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Abstract 
 
Due to its various benefits, including changeable geometry, lower 
production costs, faster manufacturing cycles, and enhanced 
competitiveness, 3D printing technology has advanced rapidly in recent 
years. The Fused Deposition Modeling (FDM) technique is one that is 
frequently utilized in 3D printing technology. This is because compared to 
other techniques, this one is the most adaptable, affordable, and easy to 
apply. However, FDM components have poor dimensional and geometric 
accuracy, bonds between layers have low strength, and FDM accuracy is 
greatly affected by various process parameters that are often difficult to 
optimize. The primary process parameters are discussed in this paper, 
along with the factors that affect them and how they affect the features 
of goods made using FDM printing. Therefore, it will show the optimization 
of all process parameters and methods to all printing characteristics, 
namely manufacturing time, available in the current FDM study include 
dimensional accuracy, surface roughness, energy consumption, and 
mechanical strength. This review also presented some conclusions that 
answer this field's challenges and future research directions. 
 
Keywords: 3D printing, FDM, Optimization, Process parameters, Printing 
characteristics, Method 
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1.0 INTRODUCTION 
 
The method of layer-by-layer combining materials to 
create three-dimensional things is known as additive 
manufacturing (AM) [1]. Additive manufacturing 
(AM), sometimes referred to as 3D printing, has the 
power to transform industry through technology [2]. 
In 1986, Hull used 3D printing for the first time [3]. Due 
to its various benefits, such as configurable 
geometries, reduced production costs, faster 

production cycles, and enhanced competitiveness, 
Recent years have seen a rapid advancement in 3D 
printing technology. Binder jetting, inkjet printing, 
stereolithography (SLA), selective sintering printing 
(SLS), fused deposition modeling (FDM), and 
extrusion-based printing are some of the 3D printing 
techniques [3]. A frequently employed methodology 
in 3D printing technology is the Stratasys-patented 
Fused Deposition Modelling (FDM) process [1]. FDM 
can make complex components from various 
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materials and difficult parts in a faster production 
cycle time [4]. In addition, it is also the easiest and 
cheapest technique to use and the most flexible than 
others [5]. Many researchers have researched 
parameter optimization engaged in developing 3D 
printing products. Standard parameters include fill 
properties, table temperature, nozzle temperature, 
print speed, and thin material thickness per layer [5]. 
The bed temperature, nozzle temperature, print 
speed, layer-by-layer material thickness, and filament 
characteristics are examples of standard parameters 
[6]. Another optimization problem is, as in research 
developed by Sood [7], Thus, there is a connection 
between the mechanical qualities of tensile strength, 
Ts (MPa), flexural strength, Fs (MPa), and impact 
strength, Is (MPa). Using the FDM technique, models 
are made by adjusting the air gap parameters, raster 
width, raster angle, orientation angle, and layer 
thickness [8]. Similar characteristics have also been 
utilized to evaluate the impact on the radial 
compression load, shrinkage percentage of the 
support thickness and breadth employing Response 
Surface Methodology (RSM) to measure stent flexibility, 
factors of the process, such as layer thickness, printing 
speed, and material composition were also used [9]. 
Studies that employ metal injection molded copper 
(MIM) as a raw material for 3D printing based on 
extrusion. Additionally, the relationship between green 
density and surface roughness and the parameters of 
the 3D printing process—namely, extrusion multiplier, 
temperature, layer thickness, and nozzle speed—has 
been explored. When the layer thickness was reduced 
from 0.25 to 0.05 mm and the nozzle speed was 
lowered from 100 mm/s to 20 mm/s, the green solids 
rose. In a similar vein, increasing the extrusion multiplier 
raises the surface roughness up to a specific degree 
[10].  

The optimization criteria for the multipurpose 
optimization problem aimed at refining FDM 
procedures are shape correctness and printing time in 
terms of overall dimensional inaccuracy. Taking the 
dimensional deviation into account, the final criterion 
is developed of the created part from the 
predetermined nominal due to the displacement error 
of the 3D printer on the X, Y, and Z axes. The filler ratio 
(%), layer thickness (mm), and deposition angle (≦C) 
are the independent process parameters. This 
parameter is crucial for the successful operation of 
FDM because The mechanical qualities of the part 
being manufactured are impacted by its 
arrangement. Also, note that FDM parts' mechanical 
characteristics are structure-dependent. The nozzle's 
direction, which maintains the melted filament against 
the X or Y axis, is determined by the deposition angle. 
For every additional material addition, There is a 
correlation between layer height and layer thickness. 
The thickness and height of the layer largely dictate 
how long the 3D printing process takes; the lower the 
layer, the longer the printing time [8]. Currently, 
parameter optimization of multi-material 3D printing 
processes using multiple extruders is challenging for 
FDM methods. Choosing the right multi-material nozzle 

technology is still a difficult task. A detailed 
understanding of the control parameters, software 
capabilities, and electronic components of a 3D 
printer is necessary to manufacture a viable multi-
material product. Various research methods are used 
to support the creation of good research 
academically. Statistical methods and optimization 
methods are used to acquire knowledge and its 
development and discoveries that can be tested for 
correctness. The primary process parameters are 
discussed in this paper, along with the factors that 
affect them and how they affect the features of 
goods made using FDM printing. Therefore, it will show 
the optimization of all process parameters and 
methods to all printing characteristics, namely 
manufacturing time, The highest level of surface 
roughness, dimensional accuracy, energy 
consumption, and mechanical strength yet 
discovered in FDM research. The results of this study will 
present conclusions that answer the challenges and 
the next direction of research that should be carried 
out in this field. 

This article includes a review of single and multi-
objective FDM optimization research published over 
the last twenty years, from 2003 to 2023. Various 
research articles use different keywords in titles, 
abstracts, and keyword sections from various 
searchable scientific databases and relevant 
published essays (journal and conference papers) 
selected from four major science publishers such as 
Taylor & Francis, Springer Link, Science Direct, and 
Inder Science indexed by Scopus. Obtained about 
120 articles and reduced to 67 research articles finally 
selected for this survey. A summary of various 
optimization techniques applied in a published 
research article on FDM process parameter 
optimization will be given here. 
 
 
2.0 FUSED DEPOSITION MODELING (FDM) 
 
Fused deposition modeling (FDM) is a method of 
extruding liquid thermoplastic materials to create 
components layer by layer. One kind of additive 
manufacturing called FDM is thought to be the most 
widely utilized method. This is because it is much 
simpler and more cost-effective than other processes 
and can use many different raw materials [11]. FDM is 
a 3D printing technique that can produce better 
output response results in terms of mechanical 
attributes, surface roughness, dimensional accuracy, 
and microstructure features [12]. With reference to 
Figure 1, which illustrates the main components of an 
FDM printer, the process will be described here. The x, 
y, and z directions of FDM machines can be moved 
using the build platform (green arrow), the extrusion 
head (purple arrow), or a combination of the two. For 
instance, whereas build platform movement 
completes the Z direction, extrusion head movement 
completes the X and Y directions [13].  

Although the main topics of the study have been 
thoroughly analyzed, there are some limitations that 
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need to be noted. Adequate comparative studies on 
the cost aspects of various optimization methods 
used in FDM are not available. As a result, this study 
does not contain any conclusions regarding which 
optimization method is the most cost-efficient. The 
authors did not include cost analysis as part of the 
evaluation, and only concentrated on other aspects 
that were studied to achieve good print quality, such 
as mechanical performance, roughness level, 
dimensional accuracy, printing time, or energy 
efficiency. 

 
Figure 1 Main components of FDM machine [13] 

 
 
2.1 Process Parameters  
 
Process parameters in the FDM process affect the 
production efficiency and part characterization and 
can be changed to modify the properties of 
components that are made. Air gap, building 
orientation, extrusion temperature, filler density, filler 
pattern, layer thickness, shell number, print speed, 
raster orientation, raster width, and heat treatment 
temperature are the most often employed process 
parameters in study. The main process parameters 
are described below [14]. 
1. Air gap (AG): In the deposited layer, the space 

between two neighboring rasters. The overlap of 
two neighboring layers is referred to as a 
negative air gap. The air gap level most often 
used in various studies ranges from 0 to 0.02 mm. 

2. Build orientation (BO): A method called wake 
orientation can be used to align the inside of a 
building platform with regard to the X, Y, and Z 
axes. Wake orientation is seen as a categorical 
variable in certain research but as a 
quantitative component in others (Figure 2).  

