation is seen as a categorical
variable in certain research but as a
quantitative component in others (Figure 2).

Y ™ - = =
o --;' ' -
L H] ik}
Figure 2 Build orientation parameters level: (a) numerical;
(b) categorical [14]

3. During the FDM process, the material's flament is
heated to the exirusion temperature. The kind of
material and printing speed have an impact on
the  extrusion temperature. The  printing
temperature most commonly used in various
studies and various types of materials ranges from
190 to 250° C.

4. Infill density (ID): The exterior layer of an object
printed in three dimensions (3D). On the other
hand, the filer—also referred to as the internal
structure—is an imperceptible interior component
that is encased in an exterior layer that varies in
size, shape, and pattern. The fraction of the filing
volume made of filament material is known as
the filler's density. The fill's thickness affects the
FDM build parts' mass and strength. The infill
density level most often used in various studies
ranges from 50% to 100%.

5. Infill pattern (IP): To create a strong and durable
interior structure, different filler patterns are
applied in different areas. Hexagonal, diamond,
and linear patfterns are common filler designs
(Figure 3).

(a) (b) (c)

Figure 3 infill pattern parameters level: (a) linear, (b)
diamond, (c) hexagonal [14]

6. Layer thickness (LT): The vertical axis of FDM
machines, or the height of the layer deposited
along the Z-axis, is known as this. It typically relies
on the nozles' diameter and is less than their
diameter in extruder nozzles. The layer height
becomes the level in this process parameter and
usually the level frequently used ranges from 0.1 to
0.3 mm.

7. Print speed (PS): The length of time the exfruder
spends fraveling in the XY plane during an
extrusion. The print speed, expressed in mm/s,
dictates the printing fime. The speed levels most
often used in various studies range from 75 to 100
mm/s.

8. Raster width (RW): The term refers to the settling
bead's width. The diameter of the exfrusion nozzles
dictates this. The raster width level most often used
in various studies ranges from 0.4 to 0.7 mm.

9. Raster orientation (RO): This is the direction in which
the bed deposits material when using the FDM
machine manufacturing X-axis platform (Figure 4).

0 AT AS

Figure 4 Raster orientation parameters level [14]
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Furthermore, there are stil a lot of process
variables in FDM that have an impact on the
manufactured component quality. Here are
other FDM process parameters widely studied
and used in FDM parameter optimization
research [4].

10. Bed temperature (BT): This is the 3D printer's
base's surface temperature. The temperature
affects how well the first molding layer adheres
to the printing bed. According fo reports, when
the bed temperature is just a little bit higher than
the printed material's  glass  transition
temperature adequate adhesive qudalities are
achieved. A suitable adhesive is needed to
avoid warping parts and improve the
dimensional accuracy of details. The bed
temperature most commonly used in various
studies and various types of materials ranges
from 60 to 1050 C.

11. Contour width (CW): The outer solid shell of the
FDM part is printed as a set of confours of the
liquid material. The conftour width (Figure 5) is
the width of a contour.

12. Contour air gap (CIG): The distance between
two adjacent contours is the contour air gap

when a part's filing force is selected as many
contours.

13. The perimeter to raster air gap is the length of
fime that separates the innermost contours from
the raster fill's boundary.

14. Number of contours (NoC): Indicates how many
contours there are on a part's shell. The number
of contours that become levels in each study
that is most often used ranges from 1 fo 6.

— _?".x--_-_:'_.-__ |
=1 =

Figure 5 FDM tool path parameters [4]

The most optimum FDM process parameters are listed
below, based on the studies listed in Table 1.

Table 1 Research related to FDM process optimization based on parameters

Parameters

Authors

Layer Thickness

(7. 18], [12]. (13, [16]. (171, [18], [19]. [20], [21]. [22], [23]. [24], [25]. [26]. [27], [28]. [29], [30]. [31].
[32], [33]. [34]. [35]. [3¢]. [37], [38], [39], [40], [41], [42], [43]. [44], [45], [46]. [47]. [48]. [49]. [50], [51],
[52]. [53], [54], [55], [56], [57], [58].

Air Gap

(71, [15], (1¢]. {171, [18], [19]. [20]. [21], [23], [27], [28], [30C], [35], [38]. [40], [49], [59].

Build Orientation

[17], 18], [19]. [20]. [22]. [26]. [27]. [28]. [29]). [30]. [32], [35]. [38]. [40], [41]. [42], [43], [47], [49]. [60].
[61]. [62], [63]. [64]. [65].

Raster Width

(71, 1131, [1é]. [171, [18], [19]. [20]. [22], [23], [27]. [28]. [3Q], [34], [35]. [38]. [40], [48], [49]. [53]. [61].

Print Speed

[25], [26]. [27]. [29]. [31]. [37]. [38]. [3%]. [41]. [42], [43], [44]. [45]. [50], [51]. [52], [53]. [54], [55]. [56].
[57]. [66]. [67]. [68] [691. [70]. [71].

Raster Orientation

[8]. [15]. [16]. [18], [19]. [20]. [21], [22], [23]. [24]. [27]. [28], [30], [35], [38]. [40]. [46]. [49]. [55]. [59].
[60]. [61], [62]. [63]. [64]. [72]. [73]. [74].

Nozzle Temperature

[12], [26], [27]. [29], [33]. [37], [38]. [39], [43]. [4é], [48], [50], [55]. [56], [57]. [59], [70], [71]. [73]. [74].

Shell Width

[22], [35], [38], [44], [64].

Number of Shell

[26], [28], [38], [49]. [58].

[8]. [12]. [26], [29]. [33]. [38]. [44]. [46]. [47], [48], [50], [51], [52]. [54], [55]. [57]. [58]. [59]. [63].

Infill Density (691,731, [75].
Infill Pattern [11], [29], [38], [41], [42]. [44], [51], [52]. [65]. [66]. [69]. [75].
Others [32], [36], [45], [48], [50]. [55]. [57]. [64].

Most process parameter optfimization research
looks at how process parameters impact mechanical
characteristics, dimensional accuracy,
manufacturing time, and surface roughness. Similar
to searches based on filament materials, various
keywords are utilized to look up publications in
scientific web databases in order fo examine these
investigations. Fused Deposition Modeling, Fused
Deposition Model Optimization, Process Parameters,

and Part Characteristics of Fused Deposition Model
Manufacturing are these keywords. Because a single
process parameter can have an impact on several
response characteristics, there are instances where
some process parameters and the response
characteristics of optimization solutions overlap. For
example, research conducted by Panda [18], Sood
[20], Livu [30], and Fountas [40], use the same five
process parameters—layer thickness, air gap, build



15 Andri Nasution et al. / Jurnal Teknologi (Sciences & Engineering) 88:1 (2026) 11-131

orientation, raster width, and raster orientation—to
determine the impact of mechanical forces, such as
compressive, flexural, and tensile strength. While
Mohamed [28], add the Number of Shell parameters
to determine the effect of its mechanical strength so
that it becomes six process parameters.

