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STARFRUIT SHAPE DEFECT ESTIMATION BASED ON
CONCAVE AND CONVEX AREA OF A CLOSED

PLANAR CURVE

MUSA MOKJI1 & S.A.R. ABU BAKAR2

Abstract. In this paper, a shape representation based on concave and convex area along a
closed curve is presented. The proposed technique involves the process of the curvature estimation
from the input curve and search for its corresponding critical points. By splitting the critical points
into concave and convex categories, the concave and convex area are computed. From these
statistical features, two problems related to the shape (curve) are investigated. Here, the proposed
technique is tested on shape defect estimation and shape recognition of starfruit. In the first case,
defect is measured by computing concave energy, which is proportional to the defect. For shape
recognition, starfruit’s stem is identified and removed from the starfruit’s shape, as it will contributes
false computation of defect measurement. For both cases, the proposed technique is tested with
three different curvature estimation techniques to validate the results.
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Abstrak. Dalam kertas kerja ini, sebuah perwakilan bentuk berdasarkan kawasan cekung dan
cembung di sepanjang keluk tertutup dipersembahkan. Teknik yang dicadangkan dalam kertas
kerja ini melibatkan proses anggaran kekelukan daripada keluk masukan dan juga proses pencarian
titik kritikal pada keluk masukan tersebut. Dengan mengasingkan titik kritikal tersebut kepada
kategori cekung dan cembung, pengiraan kawasan cekung dan cembung dilakukan. Daripada
ciri-ciri statistik ini, dua permasalahan berkaitan dengan bentuk disiasat. Di sini, teknik yang
dicadangkan diuji terhadap proses penganggaran kerosakan bentuk dan pengenalan bentuk pada
buah belimbing. Pada kes pertama, kerosakan bentuk belimbing diukur dengan mengira kuasa
cekung di mana kuasa cekung ini adalah selanjar dengan kerosakan bentuk tersebut. Untuk kes
pengenalpastian bentuk pula, tangkai belimbing adalah objek untuk dikenal pasti dan tangkai
belimbing ini akan diasingkan daripada bentuk belimbing kerana ia akan menyumbang kepada
kesalahan pengiraan kerosakan bentuk belimbing. Bagi kedua-dua kes, teknik yang dicadangkan
diuji dengan tiga teknik penganggaran kekelukan untuk memastikan keberkesanan teknik yang
dicadangkan.

Kata kunci: Perwakilan bentuk, kekelukan, titik kritikal, kawasan cekung dan cembung

1.0  INTRODUCTION

Shapes play a fundamental role in understanding objects in terms of their behavior
and characteristics, such as their identity and functionality. Thus, representing shapes
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as mathematical model is emerging as a major area of research, which impacts
diverse applications ranging from image analysis and pattern recognition to computer
graphics and computer animation. Local shape descriptor will characterizes the image
content in the surroundings of a point. The value of a pixel in a gray level image can
be considered as the simplest type of local shape descriptor. Local shape descriptor
can also indicate the presence of feature, often called a salient feature, such as an
edge, a corner, or a specific type of junction at a given location in the image. In this
paper, a shape defect detection and recognition technique based on curvature of a
planar curve is presented. The aim is to build a set of descriptor of an object using
local shape information and to extract a global set of attributes that can be used for
shape defect detection and recognition in starfruit quality inspection process. Here,
new features called concave and convex area will be generated as the shape descriptor.

Shape representation technique can also be categorized based on the input
representation form. Here, the techniques are divided into region-based technique,
which extract information from the whole region of the object and contour-based
technique, which is based on the boundaries of the object [16]. However, a
combination of both techniques is implemented in constructing the proposed features
(concave and convex area). Here, the concave and convex terms are derived from the
contour-based technique and the area term is referring to the region-based technique.