 
 
 
 
 
 
 

 
Figure 2 Build orientation parameters level: (a) numerical; 
(b) categorical [14] 

3. During the FDM process, the material's filament is 
heated to the extrusion temperature. The kind of 
material and printing speed have an impact on 
the extrusion temperature. The printing 
temperature most commonly used in various 
studies and various types of materials ranges from 
190 to 2500 C. 

4. Infill density (ID): The exterior layer of an object 
printed in three dimensions (3D). On the other 
hand, the filler—also referred to as the internal 
structure—is an imperceptible interior component 
that is encased in an exterior layer that varies in 
size, shape, and pattern. The fraction of the filling 
volume made of filament material is known as 
the filler's density. The fill's thickness affects the 
FDM build parts' mass and strength. The infill 
density level most often used in various studies 
ranges from 50% to 100%. 

5. Infill pattern (IP): To create a strong and durable 
interior structure, different filler patterns are 
applied in different areas. Hexagonal, diamond, 
and linear patterns are common filler designs 
(Figure 3).  

 

 
 
 
 
 
 

Figure 3 infill pattern parameters level: (a) linear, (b) 
diamond, (c) hexagonal [14] 
 
 
6. Layer thickness (LT): The vertical axis of FDM 

machines, or the height of the layer deposited 
along the Z-axis, is known as this. It typically relies 
on the nozzles' diameter and is less than their 
diameter in extruder nozzles. The layer height 
becomes the level in this process parameter and 
usually the level frequently used ranges from 0.1 to 
0.3 mm. 

7. Print speed (PS): The length of time the extruder 
spends traveling in the XY plane during an 
extrusion. The print speed, expressed in mm/s, 
dictates the printing time. The speed levels most 
often used in various studies range from 75 to 100 
mm/s. 

8. Raster width (RW): The term refers to the settling 
bead's width. The diameter of the extrusion nozzles 
dictates this. The raster width level most often used 
in various studies ranges from 0.4 to 0.7 mm. 

9. Raster orientation (RO): This is the direction in which 
the bed deposits material when using the FDM 
machine manufacturing X-axis platform (Figure 4). 
 
 
 
 
 
 
 

Figure 4 Raster orientation parameters level [14] 
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Furthermore, there are still a lot of process 
variables in FDM that have an impact on the 
manufactured component quality. Here are 
other FDM process parameters widely studied 
and used in FDM parameter optimization 
research [4]. 

10. Bed temperature (BT): This is the 3D printer's 
base's surface temperature. The temperature 
affects how well the first molding layer adheres 
to the printing bed. According to reports, when 
the bed temperature is just a little bit higher than 
the printed material's glass transition 
temperature adequate adhesive qualities are 
achieved. A suitable adhesive is needed to 
avoid warping parts and improve the 
dimensional accuracy of details. The bed 
temperature most commonly used in various 
studies and various types of materials ranges 
from 60 to 1050 C. 

11. Contour width (CW): The outer solid shell of the 
FDM part is printed as a set of contours of the 
liquid material. The contour width (Figure 5) is 
the width of a contour. 

12. Contour air gap (CIG): The distance between 
two adjacent contours is the contour air gap 

when a part's filling force is selected as many 
contours. 

13. The perimeter to raster air gap is the length of 
time that separates the innermost contours from 
the raster fill's boundary. 

14. Number of contours (NoC): Indicates how many 
contours there are on a part's shell. The number 
of contours that become levels in each study 
that is most often used ranges from 1 to 6. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 FDM tool path parameters [4] 
 
 
The most optimum FDM process parameters are listed 
below, based on the studies listed in Table 1.  

 
Table 1 Research related to FDM process optimization based on parameters 

 
Parameters Authors 

Layer Thickness 
[7], [8], [12], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31], 
[32], [33], [34], [35], [36], [37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], 
[52], [53], [54], [55], [56], [57], [58]. 

Air Gap [7], [15], [16], [17], [18], [19], [20], [21], [23], [27], [28], [30], [35], [38], [40], [49], [59]. 

Build Orientation 
[17], [18], [19], [20], [22], [26], [27], [28], [29]), [30], [32], [35], [38], [40], [41], [42], [43], [47], [49], [60], 
[61], [62], [63], [64], [65]. 

Raster Width [7], [15], [16], [17], [18], [19], [20], [22], [23], [27], [28], [30], [34], [35], [38], [40], [48], [49], [53], [61]. 

Print Speed 
[25], [26], [27], [29], [31], [37], [38], [39], [41], [42], [43], [44], [45], [50], [51], [52], [53], [54], [55], [56], 
[57], [66], [67], [68] [69], [70], [71]. 

Raster Orientation 
[8], [15], [16], [18], [19], [20], [21], [22], [23], [24], [27], [28], [30], [35], [38], [40], [46], [49], [55], [59], 
[60], [61], [62], [63], [64], [72], [73], [74]. 

Nozzle Temperature [12], [26], [27], [29], [33], [37], [38], [39], [43], [46], [48], [50], [55], [56], [57], [59], [70], [71], [73], [74]. 
Shell Width [22], [35], [38], [44], [66]. 
Number of Shell [26], [28], [38], [49], [58]. 

Infill Density 
[8], [12], [26], [29], [33], [38], [44], [46], [47], [48], [50], [51], [52], [54], [55], [57], [58], [59], [63], 
[69],[73], [75]. 

Infill Pattern [11], [29], [38], [41], [42], [44], [51], [52], [65], [66], [69], [75]. 
Others [32], [36], [45], [48], [50], [55], [57], [64]. 

 
 

Most process parameter optimization research 
looks at how process parameters impact mechanical 
characteristics, dimensional accuracy, 
manufacturing time, and surface roughness. Similar 
to searches based on filament materials, various 
keywords are utilized to look up publications in 
scientific web databases in order to examine these 
investigations. Fused Deposition Modeling, Fused 
Deposition Model Optimization, Process Parameters, 

and Part Characteristics of Fused Deposition Model 
Manufacturing are these keywords. Because a single 
process parameter can have an impact on several 
response characteristics, there are instances where 
some process parameters and the response 
characteristics of optimization solutions overlap. For 
example, research conducted by Panda [18], Sood 
[20], Liu [30], and Fountas [40], use the same five 
process parameters—layer thickness, air gap, build 
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orientation, raster width, and raster orientation—to 
determine the impact of mechanical forces, such as 
compressive, flexural, and tensile strength. While 
Mohamed [28], add the Number of Shell parameters 
to determine the effect of its mechanical strength so 
that it becomes six process parameters. 

These five process parameters are often chosen 
for parameter optimization in the FDM process. The 
five process characteristics are commonly employed 
in addition to testing mechanical strength and 
optimized to see the impact of printing time, such as 
research conducted by Srivastava [35] and Giri [49]. 
Another part of the FDM process that the five process 
parameters can determine is dimensional accuracy, 
as performed by Sood [19] and Kaveh [27]. In 
research conducted by Kaveh [27], Alafaghani [29], 
and Enemuoh [44]. Dimensional accuracy may be 
affected by process variables such as density, infill 
pattern, speed, and temperature. Research that 
calculate the impact of other elements of the FDM 
process, like surface roughness, is carried out using 
the five parameters above, plus speed, temperature, 
and number of shells by Kaveh [27] and Giri [49], 
While on research by Shirmohammadi  [50], and Patil 
[52] utilizing additional variables, particularly the 
density and infill pattern. The final step of the FDM 

process, energy consumption, is frequently utilized as 
a study target for process parameter improvement. 
Energy consumption itself is new research that has 
begun to be developed and began to be 
researched since 2018 until now. The process 
parameters that are often used to see energy usage 
by Enemuoh [44], Zgodavova [48], Warke [54], 
Vidakis [55], Poonia [57] and Rinanto [73] on a 3D 
machine are layer parameters of thickness, speed, 
temperature, and infill density. 

Figure 6 provides fishbone diagrams as a visual 
aid to show how different process parameters affect 
distinct FDM product characteristics. Fishbone 
diagrams are developed based on the results of a 
review of multiple studies that have been collected. 
Each process parameter's impact on FDM parts is 
ranked from most significantly impacting to least 
significantly affecting, starting from the topmost spot 
on the left side of the side and moving down to the 
bottom position. Tensile strength, for instance, is 
primarily influenced by process parameters such as 
layer thickness, build orientation, infill density, number 
of shells, air gap, and raster angle. Similarly, how to 
determine which process parameter level affects 
other FDM components the most. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Fishbone diagram: the effect of process parameters on FDM parts 
 
 
2.2  FDM Material 
 
Hot filaments that go through nozzles create pieces 
in the FDM process. Filaments made of various 
thermoplastics can be employed. Most published 
research on FDM technology-based 3D printing 
concentrates on materials that are often used in 
industry, including PLA and ABS [13]. These materials 
have properties that are useful for 3D printing, as 

shown in Table 2. These materials are commonly used 
in FDM.  
1. Acrylonitrile butadiene styrene (ABS)  

An amorphous thermoplastic polymer called 
ABS is frequently utilized in the FDM technique to 
create 3D printed items. Styrene, butadiene, 
and acrylonitrile are the constituents of the 
copolymer ABS. ABS must have both toughness 
and compressive strength as fundamental 
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mechanical properties. ABS, the industry 
standard for printing, has a higher melting point 
of 230°. ABS is not biodegradable, unlike PLA is, 
however it has a decreased chance of nozzle 
obstruction. 