These five process parameters are often chosen
for parameter optimization in the FDM process. The
five process characteristics are commonly employed
in addition to festing mechanical strength and
optimized to see the impact of printing time, such as
research conducted by Srivastava [35] and Giri [49].
Another part of the FDM process that the five process
parameters can determine is dimensional accuracy,
as performed by Sood [19] and Kaveh [27]. In
research conducted by Kaveh [27], Alafaghani [29],
and Enemuoh [44]. Dimensional accuracy may be
affected by process variables such as density, infill
pattern, speed, and temperature. Research that
calculate the impact of other elements of the FDM
process, like surface roughness, is carried out using
the five parameters above, plus speed, temperature,
and number of shells by Kaveh [27] and Giri [49],
While on research by Shirmohammadi [50], and Patil
[52] utilizing additional variables, particularly the
density and infill pattern. The final step of the FDM

process, energy consumption, is frequently utilized as
a study target for process parameter improvement.
Energy consumption itself is new research that has
begun to be developed and began to be
researched since 2018 until now. The process
parameters that are often used to see energy usage
by Enemuoh [44], Zgodavova [48], Warke [54],
Vidakis [55], Poonia [57] and Rinanto [73] on a 3D
machine are layer parameters of thickness, speed,
temperature, and infill density.

Figure 6 provides fishbone diagrams as a visual
aid to show how different process parameters affect
distinct FDM product characteristics. Fishbone
diagrams are developed based on the results of a
review of multiple studies that have been collected.
Each process parameter's impact on FDM parts is
ranked from most significantly impacting to least
significantly affecting, starting from the topmost spot
on the left side of the side and moving down to the
bottom position. Tensile strength, for instance, is
primarily influenced by process parameters such as
layer thickness, build orientation, infill density, number
of shells, air gap, and raster angle. Similarly, how to
determine which process parameter level affects
other FDM components the most.

Build Dimentional
time accuracy

Surfacce Energy
roughness

consumption

Layer thickness
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Layer thickness
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2.2 FDM Material

Hot filaments that go through nozzles create pieces
in the FDM process. Filaments made of various
thermoplastics can be employed. Most published
research on FDM technology-based 3D printing
concenfrates on materials that are often used in
industry, including PLA and ABS [13]. These materials
have properties that are useful for 3D printing, as

shown in Table 2. These materials are commonly used

in FDM.

1. Acrylonitrile butadiene styrene (ABS)
An amorphous thermoplastic polymer called
ABS is frequently utilized in the FDM fechnique to
create 3D printed items. Styrene, butadiene,
and acrylonitrile are the constituents of the
copolymer ABS. ABS must have both toughness
and compressive strength  as  fundamental
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mechanical properties. ABS, the industry
standard for printing, has a higher melfing point
of 230°. ABS is not biodegradable, unlike PLA is,
however it has a decreased chance of nozzle
obstruction.
2. Poly Lactic Acid (PLA)

One of the thermoplastics that is frequently used
in FDM is PLA. Because PLA is a biodegradable
polymer, its use is growing [14]. Furthermore,

processing high-quality functional components
and prototypes requires less heat and energy.
PLA is a popular filament for 3D printers since it
doesn't need a heated bed, but while printing, it
sometimes gets stuck in the nozzles of the printer.
Compared to ABS, PLA is more tensile strong,
has a lower curvature, and is less ductile. For
post-processing, components made by PLA
require extra care compared to ABS.

Table 2 General properties of various thermoplastics [4]

Material / Properties PLA ABS HIPS PET Nylon PC
Nozzle Temperature °C 180-220 210-240 220-230 230-255 235-270 270-315
Bed Temperature °C 20-55 80-110 50-60 55-77 60-80 90-120
TgoC 60-65 105-110 100 70-78 47-60 145-150

Material, often called filament in 3D prinfing, is
essential in defermining the object you want to
produce. Table 3 shows the classification of research

arficles related to FDM process parameter
optimization based on filament materials used to
make components.

Table 3 Research related to the optimization of FDM process parameters based on filament materials

Material Avuthor(s)

ABS (71, 18, [15]. [1é]. [17], [18], [19], [20], [21]. [22], [23]. [24]. [25]. [28], [32], [35], [40], [41]. [42]. [54]. [55]. [58]. [60].
[61], [62], [65]. [66]. [69]. [72]. [76].

PLA [11], 12], [24]. [26]. [29], [30], [31]. [34], [36]., [37], [38], [39]. [41], [43], [44], [45]. [46]. [47], [48], [49]. [50]. [51].
[52], [53], [54]. [56]. [57]. [59]. [63]. [64]. [69]. [70], [71]. [73]. [75]. [76].

HIPS [27]. [41], [76]

PEEK [33]

PETG (48]

Other [28], [36], [45]. [48]. [62]. [68]. [74]. [77].

The results of the article collection found that PLA
and ABS materials were the most often utilized
materials in 3D printing studies utilizing the FDM
Technique. The data also shows that the use of ABS
has been more commonly used in the last 20 years,
from 2003 until now, while PLA began to be widely
used and replaced the use of ABS, which started in
2014. According to the observation result HIPS was
also used several fimes in 2015 and 2020 as a material
combined with PLA and ABS materials. An outline of
how process and material parameters were used
based on review findings is presented in Figure 7
below.

m Layer Thickness (LT)
= Air Gap (AG)

1P, [12]_ Other, [8]

= Build Orientation (BO)

Nos, [5
Raster Width (RW) o5, [9]

= Nozzle Speed (NS) SW, [5]
= Raster Orientation (RO)
= Nozzle Temperature (NT)
= Shell Width (SW)

= Number of Shell (NoS)

= Infill Density (ID)

= Infill Pattern (IP)

= Other

(a)

= TPU, [0]
PEEK, [1]

= HIPS, [3] \
= ABS
= PLA .
= HIPS
PEEK
= PETG
= Other

(b)
Figure 7 (a) Uses of process parameters (b) Uses of material

2.3 FDM Part

Process parameter optimization to extend printing
times and enhance printing quality. The majority of
research on FDM process parameters focuses on
improving mechanical properties, dimensional
accuracy, and surface roughness. Additionally,
studies on process parameter optimization fo
examine FDM machine energy usage have
advanced. Numerous experts suggest using statistical
design and appropriate optimization techniques to
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look info how process factors affect parts that have
been FDM-processed. The subsequent subsections
provide a detailed review of the research on each
quality aftribute.

2.3.1 Mechanical Characteristic

Mechanical properties are an essential part of testing
3D printing products. Testing a part's mechanical
characteristics is one way to find new uses for it or
estimate how long it will last. There are numerous
ways to investigate how process variables affect
mechanical aftributes. The three mechanical
properties that are most frequently examined in FDM
parts are their tensile, compressive, and flexural
strengths [78]. A Universal Testing Machine is a type of
machine used to test these three mechanical
properties, namely tensile, compressive and bending
sfrength  of materials. Table 4 provides a
comprehensive review of recent research on tensile
strength, compressive strength, and flexural strength
is given in this section.
1. Tensile Strength
One of the mechanical requirements that is
most often examined is tensile strength. The
majority of studies discuss how to create parts
according to the American Standard for Testing
and Materials (ASTM) D638 standard for tensile
testing (Figure 8 a). In this method, the test
object is clamped in a testing machine with a
load that continues to increase until a certain
load reaches its peak so that the test object
breaks. The units for this test result are sfill in
Newton form and are then converted to MPa.
The tensile characteristics of thermoplastics are
tested using this standard. Rodriguez [60],
infroduce and develop mathematical models
based on approximate minimization algorithms
to determine the ideal parameter values for
improved stiffness and tensile strength by Panda
[18]. investigated the impact of raster angle, air
gap, layer thickness, orientation, and width on
the tensile strength of ABS P400 components. In
order to get more strength, bacterial foraging
(BFO) approaches are used to calculate the
theoretically ideal value of process parameters.
Other research by Torres [26], looks at how
different build orientations affect the tensile
properfies of PLA materials in tferms of
temperature, speed, raster orientation, infil
density, layer thickness, and number of shells.
The findings indicate that one of the most
important tensile strength criteria is construction
orientation.  Alafaghani  [29], Identify the
parameters that affect tensile strength: build
orientation is the first, Layer thickness,
temperature, speed, and infill pattern and
density come next. Tensile properties such as
yield strength, tensile strength, and Young
modulus are significantly  influenced by
construct  orientation, layer thickness, infill
density, temperature, and other six parameters.