In the region-based technique, simple shape of object can be represented by its
geometric features (rectangularity, elongatedness, direction, compactness and etc.)
and statistical measure. However, for more complex image, the object must be
represented by a planar graph where each point on the graph will represents a sub-
region of simple shape of the object resulting from region decomposition [14].
Geometric representation only works for simple object as it only gives global
information. For complex objects, which contain significant local attributes needs a
more complex technique. However, there is a more reliable but less complicated
technique, which is based on the statistical features of the object. It is called Moment
Invariant. In 1992, Hu [6] has introduced seven rotation, translation and scale invariant
moment characteristics. Hu’s moment invariant is proven to be very useful in many
applications [19, 24]. Thus, its characteristics are also discussed in many publications
[2, 8]. Although moment invariant has good characteristic describing shape of an
object, its description is still based on the global information and lack of the local
information. Thus, the statistical information extracted using moment invariant is
not sufficient for the starfruit shape defect estimation where the requirement for the
local information is crucial.

In region-based technique, local information from an object can be best described
by region decomposition into smaller and simpler sub-regions. The object’s shape
can then be described by the properties from the set of all the sub-regions. The
decomposition approach is based on the idea that shape of an object is hierarchically
constructed from primitive shapes, which are the simplest element that form the
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complete shape region. Triangle, square, circle and convex shapes are the examples
of the primitive shapes. Normally, the decomposed image is represented in tree
structure as applied by J. M. Reinhardt and W. E. Higgins [13]. Another method of
shape decomposition is based on convex hull computation [22, 23]. Convex hull is
the smallest convex region that consists of all the curve points. To achieve an efficient
computation of the convex hull, many linear-time convex hull detection algorithms
have been introduced. However, more than half of them were later discovered to be
incorrect [20, 21]. The first linear-time algorithm that has been proved to be correct
was presented by McCallum and Avis [11].

Either one of the shape decomposition algorithm discussed previously can be
very useful in extracting the local information for the defect estimation of the starfruit.
Nevertheless, these decomposition techniques based on region are computationally
expensive and have complex algorithm. On the other hand, simpler technique of
extracting the local information can be obtained using the contour-based technique.
In the contour based technique, shape information is extracted along the boundary
of the object where both local and global information exist. The simplest contour-
based technique is by representing the object’s shape based on chain code. The
chain code is also known as Freeman’s code where it describes shapes by a sequence
of unit-size line segments with a given orientation [16]. In other words, chain code
sets a code (orientation) for each of the adjacent curve points. A chain code is very
sensitive to noise, scale and rotation. Thus, a smoothed version of the chain code as
applied in [10] will have a better representation of the shape.

Although chain code representation is simple, however it does not contain enough
information for the starfruit defect estimation. Apart from the chain code, a better
representation based on geometric features of the shape can gives more information.
The geometric features that can be extracted from an object’s boundary are such as
boundary length, curvature, signature and chord distribution [16]. Boundary length is a
feature that describes global measure and can be simply derived from the chain
code representation. The second feature, curvature, is a local measure of the object
that represents boundary as the rate of slopes change. From the curvature, another
two features can be derived, which are critical points or also called corner points on
the objects boundary (local measure) and bending energy (global measure). The
other two features, signature and chord distribution are also local measure. Signature is
defined as a sequence of normal contour distance between two curve points and
chord distribution computes the length of line joining any two curve points. The
disadvantage of signature is its complex computation while chord distribution is
difficult in determining the best reference points in its computation. Many other
methods and approach can be used to describe shape based on its contour. Most of
them have excellent shape description abilities but on the other hand they have
complicated computation [15]. As an example, B-spline representation applied
polynomial in its computation. Another example is a technique called Hough
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transform where locations and orientations of certain types of line are identified in a
digital image. Hough transform has been introduced by Paul Hough in 1962 and
then modified by Richard Duda and Peter Hart in 1972 [9]. The technique is very
computationally expensive as each of the curve points need to be transform into a
planar curve.

Based on the simplicity and local information embedded in the curvature
representation technique, this technique is chose to be implemented in the starfruit
shape defect estimation. From the curvature computation, boundary of the starfruit
shape will be categorized into concave and convex. Then, based on the region-
based technique of the shape representation, the area of the concave and convex
are computed to estimate the starfruit shape defect. The rest of this paper will discuss
these processes. Curvature computation is presented in subtopic two. Then, in
subtopic three, a feature called critical point that is derived from the curvature is
discussed. The proposed features, which are the concave and convex area, are
finally discussed in subtopic four. At the end of the discussions, performance of the
proposed method is measured based on three different curvature estimation
techniques.

