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b. ABSTRACT 

i. For authors not from Malaysia 

Abstract 
 

The amount of unwanted waste produced in recent decades has quickly 

increased due to rapid population growth, technological advancements, and the 

widespread use of state-of-the-art products and services in the industry. Different 

researchers have carried out extensive studies on waste materials. Regretfully, most 

investigations focus only on the performance of HMA concrete that has been 

modified using one or two types of waste. Therefore, this study investigates an 

extensive review of the qualities and utilization of four types of wastes, viz., Coal 

Bottom Ash (CBA), Waste Cooking Oil (WCO), Waste Engine Oil (WEO), and Rice 

Husk Ash (RHA), as well as assessing their bibliometric analyses. The wastes that 

were being investigated showed a notable improvement in Warm Mix Asphalt 

(WMA) concrete. The WMA technology has successfully reduced the 

environmental issues of high production and compaction temperatures. The 

previous publications on CBA, WCO, WEO, and RHA identified 3,914 published 

documents between 2009 and 2023. Only 32 of these documents were published 

by Scopus. The academic disciplines of engineering, materials science, 

environmental sciences, and others have contributed 37%, 29%, 19%, and 15%, 

respectively, to Scopus publication. The United Kingdom made a significant 

contribution of 50% to Scopus publication compared to other countries. 

Furthermore, the findings also revealed that 89.4% (29 documents) were technical 

articles and only 10.6% (3 documents) were review articles. Further review of the 

rheological and microscopic properties of the four wastes is needed.  

 

Keywords: Waste materials, asphalt mixtures, asphalt pavements, asphalt binders, 

WMA technologies, and additives 
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- English abstract only 

ii. If there are authors from 

Malaysia - Compulsory both in 

English and Bahasa Melayu. 

Abstrak 
 

Jumlah sisa yang tidak diingini yang dihasilkan dalam beberapa dekad 

kebelakangan ini telah meningkat dengan cepat disebabkan oleh pertumbuhan 

penduduk yang pesat, kemajuan teknologi, dan penggunaan meluas produk dan 

perkhidmatan terkini dalam industri. Penyelidik yang berbeza telah menjalankan 

kajian meluas mengenai bahan buangan. Malangnya, kebanyakan penyiasatan 

hanya tertumpu pada prestasi konkrit HMA yang telah diubah suai menggunakan 

satu atau dua jenis sisa. Oleh itu, kajian ini menyiasat kajian menyeluruh tentang 

kualiti dan penggunaan empat jenis sisa, iaitu, Abu Bawah Arang Batu (CBA), 

Minyak Masak Sisa (WCO), Minyak Enjin Sisa (WEO), dan Abu Sekam Padi (RHA), 

serta menilai analisis bibliometrik mereka. Sisa yang sedang disiasat menunjukkan 

peningkatan ketara dalam konkrit Warm Mix Asphalt (WMA). Teknologi WMA telah 

berjaya mengurangkan isu alam sekitar pengeluaran tinggi dan suhu pemadatan. 
Penerbitan terdahulu mengenai CBA, WCO, WEO dan RHA mengenal pasti 3,914 

dokumen yang diterbitkan antara 2009 dan 2023. Hanya 32 daripada dokumen ini 

diterbitkan oleh Scopus. Disiplin akademik kejuruteraan, sains bahan, sains alam 

sekitar, dan lain-lain telah menyumbang masing-masing 37%, 29%, 19%, dan 15%, 

kepada penerbitan Scopus. United Kingdom memberikan sumbangan besar 

sebanyak 50% kepada penerbitan Scopus berbanding negara lain. Tambahan 

pula, penemuan juga mendedahkan bahawa 89.4% (29 dokumen) adalah artikel 

teknikal dan hanya 10.6% (3 dokumen) adalah artikel ulasan. Kajian lanjut 

mengenai sifat reologi dan mikroskopik keempat-empat sisa diperlukan. 

 

Kata kunci: Bahan buangan, campuran asfalt, turapan asfalt, pengikat asfalt, 

bahan tambahan campuran hangat 
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1.0 INTRODUCTION 
 

Fast population expansion, technical breakthroughs, 

and the industry's adoption of cutting-edge goods 

and services have all contributed to the recent 

decades' sharp rise in the quantity of undesired waste 

production [1]. Previous researchers reported that 

waste materials can be used as sustainable wastes for 
asphalt pavements [2, 3, 4]. The issues of excessive 

waste generation and inadequate disposal have 

prompted numerous researchers to conduct a series of 

studies to identify methods for using solid wastes as 

substitute materials in the management and 

construction of pavements [5, 6]. Large amounts of 

various waste products have been produced by the 

oil sector's cumulative expansion; these products need 

to be properly disposed of and valued [7]. Researchers 

worldwide have focused on the challenge, rate of 

slowness, and high cost of various remediation options 

for oil industry wastes, as well as the potential use of 

these wastes in construction sectors [7]. 

The behaviour of WMA mixtures has been the 

subject of conflicting results, which can be attributed 

to the variety of WMA mixture types; the amount of 

warm mix additive; the type and quantity of additional 

modifying agents in WMA; and the trial methods used 

in the evaluation of WMA mixtures and modified 

binders [8]. Other waste materials have been 

employed in several countries to produce asphalt 

concrete [9, 10, 11]. 

According to Syarif et al. [12], a modern worldwide 

concern that could undoubtedly affect the planet is 

the waste issue. To ease environmental concerns, 

reprocessing waste materials is still being researched in 

many nations. These wastes reduce construction costs, 

safeguard the environment, and maintain natural 

resources in addition to improving the performance of 

hot mix asphalt (HMA) [2, 3]. Four types of waste 

materials (CBA, WCO, WEO, and RHA) have a range 

of substantial effects on different qualities of asphalt 

concrete. On the other hand, the different 

components of filler materials affect the different 

qualities of asphaltic concrete [15, 16]. 

Furthermore, inadequate and increasingly costly 

provisions for asphalt materials pose a greater 

challenge to the asphalt industry than ever before [17, 

18]. There are grave ecological issues that need to be 

addressed as a result of the expanded capacity of 

waste products from the upgraded asphalt sector [19, 

20, 21]. The bulk of environmental problems facing the 

world today may be caused by inadequate and 

inappropriate waste management techniques and 

excessive waste production [22]. Recycling of waste 

materials should be done to supply appropriate 

substitute materials for pavement construction to 

lessen the environmental problems related to waste 

production [23, 24]. 

A study by Wang et al. [25] found that bio-oils 

significantly increased the rate of repossession of aged 

asphalt, decreased the compliance of non-

repossession creep, and successfully improved the 

resilience of plasticity and its resistance to long-term 

deformation. The researchers also found that the most 

promising effect on crack resistance is provided by 

aged asphalt and vegetable oil, which have very 

minor frequency sensitivity. Using waste products 
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would not only be cost-effective but also generate 

foreign exchange revenue and reduce ecological 

footprint if managed properly. High demand for 

pavement and building materials is necessary for the 

sustainable construction of asphalt concrete using 

waste materials [18, 26]. This has prompted research 

on the qualities and utilization of waste materials in 

WMA concrete as a means of mitigating 

environmental disposal issues, hence advancing waste 

product management and reprocessing [19, 27, 28]. 

This study, which shows advancements in quality and 

waste material utilization, significantly contributes to 

many disciplines. 

Many countries are now investigating using waste 

materials to alleviate environmental concerns using 

WMA technologies. Still, the ecosystem is becoming 

fairly concerned about them due to their enormous 

volume of landfill disposal, which has negative 

consequences on the ecosystem and its inhabitants. 

Different researchers have carried out extensive 

studies on waste materials. Regretfully, most 

investigations focus only on the performance of HMA 

concrete that has been modified using one or two 

types of waste. The qualities and utilization of these 

wastes in WMA concrete during the modification 

stage and their bibliometric analyses have not been 

fully investigated. Also, the technologies in the WMA 

concrete have not been sufficiently clarified. 

Therefore, this study provides a comprehensive review 

of the qualities and utilization of four categories of 

waste materials in WMA concrete in addition to 

evaluating their bibliometric analyses.  