2. Poly Lactic Acid (PLA) 
One of the thermoplastics that is frequently used 
in FDM is PLA. Because PLA is a biodegradable 
polymer, its use is growing [14]. Furthermore, 

processing high-quality functional components 
and prototypes requires less heat and energy. 
PLA is a popular filament for 3D printers since it 
doesn't need a heated bed, but while printing, it 
sometimes gets stuck in the nozzles of the printer. 
Compared to ABS, PLA is more tensile strong, 
has a lower curvature, and is less ductile. For 
post-processing, components made by PLA 
require extra care compared to ABS.  

 
Table 2 General properties of various thermoplastics [4] 

 
Material / Properties PLA ABS HIPS PET Nylon PC 
Nozzle Temperature 0C 180-220 210-240 220-230 230-255 235-270 270-315 
Bed Temperature 0C 20-55 80-110 50-60 55-77 60-80 90-120 
Tg 0C 60-65 105-110 100 70-78 47-60 145-150 

 
 

Material, often called filament in 3D printing, is 
essential in determining the object you want to 
produce. Table 3 shows the classification of research 

articles related to FDM process parameter 
optimization based on filament materials used to 
make components.  

 
Table 3 Research related to the optimization of FDM process parameters based on filament materials 

 

Material Author(s) 

ABS [7], [8], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [28], [32], [35], [40], [41], [42], [54], [55], [58], [60], 
[61], [62], [65], [66], [69], [72], [76]. 

PLA [11], [12], [24], [26], [29], [30], [31], [34], [36], [37], [38], [39], [41], [43], [44], [45], [46], [47], [48], [49], [50], [51], 
[52], [53], [54], [56], [57], [59], [63], [64], [69], [70], [71], [73], [75], [76]. 

HIPS [27], [41], [76] 
PEEK [33] 
PETG [48] 
Other [28], [36],  [45], [48], [62], [68], [74], [77]. 

 
 
The results of the article collection found that PLA 

and ABS materials were the most often utilized 
materials in 3D printing studies utilizing the FDM 
Technique. The data also shows that the use of ABS 
has been more commonly used in the last 20 years, 
from 2003 until now, while PLA began to be widely 
used and replaced the use of ABS, which started in 
2014. According to the observation result HIPS was 
also used several times in 2015 and 2020 as a material 
combined with PLA and ABS materials. An outline of 
how process and material parameters were used 
based on review findings is presented in Figure 7 
below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
Figure 7 (a) Uses of process parameters (b) Uses of material 

 
 
2.3  FDM Part 
 
Process parameter optimization to extend printing 
times and enhance printing quality. The majority of 
research on FDM process parameters focuses on 
improving mechanical properties, dimensional 
accuracy, and surface roughness. Additionally, 
studies on process parameter optimization to 
examine FDM machine energy usage have 
advanced. Numerous experts suggest using statistical 
design and appropriate optimization techniques to 
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look into how process factors affect parts that have 
been FDM-processed. The subsequent subsections 
provide a detailed review of the research on each 
quality attribute. 
 
2.3.1 Mechanical Characteristic 
 
Mechanical properties are an essential part of testing 
3D printing products. Testing a part's mechanical 
characteristics is one way to find new uses for it or 
estimate how long it will last. There are numerous 
ways to investigate how process variables affect 
mechanical attributes. The three mechanical 
properties that are most frequently examined in FDM 
parts are their tensile, compressive, and flexural 
strengths [78]. A Universal Testing Machine is a type of 
machine used to test these three mechanical 
properties, namely tensile, compressive and bending 
strength of materials. Table 4 provides a 
comprehensive review of recent research on tensile 
strength, compressive strength, and flexural strength 
is given in this section.  
1. Tensile Strength 

One of the mechanical requirements that is 
most often examined is tensile strength. The 
majority of studies discuss how to create parts 
according to the American Standard for Testing 
and Materials (ASTM) D638 standard for tensile 
testing (Figure 8 a). In this method, the test 
object is clamped in a testing machine with a 
load that continues to increase until a certain 
load reaches its peak so that the test object 
breaks. The units for this test result are still in 
Newton form and are then converted to MPa. 
The tensile characteristics of thermoplastics are 
tested using this standard. Rodriguez [60], 
introduce and develop mathematical models 
based on approximate minimization algorithms 
to determine the ideal parameter values for 
improved stiffness and tensile strength by Panda 
[18], investigated the impact of raster angle, air 
gap, layer thickness, orientation, and width on 
the tensile strength of ABS P400 components. In 
order to get more strength, bacterial foraging 
(BFO) approaches are used to calculate the 
theoretically ideal value of process parameters. 
Other research by Torres [26], looks at how 
different build orientations affect the tensile 
properties of PLA materials in terms of 
temperature, speed, raster orientation, infill 
density, layer thickness, and number of shells. 
The findings indicate that one of the most 
important tensile strength criteria is construction 
orientation. Alafaghani [29], Identify the 
parameters that affect tensile strength: build 
orientation is the first, Layer thickness, 
temperature, speed, and infill pattern and 
density come next. Tensile properties such as 
yield strength, tensile strength, and Young 
modulus are significantly influenced by 
construct orientation, layer thickness, infill 
density, temperature, and other six parameters. 

Liu [30], determine the most practical 
combination of process parameters for tensile 
characteristics, examine layer thickness, build 
orientation, raster width, raster orientation, and 
air gap. The parts for the tensile test and 
experiment were designed by the author using 
Taguchi orthogonal arrangement and GB/T 
1040.2-2006 (Chinese Standard), respectively. 
Out of the five parameters, build orientation and 
layer thickness (height) (60), and the strength at 
break is significantly influenced by the raster 
orientation (¬45/45). The degree of parameter 
optimization differs greatly from the majority of 
previous research. Research conducted by Raju 
[32] also demonstrates that, out of the four 
tensile characteristics parameters, layer 
thickness and construction orientation are the 
two most important parameters [36], created 
and suggested a multi-nozzle FDM system for 
carbon fiber composite 3D printing that is 
sustainable. Various volume sizes of carbon fiber 
composite materials are achieved by 
incorporating carbon fiber layers into models 
made using PLA. Parts made with a volume of 
60% PLA and 40% carbon fiber have a tensile 
strength that is 287.9% higher than parts made 
with pure PLA. Fountas [40], conduct research to 
maximize tensile strength, bending strength, and 
compressive strength. The experimental studies 
and associated empirical models created by 
Sood [20], The relationship between the 
mechanical qualities of tensile, bending, and 
impact strength forms the basis of this 
optimization problem. By modifying the layer 
thickness, orientation angle, raster angle, width, 
and air gap, the model was produced via FDM 
technology. The goals, dimensions, and 
constraints of the procedure taken into 
consideration in this matter are the same as 
those taken into consideration by Sood [20].  

2.  Compressive Strength 
 Like the characteristics of other sections, 

compressive strength is one of the most 
significant mechanical properties and is 
affected by process conditions. Since there is no 
standard for evaluating the mechanical 
characteristics of components made using 
additive manufacturing, nearly all papers that 
conduct compressive tests adhere to the ASTM 
D695 standard for rigid thermoplastic 
compression tests (Figure 8 b). Compressive 
testing is carried out by measuring the 
dimensions of the specimen and then applying 
a load (F) in the middle with two supports 
according to the three-point bending standard. 
Maximum force in Newton units and maximum 
stress in MPa obtained from the results of several 
tests. Chin Ang [17], using FDM processes to 
generate ABS support structures for network 
engineering and evaluate the effects of various 
process variables (build layer, build profile, and 
build orientation). The recommended levels for 
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both air gap and raster width are the lower and 
upper levels for each of these parameters, 
which are two important criteria for compressive 
strength. [7] create formulas to ascertain the 
ideal conditions for utilizing Quantum Particle 
Swarm Optimization (QPSO) to attain the 
required compressive strength. 