2.0 DIFFERENTIAL GEOMETRY OF PLANAR CURVE

Let the smooth planar curve is given as C(t) = [x(t), y(t)] with the number of points
0 ≤ t ≤ b where x(t) and y(t) correspond to a pair of points in 2-dimensional coordinate
plane and b is the end curve point. C(t) or its discrete form C(n) is extracted from the
input image using 8-connectivity chain code technique measured as multiples of 45°
counter clockwise direction change. The original output of the chain coded curve is
in 1-dimensional data code. Thus, the code is translated into the coordinate form to
obtain the 2-dimensional data of C(n) = [x(t), y(n)]. Second derivative of the curve
C(n), which is invariant to rotation, contributes to a measure called curvature.
Curvature is estimated at each of the curve point by taking the angular difference
between its slopes [5], which is given as
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For a discrete curve, which is used in this work, its tangent vector and curvature
measure will produce discrete values. Discrete tangent vector and curvature does
not show its real behavior at each of the curve points. This is because in discrete
space, the smoothness of the curve has been violated. Thus, the curvature description
must be slightly modified to overcome the problem. This can be done by estimating
the curvature by applying curve fitting techniques to the curve or directly from the
curve points [16]. Curve fitting involves expensive computations [4], which is not the
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interest of this work. For non-curve fitting techniques, usually the curve is subjected
to Gaussian smoothing or moving cord estimation. Gaussian smoothing approach
typically adopts the continuous definitions of tangent and curvature for the discrete
case. For example, Mokhtarian and Mackworth [12] defined curvature as
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 In Equation 2, it shows that the input curve is convolved with a Gaussian operator
g(u, σ). Another example is the work reported in [1]. A simpler version of this type
of curvature estimation is by replacing the Gaussian operator with mean operator
[17]. In Gaussian smoothing, unnecessary details are removed, however this also
changes the shape and removes the corners, unless adaptive smoothing [25] is applied.
Besides, the choice of a suitable σ (standard deviation) is too dependent on its
input curve. There is no single σ  that suits all curve shapes. Due to this difficulty, a
technique called multi-scale curvature is proposed such as the work presented in [5].
This technique produces better results as curvature is measured at multiple σ. A
major disadvantage of the multi-scale computation is that it is computationally
expensive.     Instead of using the coordinate form curve, the curvature can also be
estimated using the input curve in the chain code form [14]. It is measured by taking
the first derivative of the chain code data and convolves with the Gaussian operator
as shown in Equation 3. This requires only one stage of derivative as the chain code
data itself already represents the first derivative (slope) of the input curve. Even
though the equation seems to be simpler than the coordinate form based equation
(Equation 2), however, curve represents in the coordinate form is more suitable for
our proposed method, which will be discussed in subsequent topics.

( ) ( ) ( )κ σ= ⊗ ,n C n g u (3)

In moving chord estimation technique, the curvature is approximated based on a
set of straight lines between two curve points, namely chord. This technique is simple
to implement, fast to execute and provides greater smoothing effect than Gaussian
filters [7]. Nevertheless, this technique is sensitive to noise. A second smoothing is
usually applied. The choice of the chord length will determine its outcome and the
suitable chord length, which depends on the input curve pattern. Thus, as Gaussian
smoothing technique requires the right s for the best result, moving chord estimation
technique requires the right chord length. For example, Han and Poston [5]
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approximated curvature by distance accumulation on the moving chord using various
chord lengths.

3.0 CRITICAL POINTS

Previous section has stated that curvature is sensitive to noise and many approaches
have been applied in order to improve the discrete curvature estimation. Thus, this
attribute is not robust for describing shape characteristic or even if it does, it includes
complex and computationally expensive processes. In curvature, there exist local
attributes called critical points. These points are corner points on curve where
curvature value is at maximum or minimum [16]. An interesting fact is, these critical
points provide better robustness. Normally, the curvature is differentiated to obtain
these points. In other words any neighbor point that changes in sign is considered as
critical point. Most of the previous work [12, 25, 7] also set a threshold value to
eliminate unwanted critical points. For advance work searching for the critical points,
Zhu and Chirlian [25] improved the technique from scale-space curvature by applying
nonlinear approach, which has less computation burden. Teh and Chin [18] came
out with a technique that searches for critical points without relying on the knowledge
of any special properties of the input pattern and create scale, rotation and translation
invariant attributes. A few other examples are described in [1, 3]. These work involve
complex algorithm, which is not the interest in this paper.