 

 

2.0 WASTE MATERIALS 
 

Some studies have been conducted on the utilization 

of waste materials in various paving mixtures, despite 

their small particle sizes and gradations [2, 29]. 

According to Yuechao et al. [30], Reddy & 

Harihanandh [31], and Chindasiriphan et al., [32], a 

range of waste materials can be utilized to improve 

the physical stability, rheological, microscopic, 

durability, and strength of asphalt concrete 

pavements. 

The disposal of waste materials directly into the 

ecosystem can cause ecological problems [33, 34]. 

Several rich countries have strict ecological 

regulations, while many developing countries have 

very few regulations to protect the ecosystem from 

environmental impacts [35, 36, 37]. To lower 

construction costs, a lot of cutting-edge research 

projects in developing countries had to concentrate 

on the utilization of low-cost, easily accessible 

conservative materials, including waste products from 

industry and agriculture [38, 39]. Furthermore, there is 

more interest in using these wastes as substitute 

materials in the pavement sector because of the 

significant advancement in their annual production 

and the need for their environmentally responsible 

disposal [40, 41, 11]. Utilizing waste materials for 

environmentally friendly constructions would not only 

be cost-effective but also potentially result in 

significant foreign exchange earnings and a decrease 

in environmental pollution [41, 42, 43]. 

Substantially, the improved thermal qualities of 

asphalt concrete and the sustainable utilization of 

cost-effective and replacement wastes in pavement 

construction have become widespread practices in 

the asphalt industry, indicating the higher-quality 

performance of pavement [44]. Therefore, this made a 

significant contribution to the building industry's 

attempts to recycle waste materials rather than 

burning or discarding them. Examples of these wastes 

include solid goods from cities, businesses, and farms 

[45, 46]. The potential, ecological compatibility, and 

behavior of using waste material as a mineral filler or 

replacement agent in pavement construction are 

being investigated by some transportation agencies 

[47, 48]. Consequently, the general solution to waste 

disposal issues is now to reprocess waste materials into 

useful products (pollution to solution approach) [49, 50, 

51]. 

Numerous research studies have been conducted 

on the use of various wastes for pavement 

construction in different nations [24, 49, 52, 53, 54, 55]. 

The common waste materials comprise CBA, WCO, 

WEO, and RHA. A comprehensive review of these 

wastes is discussed in subsections. 

 

2.1 Qualities and Utilization of CBA 

 

A review of earlier published studies was performed on 

the exceptional physical qualities of CBA, which 

involve specific gravity, specific surface area, water 

absorption of water, and fineness modulus. Zhou et al. 

[56] reported that the CBA’s bodily appearance differs 

from grey to black (Figure 1). Singh & Siddique [57], Shi-

Cong & Chi-Sun [58], Rafieizonooz et al. [59], and Ahn 

et al. [60] reported that India, China, Malaysia, and 

South Korea contribute 31.6%, 28.9%, 11.6%, and 4.1%,  

of the global total CBA water absorption, respectively 

(Figure 2).  

One of the most important physical qualities of CBA 

is specific surface area. India, Malaysia, and Turkey 

recorded 600 m2 kg-1 [61], 316 m2 kg-1 [62], and 93 m2 

kg-1 [63] of the CBA’s specific surface area, 

respectively. As shown in Figure 3, their quantities 

account for 60%, 31%, and 9%, respectively. This 

indicated that India has the main Specific Surface 

Area (SSA) of CBA compared to Malaysia and Turkey. 

It is therefore projected that CBA will be used in various 

disciplines to reduce the high volume of landfill 

disposal, which has negative consequences on the 

ecosystem and its inhabitants. The tensile strength, 

lowest temperature cracking, and rutting strength are 

undisturbed when finer aggregate is substituted with 

10% and 20% CBA by the overall weight of aggregate 

contents for wearing and binder layers [64, 65, 66].  
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(a)         (b) 

Figure 1 Appearance of CBA: (a). original type; (b). ground 

type [63] 

 

 
Figure 2 CBA’s water absorption by Country 

 

 

The utilization of CBA possibly conserves the global 

economy in future construction and may decrease 

the consumption of natural resources [67]. 

Mohammed et al. [68] reported that using CBA is one 

of the most efficient techniques for decreasing 

development expenditures in the construction sector. 

The researchers discovered that reusing CBA is useful 

to lessen concerns around its disposal. Goudar et al. 

[69] reported that the primary uses of CBA were in the 

manufacturing of concrete blocks (52.10%), base layer 

in the construction of pavements and highways 

(36.50%), and a smaller percentage of 3.20% as light-

weight aggregates (coarse, fine, and filler) in the 

concrete-making process.  

El et al. [70] and Al et al. [71] also reported that in 

certain circumstances, such as at a pavement base 

course, for ice and snow management, and structural 

fill, this substance (CBA) can be used. Singh [72] 

examined the effects of substituting CBA for specific 

sand of different concrete qualities. The study's findings 

showed how adaptable CBA is for use in production 

and construction processes. The study also discovered 

that CBA is also utilized as a coarse material in road 

construction. Fine aggregates have successfully 

substituted CBA in the construction of many types of 

concrete over the last 10 years [56]. 

Moreover, CBA is utilized in the construction of roads, 

parks, and jogging trails as surface and base materials 

for bike pathways [73]. Thus, increasing the utilization 

of CBA will lower the number of ashes disposed of as 

wastes that pollute the atmosphere, save costs 

associated with existing landfills, and enhance the 

quality of existence. 

In the discipline of civil engineering, Kim [67] 

performed a study of advanced CBA applications and 

environmental considerations. The results of the review 

indicated that CBA utilizations may be divided into two 

categories: simple and advanced. CBA can be used 

in simple utilizations in place of common building 

hardware such as gravel, silt, clay, fine sand, and, in 

some circumstances, cement [67]. Kim and Lee [67], 

reported that the simple utilizations for CBA include 

mixed cement, natural materials for clinker, 

aggregates for cement- and binder-based 

composites, and geotechnical fillers. The main 

objective of simple utilization is the use of CBA and the 

preservation of waste materials. 

The advanced utilization of CBA encompasses 

bacteriological drivers, adsorbents for contaminated 

trace compounds, sources for non-natural lightweight 

aggregate making, aggregates for cementitious 

composites, and geotechnical fill for objectives. Its 

strong absorption factor and unconventional particle 

size and shape make CBA a potentially useful material 

for geotechnical drainage [67]. 

Several investigations on supplementary substitution 

waste materials, for example, WCO [27], WEO [74], 

RHA [75], plastic waste [52], fly Ash (FA) [46], Sawdust 

Ash (SA) [76], Coconut Shell Ash (CSA) [77], Solid 

Waste Incineration (SWI) [78], Waste Rubber Tyre (WRT) 

[79], Glass Fibers (GFs) [80], Groundnut Shell Ash (GSA) 

[81], cellulose fibers [82], Steel Slag Waste (SSW) [1], 

and Recycled Rubber (RR) [83], have been utilized to 

improve the quality of bitumen binders in the 

pavement construction sectors. 

      
Figure 3 CBA’s SSA by Country 

 

 

The CBA’s microstructure can be rejuvenated to a 

certain degree by supplementary enhancement 

methods, for instance, milling, sintering, palletization, 

absorption preservation, and alkaline fusion 

preservation [56, 84]. According to Consoli et al. [85], 

the unburned CBA percentage's residual angular and 
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sub-angular elements are visible in the standard visual 

microscopy measurements of the element texture and 

microscopic morphology, which are opaque (turbid). 

Figure 6 shows the substance that is incompletely and 

unburned, as well as the intra-element permeability 

brought on by element development, which indicates 

a change from pedospheres to ecospheres [85]. The 

reduced water-to-cement proportion caused by 

bottom ash's increased water demand causes the 

resulting gel substance to have a narrower opening 

structure [86]. One can find opaque or transparent 

spherical elements. The elements that are 

incompletely burnt and break because of internal gas 

development represent the finer percentage [85]. 