Liu [30], determine the most practical
combination of process parameters for tensile
characteristics, examine layer thickness, build
orientation, raster width, raster orientation, and
air gap. The parts for the fensile test and
experiment were designed by the author using
Taguchi orthogonal arrangement and GB/T
1040.2-2006 (Chinese Standard), respectively.
Out of the five parameters, build orientation and
layer thickness (height) (60), and the strength at
break is significantly influenced by the raster
orientation (45/45). The degree of parameter
optimization differs greatly from the majority of
previous research. Research conducted by Raju
[32] also demonstrates that, out of the four
tensile  characteristics  parameters, layer
thickness and construction orientation are the
two most important parameters [36], created
and suggested a multi-nozzle FDM system for
carbon fiber composite 3D printing that is
sustainable. Various volume sizes of carbon fiber
composite  materials  are  achieved by
incorporating carbon fiber layers infto models
made using PLA. Parts made with a volume of
60% PLA and 40% carbon fiber have a tensile
strength that is 287.9% higher than parts made
with pure PLA. Fountas [40], conduct research to
maximize tensile strength, bending strength, and
compressive strength. The experimental studies
and associated empirical models created by
Sood [20], The relationship between the
mechanical qualities of tensile, bending, and
impact strength forms the basis of this
optimization problem. By modifying the layer
thickness, orientation angle, raster angle, width,
and air gap, the model was produced via FDM
tfechnology. The goals, dimensions, and
constraints  of the procedure taken info
consideration in this matter are the same as
those taken into consideration by Sood [20].
Compressive Strength

Like the characteristics of other sections,
compressive strength is one of the most
significant  mechanical properties and s
affected by process conditions. Since there is no
standard for evaluating the mechanical
characteristics of components made using
additive manufacturing, nearly all papers that
conduct compressive tests adhere to the ASTM
D695 standard  for rigid  thermoplastic
compression tests (Figure 8 b). Compressive
testing is caried out by measuring the
dimensions of the specimen and then applying
a load (F) in the middle with two supports
according to the three-point bending standard.
Maximum force in Newton units and maximum
stress in MPa obtained from the results of several
tests. Chin Ang [17], using FDM processes to
generate ABS support sfructures for network
engineering and evaluate the effects of various
process variables (build layer, build profile, and
build orientation). The recommended levels for
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both air gap and raster width are the lower and
upper levels for each of these parameters,
which are two important criteria for compressive
strength. [7] create formulas fo ascertain the
ideal conditions for utilizihg Quantum Particle
Swarm Opftimization (QPSO) to attain the
required compressive strength.

compiled in this section [14]. In addition to
tensile strength, Panda [18], examined how
flexure strength was affected by layer thickness,
build orientation, raster width, raster orientation,
and air gap. Their statistical analysis and
experimental research have shown that all
parameters, individually and in combination,

3.  Flexure Strength have a considerable impact on flexure strength.
Bending strength is a mechanical property as Sood [20], The link between the process
crucial as tensile and flexure strength. An parameters and the forces achieved was
international standard for evaluating the flexural demonstrated by a response surface equation
characteristics of thermoplastics is ASTM D790 for bending strength, taking the same
(Figure 8 c). This bending strength testing parameters into account. To further highlight the
method uses a load perpendicular to the significance of the two-parameter interaction
sample. Three points of bending and anchoring for bending strength, response surface plots are
are used as distances. The center of the sample used. It is believed that utilizing low values for
is the loading point. In this test, there is a bend at other parameters and high values for layer
the midpoint of the sample. This amount of thickness and raster width will boost bending
bending is called deflection. After that, the strength. For flexural strength, the ideal raster
maximum load in Newtons and the strain of the orientation is established by Fatimatuzahraa
specimen in MPa at fracture were recorded. [79]. using ABS material that was manufactured
Three-point loading systems are often used for using four distinct orientation rasters on an SST
flexure strength. When a weight is placed on the 768 FDM dimension machine. They came to the
specimen, it solely acts as a supported beam. conclusion that 450/-450 is the maximum flexure
The body of current research on how FDM strength at raster orientation.
process parameters affect bending properties is

Table 4 Research summary of FDM process parameter opfimization for mechanical properties

Material Method Parameter Proses Optimum Value Mechanical Properties | Author(s)

PLA DOE Infil pattern The Honeycomb and the Gyroid S’rrgnger mechanical (1]

pattern resistance
Layer thickness= 0.1318 mm,
Orientation= 9.6100, Raster | Tensile strength=
angle= 59.99379, Raster width= | 174.3177 MPa
0.4196mm, Air gap= 0.0074mm
ABS -y EO.SlToler V.VidT'T.rOSTer.O”g'e' g?;er:totzglr?:nesz.9sg4l,2 * Rcr;frzr Flexure sfrength = 5
ANOVA O;'d Iooy”eerr;hci’cfn”e'sf" 99 | gngle= 54.73119, Raster width= | 126.4818 MPa (18]
0.4960mm, Air gap= 0.4960mm
Layer thickness= 0.2531 mm,
Orientation= 29.9963°, Raster | Impact strength =
angle= 59.99510, Raster width= | 1.6056 kJ/m?
0.5063mm
Layer thickness = 0.2540mm, Tensie  strength =
Raster width, raster angle, Orientation = 00, raster angle = 18.0913 MPa, flexure
ABS ANOVA build orientation, air gap, . ’ strength= 39.2423 | [20]
- 600, Raster width = 0.4064mm, .
and layer thickness Air Gap = 0.0080mm MPa, impact strength=
0.482292 kJ/m?
PLA Taguchi, Temperature, layer | Layer Thicness = 0,1 mm, Infill | Ultimate shear 26]
ANOVA thickness, and infill density | density = 100% strength= 42.15 MPa
ANOVA. Air gap, build ofientation, layer thickness of 0.3302 mm, air
Factorial layer  thickness,  raster gap of.0.00. mm, .rosTer angle of | The storage modulus =
ABS, PC design width, raster angle, and 0.09, build orientation of 0.0% road | 1468.33 MPa, loss | [28]
' ’ width of 0.4572 mm, and 10 | modulus = 166.98 MPa
(FD) shell count
contours.
Deposition orientation= 09, Layer Tersie  strength =
. Raster width, Deposition | thickness=  0,3mm, Deposition
Taguchi, - _ 50.34MPa
style, deposition | style=0
PLA ANOVA, . . , = . Po—— (30]
GR onenToT}on, air gap, and Dgposﬂlon orientation= 00, Lg}/er Fexure strength =
layer thickness thickness= 0,imm, Deposition
style=0 83.51MPa
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Material Method Parameter Proses Optimum Value Mechanical Properties | Author(s)
Deposition orientation= 09, Layer | Impact  strength =
thickness= 0,3mm 23.07kJ/m2
Layer thickness (LT)= 0.07mm, .