Now, let p be a curve point and S be a set of curve point or simply a curve. Then,
let p~ be a critical point and C be a set of the critical point. As the critical points are
part of the curve, we have C ⊂ S. Applying threshold value τ  to the curvature κ(p)
as in the [12, 25, 7], critical point search along the curve is now limited to a set of
points T(q), which is a set of curve point S when κ(p) is restricted with τ and q ≤ p
where C ⊂ T. The critical points is then determined as the points occur at the zero
crossing spot of the first derivative of T(q). Figure 1 illustrates the critical points
search processes and Figure 2 shows the search result for critical points using
Mokhtarian and Mackworth, Han and Poston and mean curvature estimation

p0 q0p0.01

 (a) (b) (c)

Figure 1 Critical points search processes. (a) Curvature κ(p), (b) κ(p) > 0.01, (c) T(q)
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technique with κ(p) > 0.01. Input curve for the critical points searched in Figure 1 is
referring to the image shown in Figure 2.

Critical points C in Figure 2 only occurs on the convex of the curve as κ(p) is
limited to positive values. Most of the critical points are positioned almost at similar
position across the three figures. However, the number of critical points in each
curve area is irregular. This is due to the noisy curvature. A better result for critical
point positioning can be obtained by changing its threshold value τ. However,
deciding which the most suitable τ  value is subjective. A higher τ  is more suitable
for deep concave and convex while a lower τ  is suitable for shallow concave and
convex.

4.0 CONCAVE AND CONVEX AREA

Based on Figure 2, as the critical points are still noisy even after threshold is applied
to the curvature computation, this paper proposes a computation of concave and
convex area between two critical points to reduce the noise effect. Concave and
convex area is defined as an area between a straight line Y and curve S where both
are bounded by two adjacent critical points. The straight line Y joining the two
critical points is also called chord.

To compute both the concave and convex area that lies on the input curve, the
first step is to categorize the curve point into concave and convex. Categorizing
between concave and convex point on the curve can be done directly from the
curvature value. Curve point with positive curvature value represents a convex point
while curve point with negative curvature value represents a concave point. As
critical points carry out C ⊂ S, thus the critical points can also be divided into
concave and convex critical points. Categorizing the critical point is also simple
where all convex critical points only occur on convex curve point (positive
curvature) and vice versa. These critical points should also follow the following
equations

 (a) (b)  (c)

Figure 2 Critical points. (a) Mokhtarian and Mackworth (b) Han and Poston (c) Mean curvature
estimation [x – critical point]
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0C C+ −∩ =  (4)

0C C+ −∪ = (5)

C+ and C– are denoted by a set of convex critical point and a set of concave
critical point accordingly. Previously, a curve is defined by S(p). Writing it in
coordinate form, S(p) = {Sx(p), Sy(p)}. Also, for C+ and C–, they can be written as
C+

i = {C+
xi, C

+
yi} and C–

j = {C–
xj, C

–
yj} where i & j < p. As critical points have been

divided into concave and convex point, they will be treated separately.
Concave and convex area can be computed by taking an area under the curve

towards the chord, which both are bounded by two adjacent critical points. In
coordinate form, if both the bounded curve and the chord are rotated and translated
until its start point and end point reach coordinate-x or both points lies on the
horizontal line, the concave or convex area can be written as

( )A S p p′= ∂∫ (6)

or it is approximated by a summation form as

( )
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p p

A S p
+

=
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where S'(p) is the rotated and translated curve S(p). In geometry form, S'(p) is
known as the length between the curve points to the line Y perpendicularly. With
this circumstance, S'(p) can be represented using linear equation, which is denoted
by

S'(p) = L(p) = (p) sin θ (8)

where

(p) = Sy(p) = miSx(p) – ci (9)