The main oxides in CBA are silicon oxide (SiO2), 

magnesium oxide (MgO), iron oxide (Fe2O3), aluminum 

oxide (Al2O3), and calcium oxide (CaO), in ascending 

order of concentration. According to Ju et al. [87], the 

two principal crystalline types of CBA are silicon 

inorganic phosphate (Si3(PO4)4) and mullite (3A12O3 · 

2SiO2). In addition, CBA is hydrophilic because of  its 

high content of SiO2 [57] and Si [88]. Potassium oxide 

(K2O) has the minimum CBA weight of 2.48 % in the 

asphaltic mixtures, whereas SiO2 has the maximum 

weight of 45.30 %, followed by Fe2O3 [89]. Figures 4 

and 5 show the main chemical oxides and physical 

qualities of CBA, respectively. Reviews of the physical 

and chemical qualities of CBA from the previously 

published articles are provided in Tables 1 and 2, 

respectively. 

To ensure appropriate performance characteristics 

over its design lifespan, contemporary durable 

concrete is being developed using a rejuvenated 

product, which is a deliberate component of the 

flourishing construction industry nowadays [73]. 

Adverse environmental circumstances, like acid and 

sulphate attacks, can occasionally have an impact on 

structures built using concrete-incorporated CBA [73]. 

The way that the use of CBA as a rejuvenator impacts 

the hardness performance of concrete is something 

that engineers should be particularly aware of. The 

durability of concrete that uses CBA as a viable waste 

material is influenced by the following aspects [73]: (i) 

resistance to acid, (ii) resistance to sulphate, and (iii) 

resistance to other toughness characteristics. CBA 

should therefore be just as resistant to environmental 

factors and deterioration as state-of-the-art materials. 

 

 
Table 1 Review of the CBA’s chemical qualities from the previously published articles 

 
Reference Country of 

CBA source 

Weight of CBA (%) 

SiO2 Al2O3 Fe2O3 LOI 

[61] India 45.40 18.10 19.90 - 

[90] Australia 54.00 25.00 4.00 2.00 

[91] Brazil 57.00 24.00 8.00 5.00 

[92] China 59.90 22.90 7.90 4.00 

[93] Cyprus 55.10 28.10 8.30 3.90 

[94] Europe 64.50 15.90 7.80 11.90 

[95] Hong Kong 52.10 18.30 12.00 4.10 

[80, 81] India 57.80 21.60 8.60 5.80 

[98] Mauritius - - - 11.00 

[99] Niger 62.30 27.20 3.60 - 

[100] South Korea 28.00 – 44.20 31.30 – 31.50 8.30 – 8.90 0.40 

[101] Spain 50.00 27.00 8.30 1.90 

[102]  Sri Lanka 44.70 23.80 4.20 15.20 

[103] Thailand 46.00 22.30 10.60 4.00 

[104] Turkey 51.50 18.80 9.60 10.90 

[89, 90] USA 58.70 20.10 6.20 0.80 

[107] - 49.20 16.60 3.53 26.10 

[69] - 79.20 14.80 2.90 1.60 

[108] - 60.30 19.50 11.80 - 

[109] - 66.90 17.70 6.50 2.70 

[110] - 34.40 10.00 18.40 3.50 

[111] - 56.00 26.70 5.80 4.60 

[97, 98] - 45.30 18.10 19.30 0.40 

[114] - 42.60 15.40 17.90 - 

[115] - 38.10 10.90 20.90 19.50 

[116] - 49.40 15.20 7.00 - 

[117] - 44.20 31.50 8.00 - 

[118] - 26.20 15.80 14.20 7.70 

[119] - 36.80 18.30 15.50 2.00 

[105, 106] - 52.60 20.90 9.10 8.60 

[107, 108, 109,  110, 111] Others 40.00 – 55.60 15.00 – 28.80 8.00 – 9.00 1.60 – 8.10 
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Table 2 Review of the CBA’s physical qualities from the previously published articles 

 
Reference Country of 

CBA source 

Fineness 

modulus 

Water 

absorption (%) 

Specific 

gravity 

SSA 

(m2/kg) 

[67] - 2.36 5.40 1.87 - 

[63] Turkey - - 2.20 93 

[57] India 1.40 31.60 1.40 - 

[58] China 1.80 28.90 2.20 - 

[59] Malaysia 3.40 11.60 1.90 - 

[60] South Korea 5.60 4.10 1.90 - 

[61] India 2.40 8.10 1.90 600 

[62] Malaysia 2.90 1.00 2.60 316 

[93] Cyprus - - 1.40 - 

[94] Europe - - 2.00 - 

[95] Hong Kong 3.30 11.20 2.20 - 

[96] India 1.60 - 1.90 - 

[98] Mauritius 3.70 26.00 1.80 - 

[99] Niger 2.70 20.20 2.20 - 

[103] Thailand 2.10 6.80 2.10 - 

[106] USA - - 2.80 859 - 1102 

[69] India - 5.50 2.10 - 

[109] - 1.50 6.80 2.10 - 

[110] Indonesia - - 2.30 - 

[127] - 1.57 31.50 1.39 - 

[86] - - 2.77 1.80 - 

[128] - 2.08 5.40 1.94 - 

[129] Malaysia - - 2.60 - 

[130] Spain - - - 4050 

[131] Sri Lanka - - 2.70 809 

[132] Taiwan 2.60 – 2.80 - 1.80 – 2.40 - 

[133] Turkey - - 2.20 93 

[134] - 1.90 - 2.30 1620 

[135] - - - 22.40 – 2.50 2235 - 464 

[136] - - - 2.40 384 

[137] - - - 2.40 – 2.50 384 – 464 

[138] - - - 2.40 384 

[109, 111, 125, 126] Others 1.50 6.80 2.10 – 2.50 3463 - 7799 

 

 

 
Figure 4 CBA’s main chemical oxides (for more information, 

see Table 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5 CBA’s main physical qualities (for more information, 

see Table 2) 
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Figure 6 Microscopic morphology of CBA [85] 

 

 

2.2 Qualities and utilization of WCO 

 

When WCO is used in pavement, asphalt binder 

performs better at lower temperatures; but, as 

temperatures increase, this improves less [141]. Yel-

shorbag [142] suggested using WCO as a binder 

modifier to enhance untreated asphalt roads and 

bring back their original qualities. Zargar et al. [143] 

also stated that a workable remedy for WCO 

environmental pollution is the incorporation of this 

substance into asphalt roads. However, despite its 

wide variety of anticipated environmental and 

functional benefits, its actual application is still 

restricted. There are two main categories for WCO-

bio-oil waste. Fatty-free acids (FFAs) that are not 

greater than 15% are categorized as the first class, 

known as "yellow grease”; and FFAs that are greater 

than 15% are categorized as the second class, 

known as "brown grease" [144]. Following an open-air 

frying method, the oxidation reaction using different 

techniques modifies the structure of cooking oil  

[145].  

A study conducted by Azahar et al. [146] 

demonstrated how WCO can enhance the bodily 

qualities of asphalt when blended with bitumen, 

leading to a significant reduction in fatigue cracking 

and the development of the binder's mechanical 

qualities. A study conducted by Yel-shorbag [142] 

recommended using WCO as a rejuvenator to 

improve raw pavement and restore its original 

qualities. Zargar et al. [143] also recommended that 

incorporating WCO into asphalt concrete is a 

practical way to reduce pollution in the environment. 

The surface microscopic morphology of WCO with 

various sizes and with some shapeless particles are 

displayed in Figure 7(b). The WCO was successfully 

applied as a modifier for aged binder, and it can be 

recycled as a cost-effective and environmentally 

friendly alternative [142]. 

 

 
(a)           (b). 

Figure 7 (a). Original-WCO; (b). Microscopic structure of 

WCO [142]  

 

 

Asli et al. [147] and Chang [148] examined the 

possibility of using WCO as a viable green solvent 

and a modified asphalt binder, respectively. With an 

increase in WCO dose, the physical and rheological 

qualities of aged asphalt pavement may essentially 

restore it to its state-of-the-art condition, according to 

researchers' findings. 