3.  Flexure Strength 
 Bending strength is a mechanical property as 

crucial as tensile and flexure strength. An 
international standard for evaluating the flexural 
characteristics of thermoplastics is ASTM D790 
(Figure 8 c). This bending strength testing 
method uses a load perpendicular to the 
sample. Three points of bending and anchoring 
are used as distances. The center of the sample 
is the loading point. In this test, there is a bend at 
the midpoint of the sample. This amount of 
bending is called deflection. After that, the 
maximum load in Newtons and the strain of the 
specimen in MPa at fracture were recorded. 
Three-point loading systems are often used for 
flexure strength. When a weight is placed on the 
specimen, it solely acts as a supported beam. 
The body of current research on how FDM 
process parameters affect bending properties is 

compiled in this section [14]. In addition to 
tensile strength, Panda [18], examined how 
flexure strength was affected by layer thickness, 
build orientation, raster width, raster orientation, 
and air gap. Their statistical analysis and 
experimental research have shown that all 
parameters, individually and in combination, 
have a considerable impact on flexure strength. 
Sood [20], The link between the process 
parameters and the forces achieved was 
demonstrated by a response surface equation 
for bending strength, taking the same 
parameters into account. To further highlight the 
significance of the two-parameter interaction 
for bending strength, response surface plots are 
used. It is believed that utilizing low values for 
other parameters and high values for layer 
thickness and raster width will boost bending 
strength. For flexural strength, the ideal raster 
orientation is established by Fatimatuzahraa 
[79], using ABS material that was manufactured 
using four distinct orientation rasters on an SST 
768 FDM dimension machine. They came to the 
conclusion that 450/−450 is the maximum flexure 
strength at raster orientation.

 
Table 4 Research summary of FDM process parameter optimization for mechanical properties 

 

Material Method Parameter Proses Optimum Value Mechanical Properties Author(s) 

PLA DOE Infill pattern 
The Honeycomb and the Gyroid 
pattern 

Stronger mechanical 
resistance [11] 

ABS ANOVA 
Raster width, raster angle, 
build orientation, air gap, 
and layer thickness 

Layer thickness= 0.1318 mm, 
Orientation= 9.6100, Raster 
angle= 59.99370, Raster width= 
0.4196mm, Air gap= 0.0074mm 

Tensile strength=  
174.3177 MPa 

[18] 

Layer thickness= 0.1278 mm, 
Orientation= 4.95040, Raster 
angle= 54.73110, Raster width= 
0.4960mm, Air gap= 0.4960mm 

Flexure strength =  
126.4818 MPa 

Layer thickness= 0.2531 mm, 
Orientation= 29.99630, Raster 
angle= 59.99510, Raster width= 
0.5063mm 

Impact strength =  
1.6056 kJ/m2  

ABS ANOVA  
Raster width, raster angle, 
build orientation, air gap, 
and layer thickness 

Layer thickness = 0.2540mm, 
Orientation = 00, raster angle = 
600, Raster width = 0.4064mm, 
Air Gap = 0.0080mm 

Tensile strength = 
18.0913 MPa, flexure 
strength= 39.2423 
MPa, impact strength= 
0.482292 kJ/m2 

[20] 

PLA 
Taguchi, 
ANOVA 

Temperature, layer 
thickness, and infill density 

Layer Thicness = 0,1 mm, Infill 
density = 100% 

Ultimate shear 
strength= 42.15 MPa 

[26] 

ABS, PC 

ANOVA, 
Factorial 
design 
(FD) 

Air gap, build orientation, 
layer thickness, raster 
width, raster angle, and 
shell count 

layer thickness of 0.3302 mm, air 
gap of 0.00 mm, raster angle of 
0.00, build orientation of 0.00, road 
width of 0.4572 mm, and 10 
contours. 

The storage modulus = 
1468.33 MPa, loss 
modulus = 166.98 MPa 

[28] 

PLA 
Taguchi, 
ANOVA, 
GR 

Raster width, Deposition 
style, deposition 
orientation, air gap, and 
layer thickness 

Deposition orientation= 00,  Layer 
thickness= 0,3mm, Deposition 
style=0 

Tensile strength = 
50.34MPa 

[30] 
Deposition orientation= 00,  Layer 
thickness= 0,1mm, Deposition 
style=0 

Flexure strength = 
83.51MPa 
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Material Method Parameter Proses Optimum Value Mechanical Properties Author(s) 
Deposition orientation= 00,  Layer 
thickness= 0,3mm 

Impact strength = 
23.07kJ/m2  

ABS 
Taguchi, 
PSO-BFO 

Layer thickness, model 
interior, build orientation, 
and support material 

Layer thickness (LT)= 0.07mm, 
support material (SM)= sparse, 
part orientation (PO)= 450, 
material interior (MI)= high 
density. 

Tensile strength = 
(22.21 + 2.52LT + 
0.718PO + 0.657SM + 
1.777MI) MPa 

[32] 

PEEK 
Taguchi 
method 

Layer thickness, filling 
ratio, speed, and 
temperature 

Printing speed= 60 mm/s, layer 
thickness= 0.2 mm, temperature= 
3700 C, filling ratio=40% 

Tensile strength = 40 
MPa, flexure strength= 
68,2 MPa, impact 
strength= 101,2 kJ/m2 

[33] 

ABS 

RSM, PSO, 
Multy 
Objektive 
Dragonfly 
(MODA) 

Raster width, raster angle, 
build orientation, air gap, 
and layer thickness 

Layer thickness = 0.2540mm, 
Orientation = 00, raster angle = 
600, Raster width = 0.4064mm, 
Air Gap = 0.0080mm 

Tensile strength = 
17,838 MPa, flexure 
strength= 38,200 MPa, 
impact strength= 
0,448 MJ/m2 

[40] 

PLA, HA 
composit
e 

ANOVA 
Layer content, HA 
content, infill density, and 
speed 

HA content= 10%, layer 
thickness= 0.1 mm, printing 
speed= 30 mm/s, filament 
feeding speed= 0.8 mm/s 

 Bending strength = 
103.1 ± 5.24 MPa, [45] 

PLA 

RSM, 
open 
pyramid 
sample 

retraction speed, 
deposition angle, and 
number of walls 

retraction speed = 75 mm/s 

Tensile strength 
increases 10-15 
percent with higher 
retraction speeds 

[53] 

PLA ANOVA 
Temperature, raster angle, 
layer thickness, and infill 
density 

Infill Density= 60%, Extrusion 
Temperature= 220ºC, Raster 
Angle= 0º/90º, Layer Thickness= 
0.1 mm. 

Ultimate Tensile 
Strength= 40,65 
MPa/g, the Yield 
Tensile Strength = 
11,40 MPa/g, Modulus 
of Elasticity= 0,74 
GPa/g 

[59] 

PLA 
Taguchi, 
ANOVA 

Filling structures, 
Occupancy rates, table 
orientation  

Filling structures= rectilinier, 
occupancy rates = 50%, table 
orientation = 00 

Tensile strength  33.99 
MPa 

[64] 

ABS FD 
Build orientation, infill 
pattern Build orientation = 0° 

Higher mechanical 
properties [65] 

PLA, 
coconut 
wood 
composit
e 

DOE Infill density, infill pattern 
Infill pattern= concentric, Infill 
density= 75% 

Tensile Strength PLA= 
37,55 MPa, 
PLA/Coconut wood = 
19,35 MPa 

 
[75] 

 
 

According to research conducted Dey and Yodo 
[14], There aren't many studies that compare the 
mechanical properties of components made of 
various materials at this time. This represents a gap in 
the literature that needs to be filled in this area. 
Furthermore, color plays a crucial role in tensile 
strength, with natural color filaments having the 
highest tensile qualities. Concurrent examination of 
additional factors as one of the next study directions 
to determine the overall effect of mold components 
on flexure strength would be beneficial for public 
knowledge.    

Tensile strength of a part is largely affected by layer 
thickness and construction orientation, according to 
current studies. The maximum tensile strength is 
observed in part orientation 0. Tensile strength 
increases with decreasing layer thickness. In addition 

to these two factors, tensile strength is also strongly 
impacted by infill density, number of shells, air gap, 
and raster angle. Numerous research investigations 
looked at how different process variables affected 
the FDM mold components' compressive strength. 
They concluded that the number, form, and density 
of the infill have the greatest influence on 
compressive strength. There are very few published 
studies that address the flexure strength of FDM 
molded items. At low layer thickness and 100% infill 
density, flexure strength reaches its maximum. Future 
research can examine the effects of process 
variables, such as temperature, infill pattern, raster 
width, and their combination, based on the 
evaluated publications, to create components with 
high flexure strength. Tensile strength is not greatly 
impacted by annealing the FDM portion; instead, it 
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enhances stiffness [4]. Few published articles address 
the multi-objective optimization of FDM process 
parameters to enhance the mechanical properties 
of components. Thus, there is potential for more study 
in this area. This is each test's specimen shape. 
 