Equation 9 computes the length vertically and this length is rotated perpendicularly
to the chord by sin θ where θ is the angle between the vertical line and the
perpendicular line and it is defined as

( )1tan
2

m
πθ −= − (10)

As in the common linear equation for a straight line, mi and ci is referred to
gradient and y-axis intercept. They are measured between two adjacent critical points.
Thus we have
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Note that indexes used in Equation 11 and Equation 12 are i and ‘+’ sign. This
means that they are referring to convex critical point. For concave critical points, i is
replaced with j and ‘+’ sign is replaced with ‘–’ sign. Graphically, all these computation
are illustrated in Figure 3. In the computation of A, as concave and convex are
treated separately, each computation picks only one type of the critical point, whether
they are concave critical points or convex critical points. Specifically, convex critical
point is used for concave area computation and concave critical point is applied in
order to compute convex area.

Figure 3 Concave and convex area computation

Once the right critical points are selected and L(p) is computed based on Equation
8, which includes both positive and negative values. However, only one part of the
values is considered in the computation because a wrongly picked sign value will
result in a wrong computation. For an example, if concave area is computed, picking
false sign value will lead to the computation of convex area but not concave area as
it suppose to. Thus, a variable Γ is introduced to determine the correct value to be
picked, either the positive or negative values. Γ is determined as the length from the
center of the closed curve to the current chord. Here, the center of the closed curve
is represented by {xc, yc} and illustrated in the partial closed curve in Figure 3. Thus

i c i c iy m x cΓ = − − (13)

Chord

Curve

Γi

(xc, yc)

( p)

p

L( p)

p~i+1

p~i
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Redefining Equation 7 for its positive and negative value, we have
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and by adopting Γ to the equation in order to choose only the correct value will
yield a separate equation for concave and convex area.
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The only difference between concave area and convex area is the sign of the Γ
value, which is contrary to each other. Figure 4 shows the plot of both concave area
(Aconcave) and convex area (Aconvex) with respect to the curve points position (p) for
several different method using the input curve taken from Figure 2.

Results in Figure 4 shows that all the three techniques are able to produce an
approximately similar output, although critical points tracked between these

(a) (b) (c)

Figure 4 Concave and convex area (a) Mokhtarian and Mackworth (b) Han and Poston (c)
Mean curvature estimation [- - - convex area ––– concave area]
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techniques (Figure 2) seems to be irregular. This is because neighboring critical
points with close distance will results in a very small area value. Besides, based on
Equation 15 and Equation 16, two adjacent convex (concave) critical points with no
concave (convex) points in between them will results a zero value. Hence, only
adjacent critical points with deep enough concave or convex between them are
visible in the computation. Thus, by splitting the computation into two parts (concave
and convex), a more robust attribute is obtained.

5.0 EXPERIMENTAL RESULTS

In order to test the reliability of the proposed method, the method was tested on two
cases. First, it was tested to estimate the shape defects on a starfruit. The second case
was to recognize a plain shape. Shape information on starfruit is important, as it will
determine its quality. Good shaped starfruits will attract more people to buy and is
suitable as decoration for hotel style food and drink. Shape defect occurs on a
starfruit is mainly caused by bugs and soil composition. However it is not the intention
of this work to overcome this problem. However this paper concentrates more on
measuring the amount of the shape defect. Later, the measure will be used as guidance
for grading process.

Samples used in this experiment are taken by capturing starfruits images with
digital camera. From the starfruit images, the shape of the starfruit is extracted using
chain-code algorithm. As a result, closed curves containing concave and convex is
obtained representing the starfruit shape. In the first test, shape defect on the starfruit
is represented by the concave. Thus, the shape defect can be measured based on
the concave area (Aconcave). Here, a global attribute called concave energy, which is
defined as the sum of concave area along the closed curve is computed. Figure 5

 (a) (b) (c)

 (d) (e) (f)

Figure 5 Starfruit shape samples
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shows six shapes of starfruit, which are used in the experiment. The starfruit shapes
(a – d) are defective, while shape (e – f) are defects free. The experimental results
are shown in Table 1.