As Figure 8 illustrates, Chhetri et al. [149] 

discovered the highest value of Oleic acid (52.9 mm) 

when compared to Foroutan et al., [150] (41.04 mm) 

and Sharma et al., [151] (24.69 mm). Similarly, Sharma 

et al., [151] found the highest value of Linoleic acid 

(40.88 mm) when compared to Foroutan et al., [150] 

(17.98 mm) and Sharma et al., [151] (13.50 mm). The 

above Figure also shows the acid values of the other 

types of FFAs. 

 
Figure 8 WCO’s chemical compositions 

 

 

The viscosity of WCO at 40 0C is higher (47.444 

mm2/sec) than at 100 0C (10.645 mm2/sec) as shown 

in Figure 9. This suggested that viscosity increases with 

decreasing temperature and vice versa. Other 

physical qualities of WCO are also depicted in the 

same Figure. 
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Figure 9 WCO’s physical qualities 

 

 

Asli et al. [147] stated that the lower WCO dosage 

can improve the physical qualities of revived aged 

bitumen. Sun et al. [152] observed distress in the 

pavement's resistivity as a result of the higher WCO 

dosage. In aged bitumen, small amounts of WCOs 

can react and volatilize without stress, and in 

modified polymer asphalt, polymerization might take 

place. When fuel asphalt is susceptible to excessive 

temperatures, WCO-based asphalt can be 

evaluated more quickly than fuel asphalt [153]. 

As shown in Figure 10, the US leads the world in 

WCO production, accounting for 55%, or 10x106 tons, 

of the total annual production [154]. The Republic of 

Ireland is the lowest producer at 1% of annual global 

production or 153x103 tons [155]. According to 

Azahar et al. [146], only 3% of the world's yearly 

production of WCO is produced in Malaysia because 

of the nation's abundance of palm oil disciplines and 

low-priced conservation. According to some 

researchers, the world produces roughly 15x106 tons 

of WCO annually [141, 142, 143]. But in the asphalt 

sector, very little of it has been appropriately 

collected and repurposed [159]. 

 
Figure 10 Nations’ contribution to WCO annual 

worldwide production [158] 

 

 

2.3 Qualities and Utilization of WEO 

 

WEO is among the many categories of waste bio-oil 

that is frequently utilized to produce sustainable 

asphalt concrete pavement [142]. WEOs are 

petroleum byproducts that share many of the same 

fundamental qualities as bitumen [160]. The 

advancement of humankind's current standards and 

the development of automobiles have led to the 

massive production of WEOs in recent years [160]. 

The combustion process, which affects the operating 

temperature and the end pollutants such as rust, 

metal particles from engine wear, diluents, moisture, 

detergents, and soot, determines the physical and 

chemical qualities of WEO. [146, 147, 148]. It was 

observed by Jahanbakhsh, et al. [164] that the 

moisture susceptibility of mixtures made of Recycled 

Asphalt Pavement (RAP) increased when blended 

bitumen binders containing 60% RAP were added 

with increased WEO content. 

Table 3 presents a review of the WEO’s 

fundamental qualities from previous studies. Liu et al. 

[165] reported that the molecular weights of less than 

200 grams/mol are the chemical qualities. Low 

molecular weights have been proposed as the 

primary components of WEO. A summary of their 

findings is given in Table 4 and Figure 11, which show 

that the principal ingredients are paraffin oil, 

aromatic solvents, and polyolefin oil. 

 
Table 3 WEO’s physical qualities review 

 
Quality Unit Reference 

[166] [167] [165] [168] 

Acid value mg KOH/g ≤ 0.400% - - 5.600 

Admixture % - 0.063 0.362 - 

Color - Dark brown - - Black 

Density g/cm3 0.920 @ 25 0C - 0.882 - 

Flash point 0C - 214 220 159 

Kinematic viscosity mm2/s 63.500 @ 60 0C  41.200 @ 40 0C 101.52 @ 40 0C  0.097 

Oxidation stability min - 35 - - 
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Table 4 WEO’s chemical qualities [165] 

 

Sample Duration of 

Retention 

(min) 

Wt. of 

Molecular  

(%) 

CAS Structure Formula Alternative Name 

W1 4.929 120.192 620-14-4  C9H12 Benzene, 1-ethyl-3-methyl- 

W2 5.329 120.192 108-67-8. 

95-63-6  

C9H12 Benzene, 1,3,5-trimethyl-; Benzene, 

1,2,4-trimethyl- 

W3 5.704 120.192 526-73-8. 

108-67-8  

C9H12 Benzene, 1,2,3-trimethyl 

Benzene, 1,3,5-trimethyl- 

W4 6.118 152.233. 

134.218 

20053-58-1. 

933-98-2  

C10H16O 

C10H16O 

2,3-Epoxycarane, (E)-; Benzene, 1-

ethyl-2,3- 

W5 6.477 152.233. 

134.218 

20053-58-1. 

99-87-6  

C10H16O 

C10H14 

3-Epoxycarane, (E)-; 

1-Methyl-4(1-methyl ethyl) 

W6 6.932 134.218 95-93-2. 

488-23-3  

C10H14 Benzene, 1,2,4,5-tetramethyl-; 

Benzene, 1,2,3,4-tetramethyl- 

W7 7.346 132.202 2234-20-0. 

824-90-8  

C10H12 2,4-Dimethylstryrene. 

1-Phenyl-1-butene 

W8 7.796 188.222. 

185.222 

132316-80-4-. 

13131-19-6 

 

C12H12O2 

C12H11NO 

2-Naphthalenol, 1,2-dihydro-; 

acetate-; 

N-Methyl-9-aza-tricyclo [6.2.2.0(2,7)] 

dodec-2,4,6,11-tetraene-10-one- 

W9 8.540 146.229 4489-84-3-. 

6682-71-9  

C11H14 Benzene, (3-methyl-2-butenyl)-; 

1-H-Indene, 2,3-dihydro-4, 7-dimethyl- 

W10 9.140 142.197 90-12-0-. 

91-57-6  

C11H10 Naphthalene, 1-methyl-; 

Naphthalene, 2-methyl- 

 

 

 

 

 
Figure 11 WEO’s gas-chromatography mass-spectrometry 

chromatogram [165] 

 

 

Additionally, as a common practice, vehicle 

workshops gather leftover WEO from various cars. 

These residues frequently contain contaminants  

during the engine wear, operation, and heating 

system [143]. High-quality transmission electron 

microscopic offers detailed data on the 

microstructure of elementary particles, including 

elementary particle size distribution, unconventional 

distance and torsion, and unconventional splitting 

length [169]. According to Liu et al. [170], the aging 

performance of WEO-modified asphalt depends on 

the microscopic, rheological, and conventional 

features. However, for the modified binder with WEO, 

some residues (Figure 12(c) are still observed proving 

that materials (WEO) did not appropriately improve 

the aged binder as needed [142]. This could be a 

result of the element components found in WEO, as 

earlier discussed, which raised the concentration of 

Al2O3 and impeded the modification.  

Bitumen and WEO molecular structures are similar, 

suggesting that WEO may be used in asphalt 

pavement construction to lessen the toughening 

effect of recycled roadway materials [160]. Thus, if 

adequately mixed with reclaimed asphalt 

pavement, small amounts of WEO may help lower 

the stiffness and improve the toughening of aging 

bitumen. [142]. However, the use of WEO must be 

carefully addressed to encourage sustainable 

development, as it destroys water and land resources 

[162]. Furthermore, WEO is a material that has the 

potential to damage the environment if wrongly 

handled [162]. Its application in asphalt concrete 

pavement may reduce both the construction 

expenses and environmental effects [162]. 
 

 
         (a).                       (b). 

Figure 12 (a) Original-WEO [171]; (b) Microscopic structure 

of WEO [142] 
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The need for inexpensive and ecological waste 

management has increased demand, which has led 

to an increase in the focus on reprocessing 

wastewater effluent [74]. The inclusion of WEO 

improved the negligible temperature cracking 

resistance [74]. Shoukat and Yoo [172] showed that 

WEO improves asphalt's resilience to thermal 

cracking. Al-Saffar, et al. [173] found that WEO 

decreased the rutting behavior. This is because, 

especially at higher temperatures, the aggregate 

bitumen has a weaker adhesive and cohesive bond. 

