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ESTIMATION OF K-DISTRIBUTED CLUTTER BY USING
CHARACTERISTIC FUNCTION METHOD

MOHAMMAD HAMIRUCE MARHABAN'

Abstract. Detection performance of the maritime radars is often limited by the unwanted sea
echo or clutter. K-distribution is one of the long-tailed densities which is known in the signal
processing community for fitting the radar sea clutter accurately. In this paper, a novel approach
for estimating the parameter of K-distribution is presented. The method is derived from the empirical
characteristic function of the quadrature components. Simulation results show a great improvement
in term of estimated bias and variance, compared with any existing non-maximum likelihood

method.
Keywords: Radar system, sea clutter, K-distribution, parameter estimation, characteristic function

Abstrak. Prestasi pengesanan radar maritim selalunya terbatas disebabkan gema laut atau
serakan yang tidak diingini. Taburan-K adalah salah satu ketumpatan berekor panjang, di mana ia
dikenali dalam komuniti pemprosesan isyarat untuk memadan dengan tepat serakan laut. Dalam
kertas kerja ini, satu pendekatan novel untuk menganggar parameter taburan-K dibentangkan.
Kaedah ini diterbitkan dari fungsi ciri empirik komponen quadrature. Hasil simulasi menunjukkan
pembaikan yang ketara dari segi kecenderungan dan varians teranggar, berbanding dengan mana-
mana kaedah bukan kemungkinan maksimum sedia ada.

Kata kunci:  Sistem radar, serakan laut, taburan-K, penganggaran parameter, fungsi ciri

1.0 INTRODUCTION

It has been found from practical measurements that the sea clutter for high resolution
radar and low grazing angles can be well modelled by two components [1]. The first
component is a spatially varying mean level that results from a bunching of scatterers
associated with the sea swell structure. The second component is termed the ‘speckle’
component, occurs due to the multiple scatterer nature of the clutter in any range
cell and has fast fluctuation [2]. Based on the two components, the overall sea clutter
amplitude distribution is derived by averaging the speckle component over all possible
values of the local mean level which yields the K-distribution [3]. The distribution is
a two-parameter model which uses the scale parameter together with the shape
parameter to provide a complete description of the single point statistics of a
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K-distributed process. The shape parameter is a measure of the degree of the spikiness
of the data, where small values of shape parameter are associated with a spiky
clutter. A recent study also has confirmed the appropriateness of K-distribution to
model the amplitude of sea clutter [4].

The use of such statistical models to describe the clutter data necessitates the task
of estimating the parameter values from data. The accuracy of the parameter estimate
has direct consequences for the performance of radar detection and estimation
techniques. Maximum likelihood (ML) estimation offers the optimum parameter
estimate when the form of the distribution to be estimated is known. However, the
K-distribution lacks a closed form analytical solution for the ML parameter estimate.
Thus the maximum needed to be solved numerically [5,6]. Although ML based
method yields asymptotically efficient estimates, the amount of computation required
makes this method impractical to be implemented in real-time systems.

Over the past decades, alternative means of estimating the shape parameter have
been proposed and they are generally much faster to compute. It includes method
of higher order moment [7], fractional lower order moment (FLOM) [8], texture
measure based method [9], gamma density approximation [7], generalised Bessel
K-function density approximation [10] and recently neural networks based technique
[11]. However, the simplest of the methods, namely the higher order moment method
produces the worst results, showing largest bias and variance. The fractional lower
order moment method was found to be dramatically better. In terms of accuracy
and variance, both the approximation based methods are currently unsurpassed.
The reason for this is that both methods are the solution of the maximum likelihood
estimation formulation. Since both methods are based on density approximation,
the performance degrades as the dissimilarity of the approximated density and
K-distribution increases.

2.0 CHARACTERISTIC FUNCTION

Recently, there is growing interest in applying methods using characteristic function
(CF) among the signal processing community. The interest stems from the need to
apply signal models more complex than the Gaussian model. A non-Gaussian model
such as alpha-stable distribution does not have a closed-form density function, except
for the special case of Gaussian, Cauchy and inverse-Gaussian distribution [12]. In
other cases, signals and noise do not have probability density function (PDF) in
easily tractable forms but the same signals are often conveniently characterised through
the characteristic function.