. . Tensile  strength =
. Layer thickness, model | support material (SM)= sparse,
ABS Taguch, interior, build orientation art  orientation  (PO)= 450 (2221 + 252T + [32]
PSO-BFO and su, ort material , rpnoferiol interior  (Ml)= hi h 0.718PO + 0.6575M +
PP . 911 777M1) MPa
density.
. Layer thickness, filling | Printing speed= 60 mm/s, layer Tensie strength = 40
Taguchi . . MPa, flexure strength=
PEEK ratio, speed, and | thickness= 0.2 mm, temperature= . [33]
method | temperature 3700 C, filing ratio=40% 682 MPa, impact
P ' 9 ? strength=101,2 kJ/m?
RSM, PSO. . Layer thickness = 0.2540mm, Tensie  strength =
Multy Raster width, raster angle, - . 17,838 MPa, flexure
" . . . . Orientation = 09, raster angle =
ABS Objektive | build orientation, air gap, ) strength= 38,200 MPa, | [40]
. 609, Raster width = 0.4064mm, .
Dragonfly | and layer thickness Air Gap = 0.0080mm impact strength=
(MODA) p=" 0,448 MJ/m?

PLA, HA Layer content, HA HA content= 10%, .Io.yer .

composit | ANOVA content, infill density, and thickness= 0.1 mm,  prinfing | Bending sfrength = [45]

c P o v speed= 30 mm/s, filament | 103.1 % 5.24 MPa,

P feeding speed= 0.8 mm/s
RSM, . Tensile strength
open refraction speed, increases 10-15
PLA P . deposition  angle, and | retraction speed =75 mm/s . . [53]
pyramid percent with higher
number of walls .
sample retraction speeds
Ultimate Tensile
nfil Density=  60%, Exirusion | Sron9h= 40,65
Temperature, raster angle, Temperature=  220°C Raster MPa/g, the  Yield
PLA ANOVA layer thickness, and infill An IF;: 0°/90°, Layer %hickness: Tensile  Strength = | [59]
density 0 lgmm atd 11,40 MPa/g, Modulus
’ ’ of  Elasticity= 0,74
GPa/g
. Filling structures, | Filling structures= rectilinier, .
PLA Taguchi, Occupancy rates, table | occupancy rates = 50%, table Tensile strength  33.99 [64]
ANOVA . . . . MPa
orientation orientation = Q°

ABS D Build  orientation, infil BUIld orientation = 0° Higher . mechanical (65]

pattern properties

zz:onuf Tensile Strength PLA= 75]

wood DOE Infill density. infill oattern Infill  pattern=concentric, Infill | 37,55 MPa,

it Y. Init e density= 75% PLA/Coconut wood =

N P 19,35 MPa

According fo research conducted Dey and Yodo
[14], There aren't many studies that compare the
mechanical properties of components made of
various materials at this time. This represents a gap in
the literature that needs to be filled in this area.
Furthermore, color plays a crucial role in tensile
strength, with natural color filaments having the
highest tensile qualities. Concurrent examination of
additional factors as one of the next study directions
to determine the overall effect of mold components
on flexure strength would be beneficial for public
knowledge.

Tensile strength of a part is largely affected by layer
thickness and constfruction orientation, according to
current studies. The maximum tensile strength is
observed in part orientation 0. Tensile strength
increases with decreasing layer thickness. In addition

to these two factors, tensile strength is also strongly
impacted by infill density, number of shells, air gap,
and raster angle. Numerous research investigations
looked at how different process variables affected
the FDM mold components' compressive strength.
They concluded that the number, form, and density
of the infil have the greatest influence on
compressive strength. There are very few published
studies that address the flexure strength of FDM
molded items. At low layer thickness and 100% infil
density, flexure strength reaches its maximum. Future
research can examine the effects of process
variables, such as temperature, infill pattern, raster
width, and their combination, based on the
evaluated publications, to create components with
high flexure strength. Tensile strength is not greatly
impacted by anneadling the FDM portion; instead, it
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Figure 8 (a) ASTM D639 type -l for tensile strength [80] (b)
ASTM D695 for compressive strength [81] (c) ASTM D790 for
flexure strength [80]

2.3.2 Build Time

Because parts take a long time fo manufacture,
using additive manufacturing for mass production in
industry is currently difficult. Fusion deposition
modeling creates the parts layer by layer. It takes
much time to make even minor parts. Component
printing failure due to clogged nozzles also increases
component manufacturing time. Similarly, the
characteristics of other parts and machining
parameters also affect the manufacturing time. Build
time is simply measured using a stop watch. Time
calculation starts when the 3D printing machine starts
prinfing the specimen and ends when the machine
finishes printing, then the time required is recorded.
Build time units should be in seconds. Manufacturing
time can be optimized by selecting optimal settings
of various process parameters [4]. Reducing lead
and production times to match conventional
manufacturing processes is one of the primary issues
facing industrial settings' utilization of additive
manufacturing technologies. Therefore, producing
functional parts with characteristics like surface
roughness, dimensional correctness, and mechanical
quality requires reducing production time. It's also
critical to manage "failures" for manufacturing time.
For instance, clogged nozzles might cause
construction fo take much longer. Comparable to
the characteristics of

Table 5§ Summary of significant research in FDM process parameter optimization for build fime

Material | Method Process Parameters Optimum Value Build Time Author
ABS AHP, Raster angle, air gap, | Layer thickness= 0,330mm, air gap= | Minimum  processing 21]
ANOVA and layer thickness 0,020mm, raster angle= 450 fime
full Bu.ild orientation, layer | layer Thickness.= O,(?lmm: raster
ABS factorial, Thlcknes.s, raster angle, | angle= 909, !3UI|d or|er1Tcmon= 50, BUIId Time= 78 min 22]
ANOVA shell width, and raster cguntur \f\/|dth=0,028|n, raster
width width= 0,028in
Layer thickness, width, | Layer thickness= 0.254mm, contour
ABS Fuzzy raster angle, raster angle, | width= 0.48mm, air gap= 0.4mm, | Build  Time=  0,4500 (35]
logic, RSM | air gap and countur | raster width= 0.48mm, raster angle= | Hours
width 0°
. Layer thickness of 0.3 mm, print
Taguchi, Sh.ell Wl.dth' oner speed= 80 mm/s. infill density =20%, | Minimum  production
PLA thickness, infill density, | .~ . . [44]
ANOVA speed, and pattern infill pattern= triangle,  shell | time
' thickness= 0.4 mm,
layer thickness = 0.25mm, air gap= -
Layer thickness, air gap, | 0.002mm, raster width = 0.4048 mm,
PLA ANN raster width, raster angle, | build orientation = 00, raster angle = | Build Time= 5.5618 min. | [49]
and number of contours 900
, humber of contours =
Taguchi Layer  thickness, infill | Layer thickness= 0.2 mm, pattern=
PLA ' density, speed, and | Triangles, infill density= 70%, printing | Printing fime= 88 min [51]
GR
pattern speed= 100 mm/h




21 Andri Nasution et al. / Jurnal Teknologi (Sciences & Engineering) 88:1 (2026) 11-131

By choosing the best possible combination of
process parameters, manufacturing time can be
reduced for the FDM part as well as other parts [14].
Nancharaiah [21], discovered that the raster angle
and air gap significantly affected the building fime.
The production time can be shortened by choosing
a thicker layer and a positive air gap. Gurrala [22],
created a model utilizing full factorial design trials to
examine the effects of section orientation, layer
thickness, raster angle, and section raster width on
construction time and support structure volume. It
was determined that the following factors
significantly impact construction time: raster width,
contour width, section orientafion, and layer
thickness. Based on studies by Srivastava [35], it was
found that important process variables included the
orientation angle, slice height, and air gap that
affected the construction time variation It was
found that the construction time variation was
significantly influenced by the air gap, slice height,
and orientation angle, among other process
parameters.