However, it was also observed that this material 

(WEO) had an undesired influence on the 

aggregate-bitumen bond, indicating the use of 

antistripping agents. Al-Saffar [173] evaluated the 

rheological and chemical qualities of four distinct 

asphalt binders utilizing WEO and maltene (MLT) 

rejuvenators. The results of the Fourier transform 

infrared spectra of the four distinct types of asphalt 

binders, as performed by the researcher, are shown 

in Figure 13. 
 

 
Figure 13 WEO’s infrared analysis [173] 

 

 

According to Jwaida et al. [162], the metal 

content of WEO ranges from 3.9% to 5.7% as ash, 

which needs years of wear and tear from machinery 

to be recognized naturally. The sources and 

experimental procedures have an impact on the 

different qualities of the WEOs. These qualities include 

asphaltenes, aromatics, saturates, and resins [162]. 

Furthermore, earlier researchers discovered the 

qualities of WEO's maximum contents. As illustrated in 

Figure 14, Luo et al. [166], Li et al. [174], and Shu et al. 

[175] have reported the maximum contents of 

aromatics, resins, and saturates at 63.2%; 56.32%; and 

71.29%, respectively. The qualities of the resins may 

affect the WEO stability and modified asphalt binders 

[162]. 

 
Figure 14 Qualities of WEO 

 

 

The viscoelastic qualities of aged and virgin binders 

improved with WEO at various temperatures and 

were examined by Qurashi and Swamy [176]. Figure 

15 illustrates the results, which showed that the 

viscosity decreased as the temperature increased. 

When compared to binders with a virgin binder, the 

binder improved with WEO and exhibited lower 

viscosity below a particular temperature. 

Furthermore, at all temperatures, the modified-WEO 

binders showed larger phase angles but negligible 

softening points and complex modulus. Substantially, 

it was found that a WEO content range of 2% to 4% 

produced the best results [176]. Using WEO as a 

partial substitution in the asphalt binder system can 

successfully minimize the increased stiffness caused 

by Using aged asphalt binders [162]. This type of 

substitution, even in part, will contribute to 

ecologically friendly construction practices, resource 

conservation, energy savings, and higher recyclable 

dosage [162]. 

 
      (a).    (b). 

Figure 15 Temperature's effect on blend viscosity with 

varying WEO contents for (a). unaged mixtures; (b). short-

term aged mixtures [176] 
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Furthermore, Liu et al. [165] assessed WEO's impact 

on the improved asphalt. Nine slices were grouped 

from the chromatographic profiles of the used 

asphalt specimens. As shown in Figure 16, the slices 

with labels ranging from 1 to 4 were determined to 

be “large molecular size”, the slices with labels 

ranging from 5 to 7 to be “medium molecular size”, 

and the slices with labels ranging from 8 to 9 to be 

“small molecular size” [165]. The researchers also 

found that adding 4% and 8% WEO, respectively, 

increased the asphalt specimens' high-temperature 

classification from 5 to 9. 

 
Figure 16 WEO asphalt mixture’s molecular sizes  

 

 

2.4 Qualities and utilization of RHA 

 

To improve the compressive and flexural strengths of 

cement-mortar specimens, RHA can be used as a 

cement additive. It has been demonstrated that the 

RHA alternate, which accounts for 10% of binder 

weight, has the most positive effect on cement 

resistance [177]. The husk is reclaimed as petroleum 

to make steam [178, 179]. But, because of its high 

silica contents, RHA is utilized as a partial substitute in 

bituminous concrete [179].  

According to Carmago-Perez [180], the 

Agriculture and Food Organization of the United 

Nations states that rice husk is a byproduct of the 

agro-industrial development technique of rice, which 

plays a major part in the rudimentary food basket. 

RHA is an extensive, yearly global production [178]. 

Depending on the technologies available, both 

controlled and uncontrolled burning procedures can 

yield RHA [181]. According to Khassaf [178], the 

global production of rice paddy is approximately 

500x106 tons annually. If RHA is disposed of in a 

landfill, it may cause ecological problems that 

contaminate the air and water [178]. The notable 

mass of 22% of the pulverized paddy is produced as 

husk because nearly 78% of the mass is produced as 

rice, bran, and broken grains [161, 163,]. The husk is 

reused as fuel to produce steam [161, 163]. About 

75% of the husk's bulk is made up of unstable carbon-

based compounds, with the remaining 25% being 

made up of inorganic minerals [161, 163]. In addition, 

25% of this husk's mass gets burned and converted 

into ash [161, 163]. 

The physical qualities of RHA affect the durability 

and mechanical qualities of concrete, such as mean 

particle size, SSA, specific gravity, and fineness 

modulus. These qualities may affect how RHA is 

utilized for physical concrete. With a density of 

roughly 180 - 200 kg/m3, RHA is discovered to be very 

porous and light in weight [182]. Table 5 presents the 

RHA’s physical qualities. Generally, about 85% of RHA 

is made up of amorphous SiO2 (Table 6). Trace 

amounts of CaO are present in RHA along with other 

chemical oxides [182]. Furthermore, the loss of RHA's 

ignition is mostly caused by the processes used to 

process, burn, and grind RHA [182]. According to 

Antiochus et al. [183] and Djamaluddin et al. [184], 

RHA's amorphous nature is very beneficial for giving 

concrete extraordinary strength. 

 
Table 5 RHA’s physical qualities 

 

Quality Unit Reference 

Safiuddin 

[185] 

Habeeb 

[186] 

Ganesan 

[187] 

Grinding time mm - 90 

180 

- 

Mean particle size (µm) 6 63.80 

31.30 

3.80 

SSA m2/g 2.33 - 

- 

36.47 

Specific gravity g/cm3 2.10 - 

2.11 

2.06 

Fineness modulus 

(passing 45 µm) 

% - - 

- 

99 
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Table 6 Review of the RHA’s chemical oxides from the previous studies  

 
No. Reference Chemical oxide (%) 