 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

 
(c) 

 
Figure 8 (a) ASTM D639 type -I for tensile strength [80] (b) 
ASTM D695 for compressive strength [81] (c) ASTM D790 for 
flexure strength [80] 

2.3.2 Build Time 
 
Because parts take a long time to manufacture, 
using additive manufacturing for mass production in 
industry is currently difficult. Fusion deposition 
modeling creates the parts layer by layer. It takes 
much time to make even minor parts. Component 
printing failure due to clogged nozzles also increases 
component manufacturing time. Similarly, the 
characteristics of other parts and machining 
parameters also affect the manufacturing time. Build 
time is simply measured using a stop watch. Time 
calculation starts when the 3D printing machine starts 
printing the specimen and ends when the machine 
finishes printing, then the time required is recorded. 
Build time units should be in seconds. Manufacturing 
time can be optimized by selecting optimal settings 
of various process parameters [4]. Reducing lead 
and production times to match conventional 
manufacturing processes is one of the primary issues 
facing industrial settings' utilization of additive 
manufacturing technologies. Therefore, producing 
functional parts with characteristics like surface 
roughness, dimensional correctness, and mechanical 
quality requires reducing production time. It's also 
critical to manage "failures" for manufacturing time. 
For instance, clogged nozzles might cause 
construction to take much longer. Comparable to 
the characteristics of 
 
 

 
Table 5 Summary of significant research in FDM process parameter optimization for build time 

 
Material Method Process Parameters Optimum Value Build Time Author 

ABS 
AHP, 
ANOVA 

Raster angle, air gap, 
and layer thickness 

Layer thickness= 0,330mm, air gap= 
0,020mm, raster angle= 450 

Minimum processing 
time 

[21] 

ABS 
full 
factorial, 
ANOVA  

Build orientation, layer 
thickness, raster angle, 
shell width, and raster 
width 

layer thickness= 0,01mm, raster 
angle= 900, Build orientation= 50, 
countur width=0,028in, raster 
width= 0,028in 

Build Time= 78 min [22] 

ABS 
Fuzzy 
logic, RSM 

Layer thickness, width, 
raster angle, raster angle, 
air gap and countur 
width 

Layer thickness= 0.254mm, contour 
width= 0.48mm, air gap= 0.4mm, 
raster width= 0.48mm, raster angle= 
0°  

Build Time= 0,4500 
Hours 

[35] 

PLA 
Taguchi, 
ANOVA 

Shell width, layer 
thickness, infill density, 
speed, and pattern 

Layer thickness of 0.3 mm, print 
speed= 80 mm/s. infill density =20%, 
infill pattern= triangle, shell 
thickness= 0.4 mm,  

Minimum production 
time [44] 

PLA ANN 
Layer thickness, air gap, 
raster width, raster angle, 
and number of contours 

layer thickness = 0.25mm, air gap= -
0.002mm, raster width = 0.4048 mm, 
build orientation = 00, raster angle = 
900  
, number of contours = 6 

Build Time= 5.5618 min. [49] 

PLA 
Taguchi, 
GR 

Layer thickness, infill 
density, speed, and 
pattern 

Layer thickness= 0.2 mm, pattern= 
Triangles, infill density= 70%, printing 
speed= 100 mm/h 

Printing time= 88 min [51] 
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By choosing the best possible combination of 
process parameters, manufacturing time can be 
reduced for the FDM part as well as other parts [14]. 
Nancharaiah [21], discovered that the raster angle 
and air gap significantly affected the building time. 
The production time can be shortened by choosing 
a thicker layer and a positive air gap. Gurrala [22], 
created a model utilizing full factorial design trials to 
examine the effects of section orientation, layer 
thickness, raster angle, and section raster width on 
construction time and support structure volume. It 
was determined that the following factors 
significantly impact construction time: raster width, 
contour width, section orientation, and layer 
thickness. Based on studies by Srivastava [35], it was 
found that important process variables included the 
orientation angle, slice height, and air gap that 
affected the construction time variation It was 
found that the construction time variation was 
significantly influenced by the air gap, slice height, 
and orientation angle, among other process 
parameters. 

However, The build time was less affected by 
other process parameters such as contour width, 
raster width, and raster orientation. Based on 
research conducted by Giri [49], air gaps, raster 
angles, raster width, and layer thickness greatly 
minimize build time, but build time increases in 
constructing orientation angles from zero degrees to 
ninety as the number of contours increases. Using 
the following assumptions, this analysis forecasts a 
minimum build time of 5.5618 minutes: air gap: 
0.4588 mm, raster width: 0.5032 mm, raster angle: 0, 
layer thickness: 0.33 mm, and build orientation: 0. 
the same order as that of energy usage, the 
average impact of controllable process factors on 
build time is rated. The layer thickness and print 
speed are the most important process factors, 
followed by filler density, filler pattern, and shell 
thickness [44]. Patil [51], Find the optimal FDM 
parameters using the gray rational technique for 
multi-purpose optimization in order to reduce 
filament usage, expedite manufacturing, and 
monitor the effects of surface roughness. This study 
concluded that the triangular filling pattern, 70% 
filling density, 100 mm/h printing speed, and 0.2 mm 
layer thickness are optimal values of the parameters 
used as optimization process parameters. Table 5 
illustrates a brief description of a research article 
investigating how process factors affect built time. 
Choosing a positive air gap, a larger raster width, 
and a thicker layer can all reduce the build time, 
according to a survey of several journals. 
Additionally, several academics have looked into 
how part orientation affects build time. Different 
directions for printing a part require other volumes 
of support structures. Thus, the time to print 
supporting materils and parts varies according to 
part orientation. The final product's reaction to 
process variables including temperature, raster 
angle, and shell width is still unclear. Layer thickness 
also affects surface roughness and dimensional 

accuracy. Multi-objective optimization is one area 
of future research that can be used to examine how 
different process parameters affect construction 
time, dimensional accuracy, and surface roughness 
[4]. Examining how temperature and infill patterns 
affect build time is another line of inquiry. 
 
2.3.3 Dimentional Accuracy 
 
Dimensional accuracy using a digital caliper by 
measuring product dimensions consisting of length, 
width and height/thickness. Next, the measurement 
results are compared with the product dimensions that 
have been determined. Dimensional accuracy units 
are in percentage (%). Sood [19], Analyze the impact 
of several process parameters on the dimensional 
accuracy of the FDM-created ABSP400, including 
component orientation, layer thickness, raster angle, 
raster width, air gap, and their combinations. Along 
the ‘x’ and ‘y’ axes of the printing bed, shrinkage is 
seen, and the printed part's thickness along the ‘z’ axis 
is consistently more than the design size. The Taguchi 
'L27' orthogonal array determines the significance of 
parameters and their interactions before they are 
recommended to be the optimal parameter level. 
Gray Taguchi's methodology has been used to 
minimize the combination of all objective functions, 
i.e., minimize the percentage change in dimensions 
along the axis. Peng [25], Implemented a fuzzy 
interface system to convert three outputs into one 
comprehensive response: warp deformation, 
dimensional accuracy, and build time. A model that 
linked the full response and four input Second-order 
RSM was used to construct the variables—line width 
compensation, extrusion velocity, filling velocity, and 
layer thickness—and ANN was used for additional 
validation. Mohamed [28], The findings demonstrate 
that the best conditions for minimizing the dimensional 
deviation of length, width, and thickness are low layer 
thickness and a restricted number of shells. 
Furthermore, there are numerous optimal 
combinations for dimensional accuracy in various 
directions for the other four parameters (air gap, raster 
width, construct orientation, and raster orientation). 
Therefore, the best set of parameters for 3D deviation 
can be found using the chosen approximation 
function. In the study that was done [14], Likewise, 
additional research on the temperature and shell 
count is necessary to validate findings. It has been 
noted that the building platform's X and Y directions 
experience shrinkage, whereas the development 
platform's Z direction experiences expansion. Thus, it 
follows that a crucial component of dimensional 
accuracy is also building orientation. At the moment, 
it's unclear how many process variables—like raster 
width and infill pattern—will be, temperature, and 
number of shells, affect dimensional accuracy. 
Understanding how these factors affect the part's 
dimensional accuracy is crucial for producing high-
precision parts. Most current research only considers 
two or three levels of parameters as listed in Table 6 
below.
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Table 6 FDM process-specific research summary for dimensional accuracy 
 