However, The build fime was less affected by
other process parameters such as contour width,
raster width, and raster orientation. Based on
research conducted by Giri [49], air gaps, raster
angles, raster width, and layer thickness greatly
minimize build fime, but build time increases in
constructing orientation angles from zero degrees to
ninety as the number of contfours increases. Using
the following assumptions, this analysis forecasts a
minimum build time of 5.5618 minutes: air gap:
0.4588 mm, raster width: 0.5032 mm, raster angle: O,
layer thickness: 0.33 mm, and build orientation: 0.
the same order as that of energy usage, the
average impact of controllable process factors on
build time is rated. The layer thickness and print
speed are the most important process factors,
followed by filler density, filler pattern, and shell
thickness [44]. Patil [51], Find the optimal FDM
parameters using the gray rational technique for
multi-purpose  optimization in order to reduce
flament usage, expedite manufacturing, and
monitor the effects of surface roughness. This study
concluded that the friangular filling pattern, 70%
filling density, 100 mm/h printing speed, and 0.2 mm
layer thickness are optimal values of the parameters
used as optimization process parameters. Table 5
illustrates a brief description of a research article
investigating how process factors affect built time.
Choosing a positive air gap, a larger raster width,
and a thicker layer can all reduce the build time,
according to a survey of several journals.
Additionally, several academics have looked into
how part orientation affects build time. Different
directions for printing a part require other volumes
of support structures. Thus, the time to print
supporting materils and parts varies according fo
part orientation. The final product's reaction fo
process variables including tfemperature, raster
angle, and shell width is still unclear. Layer thickness
also affects surface roughness and dimensional

accuracy. Multi-objective optimization is one area
of future research that can be used to examine how
different process parameters affect construction
time, dimensional accuracy, and surface roughness
[4]. Examining how ftemperature and infill patterns
affect build fime is another line of inquiry.

2.3.3 Dimentional Accuracy

Dimensional accuracy using a digital caliper by
measuring product dimensions consisting of length,
width and height/thickness. Next, the measurement
results are compared with the product dimensions that
have been determined. Dimensional accuracy units
are in percentage (%). Sood [19], Analyze the impact
of several process parameters on the dimensional
accuracy of the FDM-created ABSP400, including
component orientation, layer thickness, raster angle,
raster width, air gap, and their combinations. Along
the 'x’ and 'y’ axes of the printing bed, shrinkage is
seen, and the printed part's thickness along the ‘z' axis
is consistently more than the design size. The Taguchi
'127" orthogonal array determines the significance of
parameters and their interactions before they are
recommended to be the optimal parameter level.
Gray Taguchi's methodology has been used fo
minimize the combination of all objective functions,
i.e., minimize the percentage change in dimensions
along the axis. Peng [25]. Implemented a fuzzy
interface system to convert three outputs into one
comprehensive response: warp deformation,
dimensional accuracy, and build time. A model that
linked the full response and four input Second-order
RSM was used to construct the variables—line width
compensation, extrusion velocity, filing velocity, and
layer thickness—and ANN was used for additional
validation. Mohamed [28], The findings demonstrate
that the best conditions for minimizing the dimensional
deviation of length, width, and thickness are low layer
thickness and a restricted number of shells.
Furthermore, there are numerous optimal
combinations for dimensional accuracy in various
directions for the other four parameters (air gap, raster
width, construct orientation, and raster orientation).
Therefore, the best set of parameters for 3D deviation
can be found using the chosen approximation
function. In the study that was done [14], Likewise,
additional research on the temperature and shell
count is necessary to validate findings. It has been
noted that the building platform's X and Y directions
experience shrinkage, whereas the development
platform's Z direction experiences expansion. Thus, it
follows that a crucial component of dimensional
accuracy is also building orientation. At the moment,
it's unclear how many process variables—like raster
width and infill pafttern—will be, temperature, and
number of shells, affect dimensional accuracy.
Understanding how these factors affect the part's
dimensional accuracy is crucial for producing high-
precision parts. Most current research only considers
two or three levels of parameters as listed in Table 6
below.
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Table é FDM process-specific research summary for dimensional accuracy

Material | Method Process Parameters Optimum Value Dimensional Author
Accuracy
Taauchi Air gap, raster width, | Air gap= Solid fine, raster width=
ABS ANgOVA, raster angle, and layer | 0,729, raster angle= 30/60, and | Not reported [16]
thickness layer thickness= 0,305
Raster  width, raster | Raster width= 0.4564mm, raster Improve the qudlity of
Taguchi, angle, build orientation, | angle= 09, layer thickness= 0.178 P .q .y
ABS . . overall dimensional | [19]
ANOVA air gap, and layer | mm, air gap= 0.008 mm, part
. . . accuracy
thickness orientation= 0°
HIPS Cross- Layer thickness, air gap, | Temperature= 210 ©°C, layer .
sectional build orientation, raster | thickness= 0.25mm, raster width= fhickness O'.0646 .,mm
hotograph width, speed, raster | 0.605 mm part dimensions= [27]
P graphy o, sbeed, ’ 0.0514 mm, hole
orientation, . .
dimension= 0.129mm
temperature
. . Nozzle speed= 0,75mm/s, rotation . .
9 P P pressure=0,224MPa Y
Lemon Diameter nozzle, | the 1 mm Nozzle diameter= Tmm
juice ANOVA exfrusion rate, nozzle | extrusion rate= , 24 mma3/s, | Smooth geometry [68]
gel speed nozzle speed= 30 mm/s

In order to improve decision accuracy and
understand how the least understood parameters—
such as temperature, infill patterns, or diameter
nozzles—affect dimensional accuracy, it is necessary
to investigate more than three tiers of parameters
[14]. The findings of the literature review indicate that
temperature, shell count, and layer thickness all
significantly affect dimensional accuracy [4]. A low
layer thickness is recommended to improve
dimensional accuracy. Shrinkage and expansion are
observed along the X, Y, and Z directions,
respectively. Thus, orientation is also an essential
factor affecting dimensional accuracy. To find out
how other factors, such the number of shells, their
width, raster angle, and raster angle, impact
dimensional accuracy, more investigation is needed.
Many researchers have considered two or three
levels of factors to reduce dimensional aberrations.
The Taguchi and RSM methods are widely used for
their experimental modeling and optimization. For
subsequent research, optimization of process
parameters considering more than three levels using
modern opftimization techniques, such as genetic
algorithm  (GA), the teaching-learning-based
optimization (TLBO), and quantum behaved particle
swarm optimization (QPSO), can be used.