Let X be a real-valued random variable (RV) with density function p(x). The CF
¢(¢) of the density function p(x) is by definition [13]

o(t)=]" & p(x)ax (1)
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which is the Fourier transform of p(x). The properties of the Fourier transform allow
CF to behave well under shifts, scale changes and summation of RVs, thus it has
been used extensively in areas such as testing for goodness of fit, testing for
independence, and for parameter estimation.

The simplest estimator of the CF is the sample or empirical characteristic function

(ECF) which is defined as [14]

° — 1 - Jix;

(1) = WZ‘ e @)
where x,;i =1,2,..., N represent independent and identically distributed (IID) RV
with CF ¢(#). The ECF can be directly calculated from the empirical distribution.
At a given ¢, (t) is an RV and @(1) for —co < t < oo is a stochastic process [14].

3.0 ESTIMATING K-DISTRIBUTED QUADRATE COMPONENTS

Most estimation techniques in the past had been derived by using the envelope
distribution of K-distribution, which is given by [2]

ar(v)(%) K, H x>0 ®)

where a is the scale parameter and v > 0 is the shape parameter; I'() is the gamma
function and K} is the modified Bessel function of order A. For high resolution sea
clutter, values of v are generally observed in the region 0.1 < v < oo, where v closed
to 0.1 represents a very spiky clutter and v = oo represents thermal noise. As v — oo,
the PDF in (3) tends to a Rayleigh density.

Two orthogonal components z and 2, of K-distributed clutter x can be represented
by a compound complex Gaussian random process as [15]

x(t)=2()+2, (1)=& (t){g(t)+ jg. (1)} (4)

where j denotes square root of -1, g(t) and g (t) are independent Gaussian processes
with zero mean and unit variance. The characteristic function of the quadrature
component z (or that of z,) can be determined from [16]

p(x)=

0.0)= [} 0,0 0 = | o

where ¢, (t)=-exp (—t2 / 2) is the CF of a standard Gaussian distribution, and the
modulating process, & (¢) has the PDF of the form



32 MOHAMMAD HAMIRUCE MARHABAN

_Qav€2v—l _
p(x)-mexp( a&) £E>0,a>0 (6)

The inverse Fourier transform of ¢,(¢) yields the univariate K-distribution PDF

_ 1 (YT 4]
I’(Z)—F(v)(z) Kv—o‘s[;) (7)

Figure 1 shows the plots of the PDF (7) for a unit second moment and different
values of v. It is interesting to note that when v = 0.5, the PDF (7) is simply the PDF
of the product of two independent Gaussian RVs. When v = 1, p(2) has a Laplacian
distribution. As v approaching infinity, the PDF tends to a Gaussian distribution.

3.1 Studentized ECF Method

Since the univariate K-distributed RV has a finite second moment, llow ez al. [17]
have proposed a method of estimating the parameter v by normalising the data by
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Figure 1 The probability density function of K-distributed quadrature components
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the estimated standard deviation. By doing this, the ECF-based estimation methods
remain invariant under scale transformations. This process is known in the statistics
literature as ‘ECF studentization’ [18]. For the studentized data, the CF at point ¢ is
given by

1 \4
¢(t)=[m] 8)

thus v can be obtained as a solution of a nonlinear equation through an iterative
procedure. It has been verified in [17], theoretically and simulation, that the value of
¢ close to 0.5 results in a good estimator performance for v € (0,1).

3.2 A Novel Approach
A K-distributed RV x can be transformed into its two quadrature components by
z = x cos (2nl)
o ()
z| = x sin (2nU)

where U is a uniformly distributed RV on the interval (0,1). Since the PDF of the
quadrature components is an even function, the characteristic function is always
real. Therefore, the empirical characteristic function can be calculated as

é)z(t)zigcos(tzi) (10)

where z; are the quadrature components of K-distributed RV and ¢ , () is computable
for all real values of ¢. Taking the logarithm of Equation (5) and changing sign, we
obtain

~Ing, =vIn(1+a’") (11)