Material Method Process Parameters Optimum Value Dimensional 
Accuracy Author 

ABS 
Taguchi, 
ANOVA 

Air gap, raster width, 
raster angle, and layer 
thickness 

Air gap= Solid fine, raster width= 
0,729, raster angle= 30/60, and 
layer thickness= 0,305 

Not reported [16] 

ABS 
Taguchi, 
ANOVA  

Raster width, raster 
angle, build orientation, 
air gap, and layer 
thickness 

Raster width= 0.4564mm, raster 
angle= 00, layer thickness= 0.178 
mm, air gap= 0.008 mm, part 
orientation=  00  

Improve the quality of 
overall dimensional 
accuracy 

[19] 

HIPS Cross-
sectional 
photography 

Layer thickness, air gap, 
build orientation, raster 
width, speed, raster 
orientation, 
temperature 

Temperature= 210 0C, layer 
thickness= 0.25mm, raster width= 
0.605 mm 

thickness 0.0646 ,mm 
part dimensions= 
0.0514 mm, hole 
dimension= 0.129mm 

[27] 

Gelatin, 
alginate 

DOE 
Nozzle speed, rotation 
speed, presure 

Nozzle speed= 0,75mm/s, rotation 
speed= 4,25r/s, 
pressure=0,224MPa 

Higher forming 
accuracy 

[67] 

Lemon 
juice 
gel 

ANOVA 
Diameter nozzle, 
extrusion rate, nozzle 
speed 

the 1 mm Nozzle diameter= 1mm 
extrusion rate=  , 24 mm3/s,  
nozzle speed= 30 mm/s  

Smooth geometry [68] 

 
 

In order to improve decision accuracy and 
understand how the least understood parameters—
such as temperature, infill patterns, or diameter 
nozzles—affect dimensional accuracy, it is necessary 
to investigate more than three tiers of parameters 
[14]. The findings of the literature review indicate that 
temperature, shell count, and layer thickness all 
significantly affect dimensional accuracy [4]. A low 
layer thickness is recommended to improve 
dimensional accuracy. Shrinkage and expansion are 
observed along the X, Y, and Z directions, 
respectively. Thus, orientation is also an essential 
factor affecting dimensional accuracy. To find out 
how other factors, such the number of shells, their 
width, raster angle, and raster angle, impact 
dimensional accuracy, more investigation is needed. 
Many researchers have considered two or three 
levels of factors to reduce dimensional aberrations. 
The Taguchi and RSM methods are widely used for 
their experimental modeling and optimization. For 
subsequent research, optimization of process 
parameters considering more than three levels using 
modern optimization techniques, such as genetic 
algorithm (GA), the teaching-learning-based 
optimization (TLBO), and quantum behaved particle 
swarm optimization (QPSO), can be used. 
 
2.3.4 Surface Roughness 
 
The quality of items produced using FDM depends on 
a number of parameters. Surface polish is an 
important quality parameter in many real-world 
engineering difficulties. The surface roughness of FDM 
molded components has been greatly improved in 
the last few years with a lot of work. Surface 
roughness is measured with a surface roughness 
tester. Two sides are tested: one at the side of the 

specimen curve and the other at the top of the 
specimen. Ra and μm are units for surface roughness. 
The purpose of this literature review is to investigate 
how different process variables affect the surface 
roughness of components that are produced (Table 
7). Nancharaiah [21], Analyze how surface roughness 
is affected by raster angle, road width, air gap, and 
layer thickness. It was discovered that road width 
influences layer thickness as well as the surface 
roughness and dimensional accuracy of FDM 
components. Raju [32], It also shows that build 
orientation and layer thickness are two critical 
components of surface quality. Patil [52], Create 
optimization models to examine how different 
process parameters, such as layer thickness, printing 
speed, infill style, and density, affect surface 
roughness. It was determined that the primary factor 
influencing surface roughness is layer thickness. Infill 
style also affects surface roughness. Gyroid-type infill 
style gives better results for surface roughness. 

Research results by Dey and Yodo [14], state that 
by using a low layer thickness, which helps to lessen 
the influence of steps on the printed item, good 
surface finishing can be accomplished. To obtain 
improved print precision, low nozzle temperature and 
speed are preferred in addition to layer thickness. 
Elevated temperatures at the nozzle enhance the 
filament material's fluidity, leading to increased 
dimensional deviation and surface roughness. For all 
process parameter settings, Most data suggest that 
the surface finish of the upper mold surface is superior 
to that of the side surface. For the FDM process, it is 
therefore advised to print a section's shortest side in 
the Z direction in order to minimize surface roughness. 
For the orientation of inclined parts, neither the 
horizontal nor vertical orientation increases the 
roughness of the surface. Therefore, it is advisable to 
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refrain from printing in an oblique manner. Studies 
have been conducted [4]. It was also discovered 
that road width, air gap, raster angle, and layer 
thickness had a major impact on surface finish. A thin 
layer improves surface finish and lessens the impact 

of the ladder. Build orientation also affects surface 
finish. ABS and PLA parts can be further treated with 
acetone and chloroform to improve the surface 
finish.

 
Table 7 FDM process-specific research summary for surface roughness 

 
Materia
l 

Method Process Parameters Optimum Value Surface Roughness Author 

PLA RSM, PSO, 
SOS 

Layer thickness, speed, 
temperature 

Layer thickness= 0,1mm, speed= 
37,84mm/s, temperature= 192,70C 

Surfacce roughness 
Improved about 8.5% 
and 8.8% = 2.229 μm. [37] 

PLA ANN, RSM, 
PSO 

Layer thickness, speed, 
temperature, infill 
density, nozzle diameter 

Layers’ thickness = 100 μm, 
Temperature of 192.20 °C, speed= 
97.06 mm/s, nozzle diameter= 0.3 
mm, infill density= 24.88% 

Surface roughness= 
11.319 μm. [50] 

PLA ANOVA, 
RSM 

Layer thickness, speed, 
infill density, infill pattern 

Infill density= 70 to 
90 %, layer thickness of 0.2-0.22 
mm, speed of 70-90 mm/s 

Gyroid= 18.6726μm, 
Zigzag= 19.6155 μm, 
Triangles= 19.5894 μm. [52] 

ABS DOE Speed Low speed, choosing azimuth 
angle, make a rampart, make 
toolpath planner 

Better surface 
roughness [66] 

 
 

2.3.5 Energy Consumption 
 
The claim that 3D printers consume less energy than 
other production methods is one that is frequently 
stated [82]. The production process's time and energy 
needs both simple and complicated mechanical 
components utilizing rapid prototyping and traditional 
manufacturing techniques are presented in this study. 
The subject of when 3D printing may be utilized 
effectively is addressed in this article, in addition to 
suggestions for the optimal technology to employ 
based on requirements for materials, complexity, 
batch size, and element size. Energy consumption is 
simply measured using a watt meter. The 
measurement starts when the 3D printing machine 
starts printing the specimen and ends when the 
machine finishes printing, then the electrical energy 
required is recorded in the form of KWh. Jiang [83], 
Enhancing processing speed, lowering energy usage, 
and elucidating additive manufacturing technology 
that rivals traditional manufacturing technology have 
long been popular study areas. However, compared 
to traditional technology, additive technology's 
production is still slower and its energy consumption is 
still one to two times higher. Utilize physical and 
mathematical principles to provide quantitative print 
speed performance indicators and identify potential 
obstacles and limitations for next developments. [84] 
examines the various ways that AM additive 
manufacturing subsystems, such as high energy beam 
generators, control systems, cooling systems, etc., can 
operate and how much energy they need. A 
summary of a recent study on the energy 
consumption of machinery and processes is also 
included. The mechanical characteristics and 
microstructure of components that are produced, as 
well as the process's sustainability, can be impacted 

by AM metal's energy consumption. The percentage 
of energy consumption that is indirectly realized as a 
result of material use is highlighted in the life cycle 
assessment of energy consumption. Increasing 
capacity utilization in AM can help lower energy 
consumption. Energy consumption can also be 
reduced by designing parts as optimally as possible 
and optimizing AM pre-process plans. The ideal 
temperature, infill density, and raster orientation must 
be established for tensile strength, energy 
consumption, and build time. Rinanto [73], Using order 
performance by resemblance to the optimum solution 
(PCR-TOPSIS) utilizing the process capability ratio 
technique. This paper discusses multi-objective 
optimization techniques that can provide a single 
optimal solution. The impact of the five FDM process 
parameters—infill density, infill pattern, layer thickness, 
print speed, and shell thickness—on energy usage, 
production time, part weight, dimensional accuracy, 
hardness, and tensile strength was assessed through 
additional research [44]. By optimizing mechanical 
and physical attributes while decreasing resource 
consumption and production time, this research can 
assist FDM processes better match design 
specifications for goods created by Fused Deposition 
Modeling (FDM). Using energy is what a machine or 
system does when it consumes energy [54]. This study 
examined the effects of various process variables on 
the energy consumption and manufacturing time of 
fused deposition modeling (FDM) components printed 
from polylactic acid (PLA) and acrylonitrile butadiene 
styrene (ABS).  