2.3.4  Surface Roughness

The quality of items produced using FDM depends on
a number of parameters. Surface polish is an
important quality parameter in many real-world
engineering difficulties. The surface roughness of FDM
molded components has been greatly improved in
the last few years with a lot of work. Surface
roughness is measured with a surface roughness
tester. Two sides are tested: one af the side of the

specimen curve and the other at the top of the
specimen. Ra and um are units for surface roughness.
The purpose of this literature review is to investigate
how different process variables affect the surface
roughness of components that are produced (Table
7). Nancharaiah [21], Analyze how surface roughness
is affected by raster angle, road width, air gap, and
layer thickness. It was discovered that road width
influences layer thickness as well as the surface
roughness and dimensional accuracy of FDM
components. Raju [32], It also shows that build
orientatfion and layer thickness are two crifical
components of surface quality. Patil [52], Create
optfimization models to examine how different
process parameters, such as layer thickness, printing
speed, infill style, and density, affect surface
roughness. It was determined that the primary factor
influencing surface roughness is layer thickness. Infill
style also affects surface roughness. Gyroid-type infill
style gives better results for surface roughness.
Research results by Dey and Yodo [14], state that
by using a low layer thickness, which helps to lessen
the influence of steps on the printed item, good
surface finishing can be accomplished. To obtain
improved print precision, low nozzle temperature and
speed are preferred in addition to layer thickness.
Elevated temperatures at the nozzle enhance the
flament material's fluidity, leading to increased
dimensional deviation and surface roughness. For all
process parameter settings, Most data suggest that
the surface finish of the upper mold surface is superior
to that of the side surface. For the FDM process, it is
therefore advised to print a section's shortest side in
the Z direction in order to minimize surface roughness.
For the orientation of inclined parts, neither the
horizontal nor vertical orientation increases the
roughness of the surface. Therefore, it is advisable to
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refrain from printing in an oblique manner. Studies
have been conducted [4]. It was also discovered
that road width, air gap, raster angle, and layer
thickness had a major impact on surface finish. A thin
layer improves surface finish and lessens the impact

of the ladder. Build orientation also affects surface
finish. ABS and PLA parts can be further freated with
acetone and chloroform to improve the surface
finish.

Table 7 FDM process-specific research summary for surface roughness

Materia | Method Process Parameters Optimum Valve Surface Roughness Author
I
PLA RSM, PSO, | Layer thickness, speed, | Layer thickness= 0,1mm, speed= | Surfacce roughness
SOS temperature 37.84mm/s, temperature= 192,7°C | |mproved about 8.5%
and 8.8% = 2.229 ym. [37]
PLA ANN, RSM, | Layer thickness, speed, | Layers’ thickness = 100 pm,
PSO temperature, infil | Temperature of 192.20 °C, speed=
density, nozzle diameter | 97 04 mm/s, nozzle diameter= 0.3 | Surface roughness=
mm, infill density= 24.88% 11.319 um. [50]
PLA ANOVA, Layer thickness, speed, | Infill density= 70 to Gyroid= 18.6726um,
RSM infill density, infill pattern | 90 %, layer thickness of 0.2-0.22 | Zigzag= 19.6155 pm,
mm, speed of 70-20 mm/s Triangles= 19.5894 um. [52]
ABS DOE Speed Low speed, choosing azimuth
angle, make a rampart, make Better surface [66]
roughness

toolpath planner

2.3.5 Energy Consumption

The claim that 3D printers consume less energy than
other production methods is one that is frequently
stated [82]. The production process's time and energy
needs both simple and complicated mechanical
components utilizing rapid prototyping and traditional
manufacturing techniques are presented in this study.
The subject of when 3D prinfing may be utilized
effectively is addressed in this article, in addition to
suggestions for the optimal technology to employ
based on requirements for materials, complexity,
batch size, and element size. Energy consumption is
simply measured using a watlt metfer. The
measurement starts when the 3D printing machine
starts prinfing the specimen and ends when the
machine finishes printing, then the electrical energy
required is recorded in the form of KWh. Jiang [83].
Enhancing processing speed, lowering energy usage,
and elucidating additive manufacturing technology
that rivals fraditional manufacturing technology have
long been popular study areas. However, compared
to traditional technology, additive technology's
production is still slower and its energy consumption is
stil one to two fimes higher. Utiize physical and
mathematical principles to provide quantitative print
speed performance indicators and identify potential
obstacles and limitations for next developments. [84]
examines the various ways that AM additive
manufacturing subsystems, such as high energy beam
generators, control systems, cooling systems, etc., can
operate and how much energy they need. A
summary of a recent study on the energy
consumption of machinery and processes is also
included. The mechanical characteristics and
microstructure of components that are produced, as
well as the process's sustainability, can be impacted

by AM metal's energy consumption. The percentage
of energy consumption that is indirectly realized as a
result of material use is highlighted in the life cycle
assessment  of energy consumption. Increasing
capacity utilization in AM can help lower energy
consumption. Energy consumption can also be
reduced by designing parts as optimally as possible
aond opfimizihg AM pre-process plans. The ideal
temperature, infill density, and raster orientation must
be established for tensile strength, energy
consumption, and build time. Rinanto [73], Using order
performance by resemblance to the optimum solution
(PCR-TOPSIS) utilizing the process capability ratfio
technique. This paper discusses multi-objective
opfimization techniques that can provide a single
optimal solution. The impact of the five FDM process
parameters—infill density, infill pattern, layer thickness,
print speed, and shell thickness—on energy usage,
production time, part weight, dimensional accuracy,
hardness, and fensile strength was assessed through
additional research [44]. By opfimizing mechanical
and physical atfributes while decreasing resource
consumption and production time, this research can
assist  FDM  processes better match  design
specifications for goods created by Fused Deposition
Modeling (FDM). Using energy is what a machine or
system does when it consumes energy [54]. This study
examined the effects of various process variables on
the energy consumption and manufacturing time of
fused deposition modeling (FDM) components printed
from polylactic acid (PLA) and acrylonitrile butadiene
styrene (ABS).

The outcomes demonstrated that PLA prints faster
and uses less energy per unit volume than ABS.
Another study sought to determine the ideal scale,
extruder temperature, printing speed, layer height,
and infil value to simultaneously maximize specific
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energy, scrap, and surface roughness. This work
presents a redlistic method for multi-objective
opfimization of surface roughness, scrap weight, and
specific energy performance responses in 3D printing.
This leads to the conclusion that specific energy and
residual weight increase with increasing surface polish
[57].

The most significant factors that affect a print's
energy usage, according fo recent study, are layer
thickness, infill density, print speed, shell thickness, and
infill pattern as shown in Table 8. The energy
consumption was optimal at 0.3 mm layer thickness,

20% infill density, triangle infill pattern, 80 mm/s print
speed, and 0.4 mm shell thickness [44]. Research
comparing the use of ABS and PLA materials to energy
consumption shows that the energy required to print
ABS materials is higher than printing PLA materials. The
results of the investigation showed that for each
experiment, printing with ABS material used 1.5-2 times
more energy than prinfing with PLA material [54]. There
arent many published studies on mulfi-objective
optimization of FDM process parameters to take
energy consumption intfo account. Therefore, there is
still much room for further research in this direction.