CaO SiO2 Al2O3 Fe2O3 MgO Na2O K2O 

1 [181] 1.13 86.29 0.57 0.57 0.62 0.12 2.30 

2 [187] 0.48 87.32 0.22 0.28 0.28 1.02 3.14 

3 [188] 1.84 86.68 1.66 1.06 0.98 - 0.42 

4 [189] 0.97 89.74 1.29 0.97 - - 0.19 

5 [190] 0.74 88.59 0.31 0.29 0.66 0.26 2.46 

6 [191] 1.04 87.80 0.12 - 0.81 1.15 2.61 

7 [192] 0.60 87.00 0.80 1.20 0.40 2.63 3.70 

8 [193] 0.58 96.23 0.28 1.36 0.27 0.05 0.45 

9 [194] 1.50 93.10 0.30 0.20 0.60 0.06 2.30 

10 [195] 2.42 81.40 0.26 0.93 1.02 0.18 6.79 

11 [196] 0.73 87.89 93.20 0.28 0.47 0.66 3.43 

12 [197] 0.90 82.6 0.40 0.50 - 0.10 1.80 

13 [198] 0.76 93.44 0.21 0.18 0.43 0.05 1.98 

14 [199] 1.04 86.81 0.50 0.87 0.85 0.69 3.61 

15 [200] 2.88 77.19 6.19 3.65 1.45 0.00 1.81 

16 [201] 1.10 93.20 0.40 0.10 0.10 0.10 1.30 

17 [202] 0.41 91.15 0.41 0.21 0.45 0.05 6.25 

18 [203] 0.97 92.00 0.31 0.38 0.47 0.20 0.20 

19 [204] 0.41 91.15 0.41 0.21 0.45 0.05 6.25 

20 [205] 1.96 87.10 0.13 0.28 0.77 0.03 1.87 

21 [206] 1.27 90.21 2.12 0.80 0.67 0.14 0.76 

22 [207] 1.03 91.42 0.14 0.20 0.82 1.12 2.59 

23 [208] 1.07 91.56 0.19 0.17 0.65 0.16 3.76 

24 [209] 0.39 86.73 0.04 0.61 0.08 9.76 0.01 

25 [210] 0.49 94.10 0.03 0.04 0.27 0.05 1.79 

26 [211] 0.41 91.15 0.41 0.21 0.45 0.05 6.25 

27 [212] 0.69 83.05 1.80 0.58 3.59 0.13 5.65 

28 [213] 1.03 87.55 0.39 0.20 0.67 0.05 2.85 

29 [214] 2.42 81.40 0.26 0.93 1.02 0.18 6.79 

30 [215] 0.55 87.20 0.15 0.16 0.35 1.12 3.60 

31 [216] 0.39 94.38 0.27 0.10 0.48 0.21 1.60 

32 [217] 0.90 87.40 0.40 0.30 0.60 0.04 3.39 

33 [218] 1.12 86.02 0.36 0.16 0.39 1.15 - 

34 [219] 0.87 90.75 0.75 0.28 0.63 0.02 3.77 

35 [220] 1.25 90.89 0.93 0.47 0.81 - 2.34 

36 [221] 1.49 89.59 - 0.75 - - 7.05 

37 [222] - 94.40 0.20 0.20 - - - 

38 [223] 0.99 78.21 4.43 - 4.89 - - 

39 [224] 1.27 90.21 2.12 0.80 0.67 0.14 0.76 

40 [225] 1.27 89.90 0.46 0.47 0.79 - 4.50 

 

 

 

Several published studies have reported that one of 

the main contributing factors to RHA's durability is its 

high silica content [187, 208, 209, 210, 211]. Silica is an 

excellent material for utilization in construction and 

other industries where durability is essential since it is 

robust and resilient to corrosive and chemical attacks. 

The ideal RHA percentage for robust concrete is found 

to be between 15% and 20% of cement substitution. 

Some of the qualities of concrete incorporated RHA 

are provided in Table 7. By measuring the amount that 

harmful compounds can permeate the pavement’s 

structural layers, capillary water absorption gives 

information on how durable concrete materials are 

[230]. According to Alaneme [231], Yuzer et al. [232], 

and Hwang [233], the maximum concentrations of 

amorphous silica with the largest potential SSA of 150 

m2/gram of RHA elements are generated by total 

burning temperatures between 500 0C and 700 0C as 

indicated in Table 8. 
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Table 7 Review of the RHA’s durability qualities 

 
No. Reference Quality Unit RHA Substitution (%) 

0 5 10 15 20 

1  [187] Sorptivity (x10-6)  m/s1/2 11.05 10.60 9.16 7.37 6.00 

2  [234] Coefficient of 

carbonation  

cm/day1/2 0.15 0.14 0.13 0.09 0.07 

3  [235] 

 [228] 

 [236] 

Chloride diffusivity  coulombs 

 

1161 

1486 

2830 

1108 

439 

1970 

653 

389 

980 

309 

306 

1173 

265 

877 

- 

4  [236] 

 [236] 

 [237] 

Porosity % 

 

11.00 

12.40 

- 

- 

10.80 

11.30 

10.00 

10.00 

11.30 

9.00 

11.10 

13.40 

11.50 

- 

- 

5  [237] 

 [228] 

 [185] 

Slump flow  mm 

 

789 

740 

690 

721 

700 

700 

715 

670 

710 

703 

610 

720 

- 

580 

710 

6  [196] 

 [237] 

 [187] 

Water absorption  % 

 

4.50 

- 

4.71 

4.50 

4.70 

4.83 

4.10 

4.90 

5.02 

3.90 

6.10 

5.58 

3.90 

- 

5.81 

7  [235] 

 [187] 

Water absorption 

Coefficient (x 10-10) 

m2/s 3.56 

1.62 

6.76 

1.42 

1.03 

1.03 

1.06 

0.99 

1.21 

0.92 

 

 

 

Table 8 Influences of burning temperature on the RHA 

structure and its SSA [214, 215] 

 
SSA 

 (m2/g) 

Burning 

Temperature 

(0C) 

Structure 

0.50 - 2.10 Up to 500 Elements are permeable like spheres. 

76 - 122 500 - 600 Fine porous granules and partial 

crystallinity characterize the elements. 

100 - 150 600 - 700 The amorphous elements have the 

largest pore diameter. 

6 - 10 700 - 800 Coral-shaped crystals partly form 

moderately crystalline particles. 

<5 800 - 900 Crystalline 

 

 

Significantly, RHA is utilized as a partial substitute in 

asphalt concrete because of its high silica 

concentration [179]. Typically, it is made up of Fe2O3, 

SiO2, and Al2O3, with trace amounts of CaO and 

MgO [161, 163]. The temperature at which rice husk 

burns and the length of time it takes to burn define 

the chemical composition of RHA [161, 163]. The 

pozzolanic quality of RHA is good due to its high 

content of SiO2, Al2O3, and Fe2O3 [178]. The 

distribution particle size and appearance of RHA are 

depicted in Figures 17 and 18, respectively. The 

microstructural morphology of the final stage of RHA 

elements was detected by Ma et al. [229]. The 

researchers found that the RHA particles' uneven 

geometrical shape is visible when seen under a 

scanning electron microscope. In addition, the shear 

strength characteristics and the microstructural 

morphology employing energy diffusive spectrometry 

and scanning electron microscopic (Figure 19) show 

that RHA modification is a potential substitute for 

silica in the advancement of an automatically 

energetic and highly dependable pelletize multiple 

solder technique that will be used as interrelate 

products in reasonable temperature soldering 

activities [238]. The RHA modification has the 

strongest shear strength (14.60 MPa) when compared 

to pelletize multiple solder techniques, demonstrating 

its reinforcement influence [238]. In several cases, 

adding more RHA content did not improve the 

microstructural morphology or resilient of the 

concrete [229].  

The RHA's chemical qualities are displayed in 

Figure 20. Ma et al. [229] discovered that the 

principal RHA’s chemical quality is SiO2, of which 

83.93% is accounted for. 

 
Figure 17 RHA’s particle size distribution curve [229]  

 

 
         (a).               (b). 

Figure 18 RHA’s appearance: (a). initial stage; (b) final stage 

[229]  
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Figure 19 Microstructural morphology of RHA elements 

(inset) and pelletized multiple solder system [238] 

 

 
Figure 20 RHA’s chemical qualities 

 

 

3.0 APPLICATION OF WMA TECHNOLOGIES 
 

WMA technology can be used to eliminate the 

environmental issues related to high production and 

compaction temperatures when using RAP [24, 220]. 

To reduce the mixing and compaction temperatures 

of asphalt pavements, several WMA technologies 

use foamed asphalt binders or warm mix additives 

[24, 220]. Therefore, using a WMA mixture is a useful 

method of integrating waste materials into asphalt 

pavement, producing, more often than not, a 

surface that is prospective for sustainable asphalt 

construction [24]. Because of its advantages in both 

the economy and the environment, WMA 

technology is seen as a viable and justified method 

of constructing pavements [41]. 

Compared to conventional HMA, WMA refers to 

the technique that can reduce the manufacturing 

temperature of asphalt mixes [240]. The consensus is 

that WMA technologies can lower the WMA 

production temperature between 35 0C and 55 0C 

(63 0F to 95 0F) compared to conventional HMA 

concrete, while the precise amount of decreased 

temperature varies from one introduction to the 

other [240]. Lower production temperatures result in 

lower power usage and a decrease in the amount of 

greenhouse gases and other harmful substances 

released into the atmosphere [241]. 

Zhao et al. [242] found that when WMA mixtures 

are made with less aging limitation than HMA 

mixtures, they have less resistance to rutting. 

Behnood [8] revealed that by controlling the different 

qualities of the WMA mixes and binders, the WMA 

production technique lowers the production and 

compaction temperatures. Depending on the time 

and temperature, the renewal of the binder qualities 

in a WMA mix, such as viscosity, can be either 

temporary or permanent[224, 225, 226]. 