The outcomes demonstrated that PLA prints faster 
and uses less energy per unit volume than ABS. 
Another study sought to determine the ideal scale, 
extruder temperature, printing speed, layer height, 
and infill value to simultaneously maximize specific 
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energy, scrap, and surface roughness. This work 
presents a realistic method for multi-objective 
optimization of surface roughness, scrap weight, and 
specific energy performance responses in 3D printing. 
This leads to the conclusion that specific energy and 
residual weight increase with increasing surface polish 
[57]. 

The most significant factors that affect a print's 
energy usage, according to recent study, are layer 
thickness, infill density, print speed, shell thickness, and 
infill pattern as shown in Table 8. The energy 
consumption was optimal at 0.3 mm layer thickness, 

20% infill density, triangle infill pattern, 80 mm/s print 
speed, and 0.4 mm shell thickness [44].  Research 
comparing the use of ABS and PLA materials to energy 
consumption shows that the energy required to print 
ABS materials is higher than printing PLA materials. The 
results of the investigation showed that for each 
experiment, printing with ABS material used 1.5–2 times 
more energy than printing with PLA material [54]. There 
aren't many published studies on multi-objective 
optimization of FDM process parameters to take 
energy consumption into account. Therefore, there is 
still much room for further research in this direction. 

 
Table 8 Research summary of FDM process parameter optimization for energy consumption 

 

Material Method Process Parameters Optimum Value Energy Consumption Author 

PLA Taguchi, 
ANOVA  

Layer thickness, speed, 
shell width, infill density, 

infill pattern 

Layer thickness of 0.3 mm, print 
speed= 80 mm/s. infill density 

=20%, infill pattern= triangle, shell 
thickness= 0.4 mm  

Minimum energy 
consumption [44] 

PLA, 
PETG, 
PHA 

Taguchi, 
ANOVA 

Type of material, Layer 
thickness, raster width, 

temperature, infill 
density, number of 

perimeters 

PLA: Layer thickness=0,3mm, raster 
width=0,4mm, 

temperature=207,80C, infill 
density=15%, number of 

perimeters= 4 

 
 
 
 
 
PHA Bio WOOD Rosa 
3D is most suitable 
material 

[48] 

PETG: Layer thickness=0,3mm, 
raster width=0,51mm, 

temperature=2480C, infill 
density=15%, number of 

perimeters= 4 
PHA: Layer thickness=0,3mm, 

raster width=0,4mm, 
temperature=2480C, infill 
density=31,1%, number of 

perimeters= 1 

PLA RSM Layer thickness, speed, 
infill density 

Layer thickness= 0,3mm, speed= 
75mm/s, infill density= 100% 

ABS= 0,2KWh, 
PLA=0,1KWh 

ABS is higher than PLA 
for energy 
consumption 

[54] 

PLA 

Taguchi, 
AHP-

TOPSIS, 
ANN-GA 

Layer thickness, speed, 
temperature, infill 

density, scale 

Layer thickness= 0,2mm, 
speed=230mm/s, 

temperature=194,80C, infill 
density=18,2%, scale=96,8% 

 
Specific Energy 
Consumption= 9,02 E-3 
 

[57] 

PLA 
Taguchi, 

PCR-
TOPSIS  

Temperature, raster 
orientation, and infill 

density 

Infill density=40%, 
temperature=210°C, raster 

orientation= 45°  

Energy consumption= 
0.0154KWh [73] 

 
 
2.4 Optimization Methods Used and Their 
Comparison 
 

According to the literature review, a number of 
optimization techniques, including as the Taguchi 
method, response surface method (RSM), artificial 
neural network (ANN), particle swarm optimization 
(PSO), and genetic algorithm (GA), have been used 
to optimize the parameters of the FDM process, gray 
relational (GR), fuzzy logic, factorial design, and 
others like group method data handling (GMDH).  
 
2.4.1 Taguchi Method 
 

The most popular technique for peer-reviewed 
research is Taguchi. By choosing levels of controllable 

factors, input process parameters, or independent 
variables in a way that minimizes response variations 
brought on by uncontrollable factors or disturbances 
like humidity, vibration, and ambient temperature, 
the Taguchi Method is a statistical quality control 
technique. The Taguchi method integrates statistical 
and mathematical techniques to optimize 
performance properties by selecting design 
parameters. With fewer experiments, Taguchi's 
technique discovered some effects of statistical 
fluctuations. In addition, Taguchi's approach 
identifies an ideal experimental environment with the 
least amount of variability [4]. In the research 
conducted by Omar [56], Taguchi's L9 orthogonal 
array design served as the basis for the planning of 
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the experimental trials. This design was used to lower 
the number of attempts, or 81 tests, while utilizing a 
full factorial design. Taguchi's approach helped 
reduce experiment time and resource use. 
 
2.4.2 Response Surface Method (RSM) 
 
RSM is an optimization and modeling methodology 
that combines statistical and mathematical 
techniques. This method's main goal is to maximize 
responses that are influenced by different input 
factor characteristics. RSM connects controllable 
input parameters in an experimental design to gather 
enough data to calculate outcomes [4]. Regular 
regression methods, like RSM, use an experiment 
design that covers the range of all relevant variables 
with a minimum number of repetitions, making it very 
dependable. Relationship structure methodology 
(RSM) is a methodical and systematic way to 
determining the connections between the variables 
influencing a process and its results. RSM uses the 
program Design-Expert V8 to statistically analyze 
experimental data [58]. 
 
2.4.3 Artificial Neural Network (ANN) 
 
An artificial neural network, or ANN, is a sophisticated 
model that is inspired by the way the biological 
nervous system, particularly in human brain cells, 
processes information, and can forecast how 
ecosystems will react to changes in environmental 
variables. Neural networks are better at illustrating 
nonlinear functions than RSM, which makes ANN a 
more accurate and superior modeling technique 
[85]. In studies carried out by Poonia [57], ANN was 
used to create the predictive model, and mean 
square error and regression value metrics were used 
to assess it. In the next stage, the developed ANN 
model is coupled with the genetic algorithm (GA) 
technique to obtain a Pareto solution. With printing 
parameter limitations, the integrated ANN-GA yields 
predictive models with Pareto solutions. 
 
2.4.4 Particle Swarm Optimization (PSO) 
 
In a study published in 1995, Kennedy and R. Eberhart 
[86], introduced the heuristic search method of 
global particle swarm optimization (PSO). The PSO 
has undergone significant revisions since 1995The 
PSO's particles travel in the issue region by trailing the 
most efficient particles that are moving at a certain 
moment. The coordinate position of every particle in 
the problem region is tracked, directly contributing to 
the identification of the best solution. Particles are 
assessed using the suitability function after repetition. 
Compared to other optimization techniques, PSOs 
can reach convergence points faster. Only a few 
parameters can be used to calculate the optimal 
value. Reducing the number of particles can 
improve PSO performance [4]. Combining them is 
one of the benefits of using metaheuristic algorithms. 
Neural networks have several limits, such lengthy 

operations, even if they can track intricate and 
nonlinear interactions between independent and 
dependent variables. Consequently, ANN 
performance can be greatly increased by utilizing 
optimization methods like PSO. In order to solve 
engineering challenges, some researchers have used 
hybrid ANN and PSO models with success [87]. 
 
2.4.5 Genetic Algorithm (GA) 
 
Darwin's theory of evolution states that natural 
selection and the survival of the more fit individuals 
are the foundations for genetic adaptation. Natural 
selection aims to produce offspring that have a 
greater resemblance to the traits of their forebears. 
With the advancement of molecular biology, several 
theories of evolution other than Darwinian natural 
selection have been established. New evolutionary 
theories are therefore helpful to computer science in 
understanding its basic ideas and creating clever 
heuristics to help with engineering problem-solving 
from a critical optimization perspective [8]. Similar to 
the preceding approach, GA can be used with 
another approach, specifically ANN. The primary 
goal of the study conducted by Rojek [38] is to 
optimize the computational 3D printing process in 
terms of features and material selection using ANN 
paired with GA in order to enhance the tensile force 
of exoskeleton samples. Material strength can be 
increased by the novel strategy of combining the 
ANN and GA approaches for material selection. The 
strategy also solves the issue of optimizing parameters 
associated with the 3D printing technical process. 
 