Thus the logarithm of the CF can be seen to be a linear function, ¥'= mX + ¢ with
Y
m=V (12)
X

Figure 2 shows the plot of the characteristic function with its transformed axis as
defined in (11), which is a straight line with gradient v. This can be used to estimate
the shape parameter for a case when scale parameter a is known a priori.
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Figure 2 The logarithm of characteristic function of K-distributed quadrature components

When only one value of ¢ is selected, the shape parameter can be estimated as

~ Ing (¢
j-_ o) (13)
In (1 +a’t )

Alternatively, ¢ can be set more than one and the gradient of the slope can be
estimated by using a least square estimator of the regression parameters. Suppose
that the responses Y}, corresponding to input values X, i=1,2,...,N are to be observed

[
and used to estimate the gradient, the shape parameter v can be estimated by

iX(Y—?)

poa -7

> X(x-X)
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for non-zero t, where X and Y are as defined in (12).
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4.0 SIMULATION RESULTS AND DISCUSSION

For computational simplicity and to avoid fluctuation at the tail of the characteristic
function (in case of a small number of samples), it is proposed that the value ¢ should
be in the range 0 <t < 2. Throughout the simulation, a is considered to be known
(a=1). K-distributed data was generated for 15 different values of the shape parameter
as 0.1 to 1.5 in increment of 0.1. This range is of great importance in the radar
imaging applications [10]. The number of samples were chosen to be N = 256 and
512. The estimation was performed over 1000 independent trials, where in each
case the averages were obtained.

In the first simulation, comparison is made between method as in Equation (13)
and (14). The value of ¢ was chosen to be 0.1, 0.5, 1 for (13) and ¢ = 0.1:0.1:1 for (14).
Figure 3 and 4 shows the estimated bias and variance of the estimates, respectively,
for N = 512. It can be seen that as the value of ¢ increases, the variance of the
estimates is decreased. However, the estimated bias increases with respect to ¢. This
is the normal property of the empirical characteristic function. Therefore, as a trade-
off between estimated bias and variance, we proposed the use of linear regression as
in Equation (14). It can be seen that this method possesses the optimum variance
and keep the bias to its minimum.
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Figure 3 Comparison of estimated bias for the proposed method
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Figure 4 Comparison of variance of estimates for the proposed method

In the next simulation, a comparison is made between the proposed method and
previously published methods. Fractional lower order moment (FLOM) method
was chosen since it is among the fastest to compute [8], while Raghavan’s gamma
density approximation method produces the best performance in terms of its variance
[7]. The performance of the studentized ECF based estimator is too poor to compare.
Figure 5 and 6 show the estimated bias of the estimators for N = 256 and 512
respectively. It can be seen that the proposed method recorded the smallest bias
compare with both Raghavan’s and FLOM method. The estimated bias decreases
as the number of sample increases. The maximum bias recorded by using the
proposed method was 0.0088 (N = 256; v =1.3, V = 1.3088), where FLOM method
estimates was 1.3787 and Raghavan’s method estimate it as 1.3622. From Figure 5
and 6, we can easily see that the proposed method based on ECF is unbiased even
for small sample sizes.

The plotted values of the variance of the estimates for N = 256 and 512 are shown
in Figure 7 and 8, respectively. For v < 0.5, the performance of the Raghavan’s and
FLOM method is slightly better than that of the proposed method by a margin of
less than 0.015. However, as V increases, the proposed method outperforms both
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methods by a large margin. It can be seen that the proposed method can offer an
estimate of accuracy less than 0.04, as measured by the variance, for v in this range.
The accuracy of the estimator increases as the sample size increased. For v = 1.5
and N =512, V could be estimated by FLOM method as 1.755, while the proposed
method only deviates by 0.0872.

5.0 CONCLUSIONS

It has been shown that the shape parameter of K-distribution can be estimated via
empirical characteristic function. The simulation results show that the method is
unbiased even for a small size sample. Although the variance of the proposed method
is larger for small v, the difference is insignificant. As Vv increases, the performance
of the proposed method is much better compared to the other two methods. In
addition, the proposed method is computationally tractable and does not require
solving non-inear equations or complicated functions.
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