Table 8 Research summary of FDM process parameter optimization for energy consumption

Material | Method Process Parameters Optimum Value Energy Consumption Avuthor
. Layer thickness of 0.3 mm, print
Taguchi, Layer T.h'CkrjeS.S' spegd, speed= 80 mm/s. infill density Minimum energy
PLA shell width, infill density, _ e S . [44]
ANOVA s =20%, infill pattern= triangle, shell consumption
infill pattern - _
thickness= 0.4 mm
PLA: Layer thickness=0,3mm, raster
width=0,4mm,
temperature=207,8°C, infill
density=15%, number of
perimeters= 4
Type of material, Layer PETG: Layer thickness=0,3mm, .
PLA, Taguchi thickness, raster width, raster width=0,51mm, PHA .B'O WOOD . Rosa
PETG, ANOVA temperature, infill temperature=248°C, infill 3D is most suitable | [4g]
PHA density, number of density=15%, number of material
perimeters perimeters= 4
PHA: Layer thickness=0,3mm,
raster width=0,4mm,
temperature=2480C, infill
density=31,1%, number of
perimeters= 1
ABS= 0,2KWh,
PLA=0,1KWh
Layer thickness, speed, Layer thickness= 0,3mm, speed= L
PLA RSM infill density 75mm/s, infill density= 100% | ABS 15 higher fthan PLA | [54]
for energy
consumption
Taguchi, . Layer thickness= 0,2mm,
speea-zimms, | specic energy | )
TOPSIS, density sccl1le temperature=194,8°C, infill Consumption= 9,02 E3
ANN-GA ’ density=18,2%, scale=96,8%
Taguchi, Temperature, raster Infill density=40%, Energy consumption=
PLA PCR- orientation, and infill temperature=210°C, raster 0.0154KWh [73]
TOPSIS density orientation= 45°

2.4 Optimization Methods Used and Their
Comparison

According to the literature review, a number of
opfimization techniques, including as the Taguchi
method, response surface method (RSM), artificial
neural network (ANN), particle swarm optimization
(PSO), and genetic algorithm (GA), have been used
to optimize the parameters of the FDM process, gray
relational (GR), fuzzy logic, factorial design, and
others like group method data handling (GMDH).

2.4.1 Taguchi Method

The most popular technique for peer-reviewed
research is Taguchi. By choosing levels of controllable

factors, input process parameters, or independent
variables in a way that minimizes response variations
brought on by uncontrollable factors or disturbances
like humidity, vibration, and ambient temperature,
the Taguchi Method is a stafistical quality confrol
technique. The Taguchi method integrates statistical
and  mathematical techniques to  opfimize
performance properfies by selecting design
parameters. With fewer experiments, Taguchi's
technique discovered some effects of statistical
fluctuations. In  addition, Taguchi's approach
identifies an ideal experimental environment with the
least amount of variability [4]. In the research
conducted by Omar [56], Taguchi's L? orthogonal
array design served as the basis for the planning of
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the experimental trials. This design was used to lower
the number of attempts, or 81 tests, while utilizing a
full factorial design. Taguchi's approach helped
reduce experiment time and resource use.

2.4.2 Response Surface Method (RSM)

RSM is an optfimization and modeling methodology
that combines stafistical and mathematical
techniques. This method's main goal is o maximize
responses that are influenced by different input
factor characteristics. RSM connects controllable
input parameters in an experimental design to gather
enough data to calculate outcomes [4]. Regular
regression methods, like RSM, use an experiment
design that covers the range of all relevant variables
with a minimum number of repetitions, making it very
dependable. Relationship structure methodology
(RSM) is a methodical and systematic way to
determining the connections between the variables
influencing a process and its results. RSM uses the
program Design-Expert V8 to stafistically analyze
experimental data [58].

2.4.3 Arlificial Neural Network (ANN)

An artificial neural network, or ANN, is a sophisticated
model that is inspired by the way the biological
nervous system, particularly in human brain cells,
processes information, and can forecast how
ecosystems will react fo changes in environmental
variables. Neural networks are befter at illustrating
nonlinear functions than RSM, which makes ANN a
more accurate and superior modeling technique
[85]. In studies carried out by Poonia [57], ANN was
used fto create the predictive model, and mean
square error and regression value metrics were used
to assess it. In the next stage, the developed ANN
model is coupled with the genetic algorithm (GA)
technique to obtain a Pareto solution. With printing
parameter limitations, the integrated ANN-GA vyields
predictive models with Pareto solutions.

2.4.4 Particle Swarm Optimization (PSO)

In a study published in 1995, Kennedy and R. Eberhart
[86], infroduced the heuristic search method of
global particle swarm optimization (PSO). The PSO
has undergone significant revisions since 1995The
PSO's particles travel in the issue region by trailing the
most efficient particles that are moving at a certain
moment. The coordinate position of every particle in
the problem region is tfracked, directly contributing to
the identification of the best solution. Particles are
assessed using the suitability function after repetition.
Compared to other optimization techniques, PSOs
can reach convergence points faster. Only a few
parameters can be used to calculate the optimal
value. Reducing the number of particles can
improve PSO performance [4]. Combining them is
one of the benefits of using metaheuristic algorithms.
Neural networks have several limits, such lengthy

operations, even if they can track intricate and
nonlinear interactions between independent and
dependent variables. Consequently, ANN
performance can be greatly increased by utilizing
optimization methods like PSO. In order to solve
engineering challenges, some researchers have used
hybrid ANN and PSO models with success [87].

2.4.5 Genetic Algorithm (GA)

Darwin's theory of evolution states that natural
selection and the survival of the more fit individuals
are the foundations for genetic adaptation. Natural
selection aims to produce offspring that have a
greater resemblance to the fraits of their forebears.
With the advancement of molecular biology, several
theories of evolution other than Darwinian natural
selection have been established. New evolutionary
theories are therefore helpful fo computer science in
understanding its basic ideas and creating clever
heuristics fo help with engineering problem-solving
from a critical optimization perspective [8]. Similar to
the preceding approach, GA can be used with
another approach, specifically ANN. The primary
goal of the study conducted by Rojek [38] is to
optimize the computational 3D printing process in
terms of features and material selection using ANN
paired with GA in order to enhance the tensile force
of exoskeleton samples. Material strength can be
increased by the novel strategy of combining the
ANN and GA approaches for material selection. The
strategy also solves the issue of optimizing parameters
associated with the 3D printing technical process.

2.4.6 Factorial Design (FD)

Although it can also be used to understand and
optimize processes, the major use of the factorial
experiment design is the estimafion of critical
elements and their interactions. There are two types
of factorial design: complete factorial design and
fractional factorial design. The major benefit of full
factorial design is that it allows you to assess all
significant effects of variables and their interactions;
however, it requires more experiments as the number
of components goes up. Fractional factorial design
results in fewer trials being conducted. Compared to
full factorial design, fractional factorial design limits
the influence of interactions while enabling exact
main effect assessment with fewer procedures.
Fractional factorial design is the most often used
approach for process development and quality
improvement since it saves fime and money [28].