Table 1 Shape defect result based on concave energy

Concave Energy

Mokhtarian &
Shape τττττ Mackwoth Han & Poston Averaging Filter

A 0 498 501 480
0.005 513 500 491
0.01 520 506 500

B 0 650 670 695
0.005 690 691 713
0.01 749 700 760

C 0 480 510 493
0.005 500 513 496
0.01 500 520 508

D 0 111 90 108
0.005 110 100 110
0.01 113 100 120

E 0 15 9 10
0.005 15 9 11
0.01 15 10 11

F 0 14 18 14
0.005 15 18 16
0.01 22 20 22

Table 1 shows that the concave energy of shape a, b, c and d are higher compared
to the shape d and e as they contain some defects. This means that the concave
energy is proportional to the defect amount. Table 1 also shows the results for three
different values of τ, which represent different number of critical points tracked
along the closed curve. An increase in τ  will decrease the number of critical points.
The results across those three values of τ did not vary significantly as expected.
However, if the defect’s computation of those six samples are based on the total of
critical points occurred along the concave, unstable values across the three technique
are produced as shown in Table 2.

Table 1 and Table 2 show that although unstable or various placement of the
critical point exist along the curve (Figure 2), computation of concave energy results
a more stable measure compared to the technique based on the critical points.

The algorithm is also tested on another 100 samples of starfruits to classify them
whether the starfruit has a healthy shape or vice versa. Starfruit shapes that have less
than 10% of the concave area within the whole starfruit shape area are considered as
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healthy. To determine the accuracy of the classification, a cross validation with
human vision is made. It is found that the accuracy result based on Mohtarian &
Mackwoth curvature is 94%, while 90% and 93% are obtained for Han & Poston
curvature and averaging filter curvature accordingly.

Next, the algorithm is tested for plain shape recognition. In this case, the algorithm
will recognize stem in the starfruit. Stem in a starfruit will cause a wrong computation
of the defect estimation. Thus, once the stem has been recognized, it can be ignored
in the defect estimation computation. In this case, convex area is used as a descriptor.
Additionally, another feature is considered to strengthen the algorithm. It is distance
between the neighboring critical points as defined in the Equation 17.

( ) ( ) ( ) ( ) ( )
1
222

1 1x x y yd p C p C p C p C p   = − + + − +     
(17)

Using empirical method, threshold for d( p~) and Aconvex( p~) is chosen in order to
identify the stem shape. Here, a convex on the starfruit curve shape is considered as
stem if d( p~) ≤ 10 and Aconvex( p~) ≥ 50. The previous sample set is used for testing. In
the sample set, there are 60 samples without the stem and 40 samples with the stem.
The experimental results are shown in Table 3, which calculate the accuracy of true
identification.

Table 2 Shape defect result based on critical points

Concave Energy

Mokhtarian &
Shape τττττ Mackwoth Han & Poston Averaging Filter

A 0 321 450 300
0.005 207 301 183
0.01 152 163 114

B 0 286 364 244
0.005 153 191 107
0.01 84 87 72

C 0 318 407 293
0.005 186 281 166
0.01 115 144 88

D 0 332 400 280
0.005 180 267 160
0.01 98 111 81

E 0 93 120 98
0.005 85 100 63
0.01 47 63 27

F 0 101 124 96
0.005 83 110 77
0.01 62 73 34
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From Table 3, it is shown that the accuracy for the recognition of samples without
the stem is better compared to samples with the stem. The reason for the incorrectly
recognized samples with the stem is due to the short size of the stem, which does not
significantly influence the defect estimation. However, the recognition sensitivity of
the stem can be improved by increasing the threshold for d( p~) and Aconvex( p~).

6.0 CONCLUSION

We have presented a method based on concave and convex area computation as a
descriptor for shape representation. The technique manipulates noisy critical points
into the proposed features, which are more stable. This is done by splitting the
critical points into concave and convex critical points and computes the concave
and convex area. The proposed technique has the ability to prevent wrong
computation of the unwanted critical points. Thus a more stable result can be obtained.
The algorithm is tested based on three curvature estimation techniques. It shows
that concave and convex area computation based on these techniques give stable
values, which are proportional to the shape defect of the starfruit. Good results also
obtained in identifying the stem shape.
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