The WMA technologies primarily decrease the 

binders' viscosity during the production and 

compaction of asphalt mixes [227, 228]. These 

technologies can also have various effects on the 

rheological qualities of binders and the physical and 

durability qualities of WMA mixtures [8, 229]. 

Substantially, WMA technology can generally be 

divided into three categories (Figure 21): (i) chemical 

technologies for example; zycotherm, evotherm, 

rediset, iterlow, etc.; (ii) organic technologies for 

example; sasobit, licomont 100, asphaltan B, etc.; 

and (iii) foaming technologies for example; water-

bearing process and water-based process [227, 228]. 

Among these categories of WMA technologies, 

chemical technologies typically don't have a huge 

impact on the rheological qualities of binders [227, 

228]. 

 
Figure 21 Categories of WMA technology 

 

 

In addition, over the last ten years, the global 

community economy's rapid development has been 

greatly aided by the pavement substructure [249]. 

Modern theories, methods, techniques, abilities, and 

materials relevant to roadway engineering are 

evolving [249]. Many WMA technologies enable the 

construction of ecologically friendly pavement while 

also enabling reduced heat-engrossing and 

enhanced anti/de-icing features. These technologies 

also guarantee porous, self-luminous, noise-

reduction, and exhaust-disintegrating qualities [250]. 

Sustainable asphalt pavements promise significant 

reductions in power and natural resource 

consumption as well as a decrease in harmful vapor 

emissions during pavement construction, which will 

affect the financial sector and ecosystem [232, 233]. 
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Cheraghian et al [253] revealed that about 39% of 

asphalt mixtures were prepared as WMA mixtures, 

which reduce air voids, improve compaction efforts, 

and use less energy at lower temperatures. Studies 

that have been published on the use of industrial 

byproducts in asphalt pavements have reported that 

WMA mixture enhances pavement performance 

while reducing construction costs [235, 236]. 

Unfortunately, some drivers cause several distresses 

on the asphalt pavement as seen in Figure 22. 

 
Figure 22 Some drivers responsible for asphalt pavement 

distress [256] 

 

 

4.0 POTENTIAL BENEFITS AND DRAWBACKS 

OF WMA TECHNOLOGIES 
 

According to Ali & Abdul [41], the decreased output 

temperature provides less WMA aging, increasing the 

lifespan of the asphalt road. Petrol savings and the 

WMA's reduced output temperature are directly 

correlated. The savings might be attributed to WMA 

technology, the petrol type, and the expense of 

petrol [257]. The decrease in Greenhouse Gas (GHG) 

production is another key benefit of utilizing WMA 

technology. The decrease in GHG production by 

WMA technology happens in two steps. The first step 

comprises a decrease in GHG production due to the 

consumption of less petrol. The decrease in GHG 

production resulting from heated asphalt mixtures the 

second step [246].  

Using WMA technology has several functional, 

economic, and environmental benefits [258]. The key 

to the profitability of WMA technologies is the type of 

skill, which can be influenced by additional elements 

such as the characteristics of supplementary 

contents in WMA mixtures and the performance of 

warm mix compounds [8, 259]. In terms of 

environmental benefits, WMA technologies perform 

better than traditional HMA in terms of lower output, 

compaction temperatures, and energy usage [239, 

258, 259]. Anti-stripping additives can be employed 

as a substitute to lessen moisture experience; though, 

this procedure could raise construction expenses and 

discourage the utilization of WMA [260].  

Doyle & Howard, [261] stated that two of WMA 

technology's drawbacks are the superior vulnerability 

to moisture and the premature rutting of the asphalt 

road surface. Also, WMA can have two price-

associated drawbacks [262]. The initial drawback is 

that the WMA blend was made early and needs 

several supplementary equipment. The utilization of 

warm mix compounds, which enhances production 

effectiveness and might be slightly offset by lower 

energy utilization, is the second drawback. As for the 

functional drawbacks, some WMAs have been 

discovered to demonstrate coating problems and 

unfortunate resistance to the vulnerability of moisture 

than HMAs [263, 264, 265]. One of the primary 

elements propagating these problems is the WMA 

blend's lower maximum binder content than the HMA 

blend's [8]. Additionally, variability of asphalt road 

distresses such as raveling, bleeding, and rutting may 

influence the WMA because of its reduced oxidative 

aging and air-void content, still, these qualities may 

benefit the WMA blends to recover their resilience 

[8]. 

 

 

5.0 PERFORMANCE CHARACTERISTICS OF 

WMA-INCORPORATED WASTE MATERIALS 

Performance characteristics include Marshall stability 

and flow, Marshall density, Marshall air void, indirect 

tensile strength, tensile strength ratio, resilient 

modulus, and dynamic creep. Also, conventional 

characteristics such as storage stability, softening 

point, penetration, ductility, elastic recovery, flash 

point, fire point, and dynamic shear rheometer play 

vital roles in the performance characteristics of WMA-

incorporated waste materials. The viable bituminous 

pavements promise an extensive decrease in the 

ingesting of natural products, and energy ingesting, 

and a decrease in contaminated particles during 

asphalt road construction, thereby producing an 

effect on the environment and monetary sector [251, 

252].  

The utilization of WMA is a beneficial instrument for 

integrating waste materials in bituminous pavement 

determining mostly, a pavement surface that has 

promise with the target of viable pavement 

construction [24]. According to previous 

investigations, waste materials can be reused into 

sustainable waste for asphalt pavements [2, 3, 4]. 

Investigators from all over the globe have focused on 

the problem, cost, and inactive pace of various 

remediation methods, as well as the potential 

utilization of waste materials in the pavement 

construction sector [7].  

The WCO-integrated asphalt mixture also showed 

skilled performance in temperature cracking than 

the standard specimen that fulfilled creep standards 

and, to some point, less than the tensile strength 

[266]. However, the utilization of WCO in bitumen 

mixture has exhibited room for modification in terms 

of the softening point, penetration, and viscosity 

assessments [47]. A high penetration is possible when 

the WCO has a minimum viscosity value. Moreover, in 
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some examples, the penetration has been as 

superior as a standard binder [24, 38] with superb 

fatigue resistance in the subsequent asphalt blend 

[146]. Zargar et al [143] stated that 4% WCO 

integrated into aged asphalt of grade 40/50 was 

capable of getting comparable viscosity value with 

a standard binder. 

The incorporation of WEO enhanced the 

insignificant resistance to temperature cracking [74]. 

According to Shoukat and Yoo [172], WEO improves 

the resistance to thermal cracking of bitumen 

binders. Al-Saffar, et al. [173] found that WEO 

decreased the rutting performance; this is because 

of the decreased adhesive and cohesive bonding of 

the aggregate–binder, specifically at higher 

temperatures. The investigation was performed to 

assess the potential of WEO as a rejuvenator and 

suggested that this substance be used to restore the 

conventional characteristics of aged asphalt; 

however, it was also observed that this substance 

had an objectionable effect on the aggregate–

binder bonding, representing the use of antistripping 

managers [268]. Yel-Shorbag [142] stated that the 

incorporation of WEO into aging asphalt, the creep 

stiffness, and the content of rejuvenated asphalt 

have fulfilled the super-pave requirements, which 

demonstrates that WEO improved the insignificant 

temperature thermal cracking of aging asphalt with 

a gradation of PG 64/28. Several characteristics of 

WEO are subject to the burning progression, output 

and compaction temperatures, and bases of toxins 

for example dilutants, corrosion, dust, moisture, 

cleaning products, and steam engine wear metallic 

particles [142]. 

 

 

6.0 ENVIRONMENTAL EFFECTS OF WASTE 

MATERIALS 
 

Two of the most major problems facing people are 

universal warming and environmental problems [41]. 