2.4.7  Gray Relational (GR)

Some researchers utilize GR analysis fo determine the
best set of process parameters based on GR levels in
order to achieve targeted performance metrics [4].
In research by Patil [51], FDM performance is seen
from several responses: surface roughness, printing
duration, and filament consumpftion length. GA
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analysis is effective at optimizing the FDM process's
parameters when multiple responses are used. The
process parameters that have been chosen for
examination include layer thickness, printing speed,
infill pattern, and infill %. The study concluded that GR
analysis is suitable for optimizing FDM parameters. In
another study conducted by Liu [30], FDM parts have
to withstand many mechanical properties at once
and are subjected to various loading scenarios. To
tackle this problem, many responses are
simultaneously optimized through the use of GR
analysis. GR analysis is a quantitative analysis that
explores similarities and differences between factors.
It uses GR levels to find the degree of factor
correlation.

2.4.8 Fuzzy Logic (FL)

Using FL to achieve multi-objective optimization is a
very attractive approach. In the study done by
Srivastava [35], FL was used to accomplish multi-
objective optimization while RSM was used to plan
and assess experiments. Consequently, With the
combinatfion of FL and RSM analysis, this work
presents a novel way to simultaneously optimize the
build fime and volume of supporting material.
According to the study's findings, FL was effectively

used for the FDM processs multi-objective
optimization.
2.4.9 Group Method Data Handling (GMDH)

Research published by Rayegani [88], derived the
required link between each process parameter and
tensile strength using the GMDH modeling approach.
The created model can be used as a predictive

the foundation for the modeling framework used in
this investigation. GMDH is a form of multi-layered
iteration (MIA) networks.

2.4.10 Other Methods

Research that uses other methods uses more design
of experimental (DOE) methods that are not
mentioned. Some other studies also use methods
such as experimental method, cross-sectional
photography by Kaveh [27], dynamic mechanical
analysis (DMA) by Arivazhagan and Masood [61],
bacterial foraging optimization (BFO) by Raju [32],
process capability ratio (PCR) by Rinanto [73], and
NSGA-II algorithm by Kafshgar [46].

Here is an overview of DOE used in FDM process
parameter optimization based on the number of
users of the optimization method shown in Figure 9.

W Taguchi

mRSM
GMDH,

[0]
FL,[2]
GR, [2]

Other, [16]

HANN
PSO

GMDH

Other

Figure 9 Number of users of optimization methods in the
research reviewed

The following is a comparative summary of some

model to determine the optimal theoretical DOEs often used in FDM process parameter
parameter settings that will produce the optimum optimization, as shown in Table 9.
response characteristics. In order to find non-linear
correlations between input and output variables,
Ivakhnenko's GMDH modeling framework served as
Table 9 Comparison between standard experiment designs and optimization techniques
Techniques
No | Capability
Taguchi RSM ANN PSO GA FD GR FL GMDH

1 Understanding Normal év\oderot év\oderot Mudah Difficult | Mudah | Normal | Difficult é/\oderof
2 Mulh.—re.spgnse No Yes Yes Yes Yes Tidak Yes Yes Yes

optimization
3 Usefulness Widely Widely Widely Widely Rarely Rarely Widely Rarely Rarely

Shopg of the Regular Regular Regular Regular Regular Regular Regular | Regular | Regular
4 experimental or onl or or or onl or or or

region iregular Y iregular iregular iregular Y iregular | irregular | irregular
5 Computational | g Short Long Short very short | short | Y& Medium
fime long long
Prediction . . . . . .
6 accuracy Low Very high | Very high | Very high | High Normal Normal High High
7 Model I|Qeor Yes Yes Yes Yes Yes Yes Yes Yes Yes
dynamics

8 Model non-linear | No Yes Yes No Yes No No Yes Yes
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Techniques
No | Capability
Taguchi RSM ANN PSO GA FD GR FL GMDH
dynamics
Developing of
9 mathematical No Yes Yes No Yes No Yes Yes
model
Data requirement . . . . . . . .
10 for a given output Mid Low High High High Mid Mid High High
Throug
11 | Optimalsolution | Straight | Trough | Through )\ Through | o it | siraight | Straight | h Through
model model model model
model
Ability to study
interaction
12 effects between Yes Yes No No Yes Yes No No
variables
Availability in
13 simulation Yes Yes Yes Yes Yes Yes Yes Yes
software

3.0 CONCLUSION

This literature review critically examined the influence
of Fused Deposition Modeling (FDM) process
parameters on the quality and performance of
prinfed components. The discussion synthesized
findings from previous studies that investigated how
variations in process parameters, materials, and
optimization  techniques affect key  output
characteristics, including mechanical properties,
surface roughness, dimensional accuracy, printing
time, and energy consumption. Particular attention
was given to commonly evaluated mechanical
responses such as tensile, compressive, and bending
strength, which remain central indicators of part
quality in FDM applications.

The review shows that layer thickness, raster width,
raster angle, build speed, and build orientation are
the most frequently investigated parameters in FDM
optimization studies. Across different research
contexts, optimum parameter ranges are often
reported within relatively consistent intervals, with
layer thickness typically between 0.2 and 0.3 mm,
raster width between 0.4 and 0.5 mm, raster angles
commonly set between 45° and 90°, printing speeds
ranging from 75 to 90 mm/s, and a build orientation
of 0°. Among these parameters, layer thickness
consistently emerges as the most influential factor
affecting multiple quality aftributes, indicating its
critical role in deftermining overall printing
performance.

From a material perspective, PLA and ABS remain
the dominant materials in FDM research due to their
availability and stable processing characteristics.
However, recent studies increasingly explore the
potential of combining these primary materials with
alternative polymers such as HIPS, either to enhance
specific performance attributes or to address
application-specific requirements. This frend suggests
a growing research interest in multi-material and
hybrid material systems within FDM.

In ferms of optimization approaches, the Taguchi
method is the most widely adopted technique,
followed by response surface methodology, artificial
neural networks, particle swarm optimization, and
other computational or hybrid methods. The
popularity of the Taguchi approach is largely
aftributed to its ability fo reduce experimental effort
and resource consumption while still providing
meaningful  insights info  parameter effects.
Nevertheless, many studies have demonstrated the
benefit of integrafing multiple  optimization
tfechniques to improve prediction accuracy and
decision-making robustness.

Despite the breadth of existing studies, this review
also identifies limitations in the current body of
literature. In particular, there is a lack of in-depth
quantitative analysis regarding the strength of
correlations between process parameters and
output responses. As a result, direct and systematic
comparisons between  different  optimization
approaches remain limited. Future research s
therefore encouraged to focus on multi-objective
optimization frameworks that simultaneously consider
a wider range of process parameters, material
combinations, and performance metrics, including
printing time and energy consumption.

Further research directions may also include more
detailed investigations info the mechanical and non-
mechanical behavior of different component types,
as well as the influence of machine-related factors
such as drive mechanisms, stepper motors, extruder
configurations, and printer architectures. In addition,
comprehensive cost-oriented analyses covering
manufacturing,  operatfion, and  maintenance
aspects are recommended to support the transition
of FDM technology from prototyping toward large-
scale and economically viable production. Such
studies would provide valuable insights for investment
planning, fechnology selection, and industrial
implementation of FDM system:s.
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