2.4.6 Factorial Design (FD) 
 
Although it can also be used to understand and 
optimize processes, the major use of the factorial 
experiment design is the estimation of critical 
elements and their interactions. There are two types 
of factorial design: complete factorial design and 
fractional factorial design. The major benefit of full 
factorial design is that it allows you to assess all 
significant effects of variables and their interactions; 
however, it requires more experiments as the number 
of components goes up. Fractional factorial design 
results in fewer trials being conducted. Compared to 
full factorial design, fractional factorial design limits 
the influence of interactions while enabling exact 
main effect assessment with fewer procedures. 
Fractional factorial design is the most often used 
approach for process development and quality 
improvement since it saves time and money [28]. 
 
2.4.7 Gray Relational (GR) 
 
Some researchers utilize GR analysis to determine the 
best set of process parameters based on GR levels in 
order to achieve targeted performance metrics [4]. 
In research by Patil [51], FDM performance is seen 
from several responses: surface roughness, printing 
duration, and filament consumption length. GA 
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analysis is effective at optimizing the FDM process's 
parameters when multiple responses are used. The 
process parameters that have been chosen for 
examination include layer thickness, printing speed, 
infill pattern, and infill %. The study concluded that GR 
analysis is suitable for optimizing FDM parameters. In 
another study conducted by Liu [30], FDM parts have 
to withstand many mechanical properties at once 
and are subjected to various loading scenarios. To 
tackle this problem, many responses are 
simultaneously optimized through the use of GR 
analysis. GR analysis is a quantitative analysis that 
explores similarities and differences between factors.  
It uses GR levels to find the degree of factor 
correlation. 
 
2.4.8 Fuzzy Logic (FL) 
 
Using FL to achieve multi-objective optimization is a 
very attractive approach. In the study done by 
Srivastava [35], FL was used to accomplish multi-
objective optimization while RSM was used to plan 
and assess experiments. Consequently, With the 
combination of FL and RSM analysis, this work 
presents a novel way to simultaneously optimize the 
build time and volume of supporting material. 
According to the study's findings, FL was effectively 
used for the FDM process' multi-objective 
optimization. 
 
2.4.9 Group Method Data Handling (GMDH) 
 
Research published by Rayegani [88], derived the 
required link between each process parameter and 
tensile strength using the GMDH modeling approach. 
The created model can be used as a predictive 
model to determine the optimal theoretical 
parameter settings that will produce the optimum 
response characteristics. In order to find non-linear 
correlations between input and output variables, 
Ivakhnenko's GMDH modeling framework served as 

the foundation for the modeling framework used in 
this investigation. GMDH is a form of multi-layered 
iteration (MIA) networks. 
 
2.4.10 Other Methods 
 
Research that uses other methods uses more design 
of experimental (DOE) methods that are not 
mentioned. Some other studies also use methods 
such as experimental method, cross-sectional 
photography by Kaveh [27], dynamic mechanical 
analysis (DMA) by Arivazhagan and Masood [61], 
bacterial foraging optimization (BFO) by Raju [32], 
process capability ratio (PCR) by Rinanto [73], and 
NSGA-II algorithm by Kafshgar [46]. 

Here is an overview of DOE used in FDM process 
parameter optimization based on the number of 
users of the optimization method shown in Figure 9. 
 

 
 
Figure 9 Number of users of optimization methods in the 
research reviewed 

 
 
The following is a comparative summary of some 

DOEs often used in FDM process parameter 
optimization, as shown in Table 9. 
 

 
Table 9 Comparison between standard experiment designs and optimization techniques 

 

No Capability 
Techniques 

Taguchi RSM ANN PSO GA FD GR FL GMDH 

1 Understanding Normal Moderat
e 

Moderat
e Mudah Difficult Mudah Normal Difficult Moderat

e 

2 Multi-response 
optimization No Yes Yes Yes Yes Tidak Yes Yes Yes 

3 Usefulness Widely Widely Widely Widely Rarely Rarely Widely Rarely Rarely 

4 
Shape of the 
experimental 

region 

Regular 
or 
irregular 

Regular 
only 

Regular 
or 
irregular 

Regular 
or 
irregular 

Regular 
or 
irregular 

Regular 
only 

Regular 
or 
irregular 

Regular 
or 
irregular 

Regular 
or 
irregular 

5 Computational 
time Short Short Long Short Very 

long Short Short Very 
long Medium 

6 Prediction 
accuracy Low Very high Very high Very high High Normal Normal High High 

7 Model linear 
dynamics Yes Yes Yes Yes Yes Yes Yes Yes Yes 

8 Model non-linear No Yes Yes No Yes No No Yes Yes 
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No Capability 
Techniques 

Taguchi RSM ANN PSO GA FD GR FL GMDH 
dynamics 

9 
Developing of 
mathematical 

model 
No Yes Yes Yes No Yes No Yes Yes 

10 Data requirement 
for a given output Mid Low High High High Mid Mid High High 

11 Optimal solution Straight Through 
model 

Through 
model 

Through 
model Straight Straight Straight 

Throug
h 
model 

Through 
model 

12 

Ability to study 
interaction 

effects between 
variables 

Yes Yes No Yes No Yes Yes No No 

13 
Availability in 

simulation 
software 

Yes Yes Yes Yes Yes Yes Yes Yes Yes 

 
 
3.0 CONCLUSION 
 
This literature review critically examined the influence 
of Fused Deposition Modeling (FDM) process 
parameters on the quality and performance of 
printed components. The discussion synthesized 
findings from previous studies that investigated how 
variations in process parameters, materials, and 
optimization techniques affect key output 
characteristics, including mechanical properties, 
surface roughness, dimensional accuracy, printing 
time, and energy consumption. Particular attention 
was given to commonly evaluated mechanical 
responses such as tensile, compressive, and bending 
strength, which remain central indicators of part 
quality in FDM applications. 

The review shows that layer thickness, raster width, 
raster angle, build speed, and build orientation are 
the most frequently investigated parameters in FDM 
optimization studies. Across different research 
contexts, optimum parameter ranges are often 
reported within relatively consistent intervals, with 
layer thickness typically between 0.2 and 0.3 mm, 
raster width between 0.4 and 0.5 mm, raster angles 
commonly set between 45° and 90°, printing speeds 
ranging from 75 to 90 mm/s, and a build orientation 
of 0°. Among these parameters, layer thickness 
consistently emerges as the most influential factor 
affecting multiple quality attributes, indicating its 
critical role in determining overall printing 
performance. 

From a material perspective, PLA and ABS remain 
the dominant materials in FDM research due to their 
availability and stable processing characteristics. 
However, recent studies increasingly explore the 
potential of combining these primary materials with 
alternative polymers such as HIPS, either to enhance 
specific performance attributes or to address 
application-specific requirements. This trend suggests 
a growing research interest in multi-material and 
hybrid material systems within FDM. 
 

In terms of optimization approaches, the Taguchi 
method is the most widely adopted technique, 
followed by response surface methodology, artificial 
neural networks, particle swarm optimization, and 
other computational or hybrid methods. The 
popularity of the Taguchi approach is largely 
attributed to its ability to reduce experimental effort 
and resource consumption while still providing 
meaningful insights into parameter effects. 
Nevertheless, many studies have demonstrated the 
benefit of integrating multiple optimization 
techniques to improve prediction accuracy and 
decision-making robustness. 

Despite the breadth of existing studies, this review 
also identifies limitations in the current body of 
literature. In particular, there is a lack of in-depth 
quantitative analysis regarding the strength of 
correlations between process parameters and 
output responses. As a result, direct and systematic 
comparisons between different optimization 
approaches remain limited. Future research is 
therefore encouraged to focus on multi-objective 
optimization frameworks that simultaneously consider 
a wider range of process parameters, material 
combinations, and performance metrics, including 
printing time and energy consumption. 

Further research directions may also include more 
detailed investigations into the mechanical and non-
mechanical behavior of different component types, 
as well as the influence of machine-related factors 
such as drive mechanisms, stepper motors, extruder 
configurations, and printer architectures. In addition, 
comprehensive cost-oriented analyses covering 
manufacturing, operation, and maintenance 
aspects are recommended to support the transition 
of FDM technology from prototyping toward large-
scale and economically viable production. Such 
studies would provide valuable insights for investment 
planning, technology selection, and industrial 
implementation of FDM systems. 
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