Suspicions regarding climate variation and the 

application of non-renewable and renewable 

sources are influential problems that show the 

necessity for modern variation that will encourage 

society towards a competent environmental 

expectation for everyone [269]. Since cement 

producers use and produce a variety of emissions 

that are excessive in carbon discharges, they 

damage the natural environment [46]. These have 

various influences on the natural environment, for 

instance, climate variation and universal warming 

[270]. As can be seen, coal releases more CO2 than 

other wastes. Consequently, coal is an 

environmentally benign source that is viable. There is 

a grave consequence to the natural environment 

and public health associated with the vulnerable 

dumping of CBA from a range of enterprises and 

thermal power installations [41, 271]. 

When utilizing RAP, the WMA technologies can be 

used to lessen the ecological problems related to 

high output and compaction temperatures [24, 239]. 

Compounds or foamed technologies are employed 

in numerous WMA technologies to reduce the mixing 

and compaction temperatures of asphalt 

pavements, which destroy the natural environment 

[24, 239]. The waste disposal problems and benefits 

of utilizing these substances in the pavement 

construction sector are shown in Figure 23. 

 
(a). Disposal issues of waste materials 

 
(b). Benefits of using waste materials 

Figure 23 Disposal and benefits of waste materials [42] 

 

 

According to Al et al., [71], the public disposal of 

CBA from different sectors and thermal energy 

stations has resulted in considerable ecological 

pollution and a host of health problems. Furthermore, 

the way the elements of CBA waste are disposed of 

may lead to surface or groundwater contaminations, 

threatening life as we know it (Figure 24) [71]. Spills 

are still a possibility, which might pollute surrounding 

areas because of the open disposal of CBA [272]. 

CBA causes contaminated substantial metals to 

dissolve and seep into the ground as leachate [71]. 

This could be the source of groundwater 

contamination. 
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Figure 24 Effects of coal wastes on the environment [273] 

 

 

7.0 BIBLIOMETRIC ANALYSIS 
 

The Scopus database was used since it is a major, 

well-known, and globally recognized peer-reviewed 

database [274]. Titles and abstracts were searched 

using the following keywords: “Waste Materials” OR 

“Asphalt Mixtures” OR “Asphalt Pavements” OR 

“Asphalt Binders” OR “Warm Mix Asphalt 

Technologies” OR “Warm Mix Additives”. The analysis 

from the Scopus database found 3,914 published 

documents between 2009 and 2023. Only 32 of these 

documents were published by Scopus. The analysis 

also found that 89.4% (29 documents) of Scopus 

publications were technical articles and only 10.6% (3 

documents) were review articles as shown in Figure 

25. Furthermore, between 2009 and 2012, just 10% of 

all documents worldwide were published in Scopus 

journals. Surprisingly, 90% and 80%, respectively, of all 

documents worldwide between 2012 and 2016 and 

between 2019 and 2023 were published in Scopus 

journals. 

 
Figure 25 Scopus articles published by type 

 

 

Figures 26 and 27 depict the correlation between 

co-occurring keywords and the relationship between 

authors, respectively. It was observed that both 

statistics showed a strong relationship. Figure 28 

illustrates that one document was published in 2009, 

2011, and 2013. However, no document was 

published in 2010 and 2012. Two and three 

documents were published in 2014 and 2015, 

respectively. Scopus published a maximum of 40.63% 

(thirteen documents) in 2016. Still, the number of 

publications decreased in 2023. Although the analysis 

was done in December 2023 there may have been 

an increase in Scopus publications in 2024. 

 

 
Figure 26 Relationship between authors from 2009 until 2023 

 
Figure 27 Correlation between co-occurring keywords from 

2009 to 2023 

 

 
Figure 28 Scopus annual publication 

 

 

Different nations also made significant 

contributions to Scopus’ publication as shown in 

Figure 29. Out of all the nations that contributed to 

Scopus publications, the United Kingdom contributed 

50% (sixteen documents), Italy contributed 25% (eight 

publications), China contributed 22% (seven 

publications), and Denmark contributed 19% (six 

documents). Moreover, Australia, France, and Hong 

Kong contributed 13% each (four publications), 

Malaysia, the Netherlands, and the United States 

contributed 16% each (five publications), and Hong 
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Kong, Australia, and the United States contributed 

13% each (four publications). This indicated that the 

United Kingdom contributed the highest number of 

Scopus publications between 2009 and 2023. 

 
Figure 29 Nations’ contribution to Scopus publication 

 

 

Based on the contribution of subject areas (Figure 

30), engineering, materials science, environmental 

sciences, and other subjects have contributed 37%, 

29%, 19%, and 15% of all Scopus publications, 

according to an analysis of the Scopus database. 

This showed that engineering, materials science, 

environmental sciences, and other subjects had 

published 12, 9, 6, and 5 publications (32 documents  

as reported earlier), respectively. Figures 31 and 32 

provide the overviews of all the Scopus researchers 

together with their citations and year of publication. 

 

 
Figure 30 Contribution of subject areas to Scopus 

publication  

 

 
Figure 31 An overview of Scopus researchers with 
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Figure 32 An overview of Scopus researchers together with their publication year 

 

 

8.0 FUTURE DIRECTION 
 

The study's extensive review led to the identification 

of the following research gaps:  

• Many scholars have conducted in-depth 

investigations on waste materials. 

Unfortunately, most investigations focus only 

on the performance of HMA concrete. 

Therefore, further studies on the utilization of 

different wastes require stern consideration. 

• There is insufficient evaluation of the 

optimization of the several physical and 

chemical processes used to treat waste 

materials, such as grinding, the use of 

superplasticizers, the addition of 

cementitious materials, etc. 

• Because there is no control over the waste's 

content and quality, several studies using the 

same replacement ratio revealed 

significantly varying performance levels. 

There is a need for additional studies to 

confirm their real-world scenario.  

• There are limited studies on WMA technology 

available on the Scopus database. Three 

categories of WMA technologies (chemical, 

organic, and foaming) require detailed 

exploration.  

• Since there hasn't been may research done 

on the effects of incorporating waste 

materials into WMA mixture on the 

environment, careful consideration is 

needed.  

• To guarantee that wastes are improved as 

sustainable materials in the construction 

sector, a cost-benefit analysis of these 

wastes should be carried out. 

• This study reported an extensive review of 

different qualities and utilization of four types 

of waste materials (CBA, WCO, WEO, and 

RHA). Thus, immediate attention is needed to 

ensure the long-term performance of the 

WMA mixture with the appropriate contents 

of waste materials. 

 

 

9.0 CONCLUSION 

 
This study reported different qualities and utilization of 

waste materials in WMA concrete. The utilization of 

waste materials can save a substantial quantity of 

waste products and pave the way to acceptable 

advancement by converting waste into wealth and 

pollution into solutions. Waste materials under 

investigation enhanced the different qualities of 

asphalt mixtures. It is a helpful technology to add 

these wastes to asphalt mixtures, which typically 

results in durable concrete that can be used to 

construct sustainable roads. It has been 

demonstrated that waste materials can improve the 

durability and strength of WMA concrete. WMA 

concrete made from waste materials has 

contributed to a reduction in carbon emissions, 

which in turn has helped to reduce global warming. 

As a result, the economy, environment, and 

construction sector all benefit in various ways from 

these wastes. The WMA mixtures are less resistant to 

rutting when made with less aging limitation 

compared to HMA mixtures. WMA technology lowers 

the production and compaction temperatures by 

controlling the different qualities of the asphalt 

binders and WMA mixtures. It also decreases the 

viscosity of the asphalt binders mainly to produce 

and compact asphalt concrete. Hence, it can be 

categorized into three groups: foaming organic, and 

chemical technologies. The disciplines of 

engineering, materials science, environmental 

sciences, and others have contributed 37% (12 

publications), 29% (9 publications), 19% (6 

publications), and 15% (5 publications), respectively. 

The United Kingdom made a significant contribution 
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(50%) compared to all the nations that contributed to 

Scopus publication. The analysis from the Scopus 

database discovered 3,914 published documents 

between 2009 and 2023. Only 32 of these documents 

were published by Scopus. Furthermore, the analysis 

also found that 89.4% (29 publications) were 

technical articles and only 10.6% (3 publications) 

were review articles. The rheological and 

microscopic properties of the four wastes require 

additional review. 
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